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ABSTRACT
From the standpoint of the automated extraction of scien-
tific knowledge, an important but little-studied part of sci-
entific publications are the figures and accompanying cap-
tions. Captions are dense in information, but also con-
tain many extra-grammatical constructs, making them awk-
ward to process with standard information extraction meth-
ods. We propose a scheme for “understanding” captions in
biomedical publications by extracting and classifying “image
pointers” (references to the accompanying image). We eval-
uate a number of automated methods for this task, including
hand-coded methods, methods based on existing learning
techniques, and methods based on novel learning techniques.
The best of these methods leads to a usefully accurate tool
for caption-understanding, with both recall and precision in
excess of 94% on the most important single class in a com-
bined extraction/classification task.

General Terms
Information extraction
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1. INTRODUCTION
The vast size of the biomedical literature makes it es-

sential to summarize pertinent scientific results. Normally
this is done by creating curated databases, like the Entrez
databases, SwissProt, and YPD. However, curated databases
are expensive to create and maintain; do not typically per-
mit extensive links to specific supporting data; do not es-
timate confidence of assertions; do not allow for divergence
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of opinion; and do not readily permit updating or reinter-
pretation of previously entered information. Information
extraction (IE) methods can be used to at least partially
overcome these limitations by automatically extracting in-
formation from biomedical text [1, 16, 14, 19, 18, 10, 9, 15,
3, 7, 17].

Most previous biomedical IE systems have been applied to
abstracts. Abstracts are a natural source of information, as
they are readily available, and dense in information. A sec-
ond “information-dense” part of scientific publications are
the figures and accompanying captions . In many scientific
publications, the most important results in a paper are il-
lustrated in non-textual forms, such as images and graphs.
Authors understand that figures occupy large amounts of
valuable page space, and are likely to be seen disproportion-
ately by casual readers. Thus figure captions often concisely
summarize a paper’s most important results, as perceived by
the author.

However, applying IE to caption text is also problem-
matic. Since the main purpose of caption text is to comment
on an image, captions are often littered with references to
the image, and these “image pointers” are interspersed with
grammatical text in a variety of ways. Since this sort of
extra-grammatical structure is likely to mislead automated
extraction tools, detecting it would be beneficial before ap-
plying “off the shelf” IE/NLP components.

A second motivation for wanting to “understand” the
structure of captions is to leverage systems that extract in-
formation from the images in scientific publications. In pre-
vious work, we have developed tools to automatically an-
alyze fluorescence microscope images of cells and compute
features relating to subcellular localization [2, 20, 13]. These
tools have also been applied to images harvested from online
biomedical publications [12], and we are currently extending
this system to extract assertions such as “Figure N depicts a
localization of type L for protein P in cell type C” [5]. This
requires extracting protein names and cell names from cap-
tions and determining what microscope image each entity
name refers to. For figures which contain multiple micro-
scope images (the vast majority!) this task requires caption
understanding.

In this paper, we will address the question of “understand-
ing” the structure of caption text in a fairly general context.
Our main goals are first, to detect extra-grammatical con-



structs in caption text, in particular extra-grammatical in-
sertions that refer to parts of the accompanying image; and
second, to determine what parts of the caption text are as-
sociated with which (references to) parts of the image.

2. UNDERSTANDING CAPTIONS
Figure 1 illustrates some of the key technical issues in un-

derstanding captions. In the figure the boxed area encloses
a prototypical figure harvested from a biomedical publica-
tion,1 with the italicized text (“Fig. 1. Kinase inactive
Plk. . . ”) being the associated caption from the reproduced
figure. The reproduced caption text contains several strings
that refer to places in the accompanying image: “A”, “B”,
“IE”, “ME”, and “ME+Plk-KD” (the last two of which oc-
cur twice). Below we will call these strings image pointers.

There are at least two possible end goals for caption pro-
cessing. One is to convert the caption text to ordinary
grammatical text. Generally, one would like to identify and
remove image-pointer related disfluencies, and recover any
formatting or structural information lost as a consequence
of the text’s appearance as a caption. In the specific case of
Figure 1, this would mean replacing the strings “(A)” and
“(B)” with paragraph breaks, and removing all the other
image pointers.

A second possible goal is to associate subsequences of cap-
tion text with specific image pointers and therefore, to parts
of the image. If one imagines applying an IE system that
utilitizes image-processing to Figure 1, for instance, it might
be useful for the system to know that all three microscope
images are of NRK cells stained with anti-mannosidase II
antibody, but that only the panel labeled “IE” concerns in-
terphase cytosol.

