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Extracting information from text and images for location 
proteomics 

 

ABSTRACT 
There is extensive interest in automating the collection, 
organization and summarization of biological data. Data in the 
form of figures and accompanying captions in literature present 
special challenges for such efforts. Based on our previously 
developed search engines to find fluorescence microscope 
images depicting protein subcellular patterns, we introduced text 
mining and Optical Character Recognition (OCR) techniques for 
caption understanding and figure-text matching, so as to build a 
robust, comprehensive toolset for extracting information about 
protein subcellular localization from the text and images found 
in online journals. Our current system can generate assertions 
such as “Figure N depicts a localization of type L for protein P 
in cell type C”. 

Keywords 
Information extraction, Bioinformatics, text mining, image 
mining, fluorescence microscopy, protein localization 
1. INTRODUCTION 
The vast size of the biological literature and the knowledge 
contained therein makes it essential to organize and summarize 
pertinent scientific results. This leads to the creation of curated 
databases, like the Entrez databases, SwissProt, and YPD. The 
information in these databases is largely incorporated by 
computer-generated links to relevant entries in other structured 
databases or entered manually by scientists in the relevant fields. 
However, curated databases are expensive to create and 
maintain. Moreover, they do not typically permit extensive links 
to specific supporting data, do not estimate confidence of 
assertions, do not allow for divergence of opinion, and do not 
readily permit updating or reinterpretation of previously entered 
information.  
 
Information extraction (IE) methods can be used to at least 
partially overcome these limitations by creating self-populating 
knowledge bases that can automatically extract and store 
assertions from biomedical text [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].  
However, most existing IE systems are limited to extracting 
information only from text, not from image data. In this paper 
we describe techniques for extracting information about protein 
subcellular locations from both text and images.   
 
These techniques build on previous work [12] in using image 
processing methods to analyze fluorescence microscope images 

and extract a quantitative description of the localization patterns 
of the tagged proteins. This work was later extended to process 
images harvested from on-line publications [13].  Here we will 
describe a further extension to this system, which extracts 
detailed textual annotations of the images (and associated 
proteins