Some additional issues that arise in caption-understanding
are not illustrated by Figure 1. In Figure 1, all parenthesized
expressions are image pointers, and vice-versa; however, this
is not generally the case. Captions can also contain image-
pointer strings that are not grammatically null, as in the
text “Following a procedure similar to that used in (A),
cells were stained for. . . ”.

Based on these and similar examples, we decided to break
down the caption-understanding task into several subtasks.

The first step is image-pointer extraction—identifying all
image pointers in the caption. After image pointers are iden-
tified, they are classified according to their linguistic func-
tion. Bullet-style image pointers function as compressed
versions of bulleted lists; the strings “(A)” and “(B)” in
Figure 1 are bullet-style image pointers. NP-style image
pointers are used as proper names in grammatical text; an
example is the string “(A)” in the text: “Following a pro-
cedure similar to that used in (A), . . . ”. Citation-style im-
age pointers are interspersed with grammatical caption text,
in the same manner that bibliography citations are inter-
spersed with ordinary text; the remaining image pointers in
Figure 1 are citation-style.

After image-pointer classification, the scope of each image
pointer is determined. The scope of an image pointer spec-
ifies, indirectly, what text should be associated with that
image pointer. The scope of a NP-style image pointer is the

1This figure is reproduced from the article “Ras Regulates
the Polarity of the Yeast Actin Cytoskeleton through the
Stress Response Pathway”, by Jackson Ho and Anthony
Bretscher, Molecular Biology of the Cell Vol. 12, pp. 1541–
1555, June 2001.

set of words that (grammatically) modify the proper noun
it serves as. The scope of a bullet-style image pointer is all
the text between it and the next bullet-style image pointer.
The scope of a citation-style image pointer is some sequence
of tokens around the image pointer, usually corresponding
to a nearby noun phrase.

In this paper we will focus on the first two steps, of image-
pointer extraction and image-pointer classification. We will
not discuss image-pointer scoping in depth.

3. EXPERIMENTAL RESULTS

3.1 Data Collection
To evaluate approaches to caption-understanding we col-

lected a dataset of 100 biomedical publications in PDF for-
mat. This was a random subsample of a larger set of Pubmed
Central papers previously used to evaluate a system called
Slif2 for processing fluorescence microscope images [12].
Using an automated tool, figures were successfully extracted
from 90 of the 100 sample papers. We randomly chose
one figure from each successfully-processed paper and hand-
labeled the image pointers. There are a total of 562 image
pointers, or an average of 6.2 per caption.

3.2 Hand-coded extraction methods
As a baseline, we first hand-coded some relatively simple

extraction methods. Many image pointers are single letters
(like “A” and “B”) or simple variants. The HandCode1
method thus extracts as image pointers all expressions of the
form “(X)”, “(x)”, “(X-Y)”, “(x-y)”, “(X and y)” or “(x and
y)”, where “X” and “Y” (respectively “x” and “y”) indicate
any uppercase (respectively lowercase) letter. HandCode1
has high precision (98.5% on our dataset), but low recall
(45.6%).

Most image pointers are parenthesized. The HandCode2
method thus extracts all parenthesized expressions that are
(a) less than 40 characters long and (b) do not contain a
nested parenthesized expression, and also extracts expres-
sions of the form “x”, “X”, “x-y” or “X-Y” that are pre-
ceeded by one of the words “in”, “from”, or “panel”. Hand-
Code2 has high recall (98%) but only moderate precision
(74.5%) .

HandCode2-Filt combines HandCode2 with a hand-
engineered filter (one of several which was explored.) The
filter exploits the fact that image pointers are often based
on a sequence of letters from the beginning of the alphabet.
HandCode2-Filt accepts image pointers like “(arrows in
C)” or “(b,c and f-h)”, and rejects many other short paren-
thesized expressions, like “(for 1hr)”. However, while this
filtering step improves precision, it has a high cost in recall.

Results with these methods are summarized in the first
table of Figure 2. In addition to precision and recall we
also show the F-measure (the geometric mean of recall and
precision) for each method. The hand-coded methods work
only moderately well for this task: while it is easy to obtain a
recall of 40-50% with very high precision, it appears difficult
to identify the remaining image pointers with high precision.

3.3 Learning methods

3.3.1 Background.

2For “Subcellular Location Image Finder.”



Fig. 1. Kinase inactive Plk inhibits Golgi fragmentation by mitotic
cytosol. (A) NRK cells were grown on coverslips and treated with
2mMthymidine for 8 to 14 h. Cells were subsequently permeabilized
with digitonin, washed with 1M KCl-containing buffer, and incubated
with either 7 mgyml interphase cytosol (IE), 7mgyml mitotic extract
(ME), or mitotic extract to which 20 mgyml kinase inactive Plk
(ME + Plk-KD) was added. After a 60-min incubation at 32C, cells
were fixed and stained with anti-mannosidase II antibody to visualize
the Golgi apparatus by fluorescence microscopy. (B) Percentage of
cells with fragmented Golgi after incubation with mitotic extract
(ME) in the absence or the presence of kinase inactive Plk (ME +
Plk-KD). The histogram represents the average of four independent
experiments.

Figure 1: A figure reproduced from the biomedical literature. The caption includes both “citation-style” and “bullet-

style” image pointers.

There is a substantial literature on using machine learn-
ing approaches for difficult extraction problems. One simple
but successful extraction method is Boosted Wrapper Induc-
tion (Bwi) [8]. Bwi inputs a tokenized version of a docu-
ment, annotated with a set of target strings (strings to be
extracted). From this data, Bwi learns three classifiers: the
fore classifier identifies tokens that begin a target string, the
aft classifier identifies tokens that end a target string, and
the length classifier identifies lengths (i.e. 1,2,3,. . . ) that
correspond to target strings. All of these classifiers output
a confidence or score. The aggregate score of the string
between token i and token j is then FORE(i) · AFT (j) ·
LENGTH (j− i) where FORE, AFT, and LENGTH are the
scores of the three classifiers. The hypothesis of Bwi is all
intervals i, j where this score exceeds some threshold.

Bwi uses boosting to learn the fore and aft classifiers.
Boosting builds a classifier by repeatedly calling a base
learner with different weightings of the training set. For
Bwi, the base learner greedily searches for a rule that dis-
tinguishes the fore (or aft) tokens from the non-fore (or non-
aft) tokens, based on patterns involving the prefix (tokens
preceding) and the suffix (tokens including and following)
an example token. For instance, the rule PREFIX=〈“.”〉,
SUFFIX=〈“(”, OneCharToken, “)”〉, would match the
left parenthesis of all bullet-style image pointers from Fig-
ures 1. In Bwi, the primitive conditions in a prefix (or
suffix) pattern can test for equality to a specific token (like
“.” above) or may include certain predefined wildcard con-
ditions (like OneCharToken above). Rules are found by
repeatedly adding to the prefix (or suffix) pattern the exten-
sion of length L or less which maximizes a scoring function.
The number L determines the amount of “lookahead” used
in the greedy search.

3.3.2 A simple learning method for extraction.
We experimented with a modified version of Bwi, which

we will call aBwi.3 aBwi is based on two main compo-
nents. One component is a feature-vector learning system
that closely follows the boosting algorithm and base learner
in Bwi: this is implemented using Slipper [6], a feature-
vector rule learner to which Bwi is closely related. The sec-

3For “Almost BWI.”

ond is a tool called Peel4, which constructs a proposition
representation of a document from a certain intermediate
form.

Specifically, Peel inputs a number of of labeled substring
sets, and produces a set of labeled feature vectors. A labeled
substring is a tuple 〈f, i, j, `〉 where f is a file name, i and j
are character indices into the file, and ` is a label associated
with the substring of f between i and j. Empty substrings
are allowed. A labeled substring set S is simply a set of
labeled substrings.

One labeled substring set is designated as the exam-
ple set , and the others are called feature sets. Feature
sets are generated in Peel by taking each substring from
the example set in turn, and following a special feature
generation program, each step of which is of the form
“emit(Si ,DIRi ,DISTi ,OPi)”, where Si is (the name of) a
labeled substring set, DIRi is a direction, DIST i is a dis-
tance, and OP i is an operation. Each emit function pro-
duces to a single feature.

As an example, suppose that Stoken is a labeled sub-
string set containing all tuples 〈f, i, j, T 〉 where T is the
token appearing at position i, j in f . (For instance, if f
contains the caption of Figure 1, then Stoken might con-
tain 〈f, 1, 3, “Fig”〉, 〈f, 3, 4, “.”〉, 〈f, 5, 6, “1”〉, 〈f, 6, 7, “.”〉,
〈f, 8, 14, “Kinase”〉, . . . .) Then the program

emit(token,before,−2,label),emit(token,before,−1,label),
emit(token,inside,0,label), emit(token,after,+1,label),
emit(token,after,+2,label);

would emit 〈‘cytosol’,‘.’,‘(’,‘A’,’)’〉 for the “fore” token of the
first image pointer in Figure 1.

Peel currently supports the directions before, after, and
inside, and the operations label (which produces the label of
the feature substring x) and distance, (which produces the
distance between x and y).

Using Peel and an appropriate feature-vector learner one
can construct a reasonable approximation to Bwi. In aBwi
patterns must be of a bounded length, which is determined
by the user when feature-vectors are constructed; in con-
trast, Bwi’s base learner selects pattern length dynamically
during learning. However, aBwi allows more flexibility in

4For “Preparing Examples for Extraction Learning.”



Method W Precision Recall F
HandCode1 98.5 45.6 62.3
HandCode1-Filt 99.2 43.2 60.2
HandCode2 74.5 98.0 84.6
HandCode2-Filt 89.0 54.8 67.8
aBwi 1 82.9 92.8 87.6
aBwi 2 89.7 91.0 90.3
aBwi 3 90.6 83.4 86.9
NrBwi (Slipper) 3 96.09 85.17 90.3
NrBwi (Ripper)∗ 3 88.08 87.15 87.6
NrBwi (SVM) 3 100.00 75.20 85.6
NrBwi (SVM)∗ 3 69.01 78.00 73.2
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aBwi/na 85.2 91.6 88.3 85.9 92.2 89.0
saBwi/na 85.7 92.9 89.2 88.6 93.8 91.1

Figure 2: Top left: precision, recall and F-measure on image pointer extraction for a number of different. Top

right: sensitivity of aBwi (W=2) to rounds of boosting T. Bottom: Performance of standard aBwi with and without

engineered features, and the symmetric version (saBwi/na) with engineered features.

feature engineering (as we will discuss below) and also makes
it simple to explore different underlying learning methods.

aBwi differs from Bwi in three other ways. One differ-
ence is a matter of usage: rather than classifing tokens as
fore and aft and using an aggregate score, we elected to
classify the substrings produced by HandCode2 as image-
pointer or non-image pointer.5 A second difference is that
the aBwi base learner does not perform lookahead, but does
allow a pattern to contain conditions about any token in the
window; in contrast Bwi’s base learner does use lookahead,
but only produces patterns based on token sequences that
are contiguous and starting at the token to be classified.
A third difference is that we used a slightly different set of
wildcards than Bwi, based on our intuitions of the caption-
understanding problem.

aBwi has two parameters, window size (W) and the num-
ber of rounds of boosting (T). Bwi also has two parameters,
lookahead (L) and rounds of boosting (T).

3.3.3 Results with token-window features
Initial results for extraction. We used 10-fold cross-

validation to evaluate the performance of aBwi, initially
fixing T=100 and varying the window size W. aBwi outputs
a confidence on each prediction, and by varying a threshold
one can trade off recall for precision. Setting this threshold
to maximize F-measure for W=2 gives a recall of 89.7% and
precision of 91.0%, for an F-measure of 90.3%. 6

5I.e., the HandCode2 substrings formed the example set,
rather than using all possible fore/aft pointers as examples.
Although the general approach allows learning classifiers for
fore/aft tokens as well, it was inappropriate to use this gen-
eral method here, given the performance of HandCode2.
6Using the default threshold, which minimizes error rate,
gives essentially identical results: recall 88.4%, precision
92.0%, and F-measure 90.2%.

aBwi seems to be more sensitive to W than T. F-measure
varied widely as W was varied from 1 to 10, with perfor-
mance peaking at W=2 (not all results for W are shown).
For W=2, T=100 seems approximately optimal, as shown
in the graph accompanying Figure 2.

Additional extraction results. An advantage of aBwi is
that is possible to easily modify the system by changing
the learning component. As an experiment, we replaced the
learner in aBwi with three other learning systems: Slipper
(with its default options, including mechanisms to handle
noisy data and internal cross-validation to pick T); Ripper
[4], and SVM Light [11]. Some representative results are
shown in Figure 2 under the method name NrBwi.7 On
this problem, none of the other learners improves over aBwi,
although all outperform the hand-coded systems.

Classification results. While for some purposes it is suf-
ficient to simply identify (i.e., extract) image pointers, for
other tasks, it is necessary to classify extracted image point-
ers as bullet-style, citation-style, or NP-style. We consid-
ered using a single multi-label classifier to label substrings
as bullet-style, citation-style, NP-style, or “other” (where
“other” indicates that a substring is not an image pointer
at all.) Figure 3 shows results obtained using this combined
classification/extraction approach. All results are for aBwi
with T=100, and the best results were obtained with W=3.

Additional features. An advantage of aBwi is that Peel
makes it relatively easy to introduce additional features. To
explore the use of engineered features, we added two addi-
tional labeled string sets. First, the set Ssentence was pop-
ulated with empty strings indicating sentence boundaries.
Second, the Sspecial string was created for other “special”
substrings that we conjectured would be useful, such as

7For “Not Really Bwi.” Lines tagged with an asterisk are for
learners with settings optimized for error rate rather than
F-measure.



Method Error rate
W=2 W=3 W=5

aBwi 24.6 27.5 26.7
aBwi/na 26.7 22.2 26.7
saBwi/na 24.2 18.2 22.6

Confusion matrix for saBwi/na (W=3)
Predicted

Bullet Cite NP Other
Bullet-style 191 4 0 0

Actual Citation-style 6 313 15 10
NP-style 1 5 16 1
Other 4 72 18 92

Figure 3: Left: performance of aBwi variants on simultaneous extraction and classification. Right: details of perfor-

mance of saBwi/na, the best-performing caption-understanding method.
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Figure 4: Performance of aBwi, aBwi/na, and saBwi/na on extraction (left) and combined classification and extraction

(right) on subsamples of the data.

handCode1 label for substrings matching one of the pat-
terns used in the HandCode1 method, a place label for
words like “top”, “bottom”, “left”, “right”, etc; a measure
label for common measurements; and a citation label for re-
cent years and other citation-related tokens. We then aug-
mented the Bwi-emulating Peel script to output additional
features corresponding to the labels of any “special” string
found inside the candidate image pointer, and the distance
to the previous sentence boundary.

The results are shown in the bottom table in Figure 2
(for extraction) and Figure 3 (for classification) under the
method name aBwi/na.8 Performance was not consistently
improved; we conjecture this is because many of the fea-
tures described above are negatively correlated with the
target strings, and Bwi is designed to learn rules that are
positively correlated. We modified the underlying learning
system to include the negation of all tests allowed previ-
ously, and also to learn rules that identify and reject non-
target strings. This “symmetric” version of aBwi (in the
tables, saBwi/na) improves performance consistently over
“vanilla” aBwi, and outperforms the best previous systems
on both the extraction and classification tasks.

3.3.4 Additional details on performance
Additional details. Experiments on random subsamples

indicate that saBwi/na improves more over aBwi for smaller
training sets, and that performance on the classification task
might be improved further by simply collecting more labeled
data. not shown due to space limitations).

In Figure 4, we show the performance and aBwi, aBwi/na,
and saBwi/na on the extraction and classification tasks us-
ing subsamples of the data. All curves show error rates
averaged over 20 independent trials with W=3 and T=100.

8For aBwi with New Attributes.

For extraction, the additional features are harmful for aBwi
but helpful for saBwi/na, especially with less training data.
For classification, the additional features show mixed results
for aBwi, but improve saBwi/na. The curves also indi-
cate that performance on the classification task might be
improved by collecting more labeled data.

On the right in Figure 3, we show the full confusion ma-
trix of the best classifier (on the cross-validated test exam-
ples). Performance is extremely good (recall 98%, precision
94.6%) on bullet-style labels, which most severely impact
performance. Most errors are made by incorrectly rejecting
citation-style image pointers.

4. CONCLUDING REMARKS
In many genres of scientific publication, caption text is ex-

tremely dense in information. However, applying automated
text extraction methods to caption text can be difficult. We
have considered the problem of “understanding” captions, in
the sense of extracting and analyzing the extra-grammatical
structure of captions. Specifically, we proposed extracting
image pointer text and classifying it into three categories,
bullet-style, citation-style, and NP-style.

For biomedical captions, there are a number of reasons for
being interested in this sort of “understanding”. Based on
this analysis, one can recover the original caption text, sans
extra-grammatical insertions, which might facilitate later
text processing. More importantly, one can also associate
specific parts of the caption text with specific parts of the
image, by using relatively simple scoping rules. This means
textual information from captions can be used to leverage
automated understanding of the associated image—a goal of
our own ongoing work in analysis of fluorescence microscope
images appearing in on-line journals [12].

In an experimental study with a hand-labeled corpus of



figures, we evaluated a number of extraction and classifica-
tion techniques. The best-performing method is the novel
extraction system saBwi/na, which naturally extends an
earlier extraction system Bwi with the ability to use fea-
tures based on arbitrary labeled substrings. Exploiting this
ability, we included a number of substring features engi-
neered specifically for the caption-understanding task. This
improves performance over hand-coded extraction methods
and competitive “off-the-shelf” learning methods. The best
system described is usefully accurate, and obtains both re-
call and precision in excess of 94% on bullet-style image
pointers, the most important class in the combined extrac-
tion/classification task.
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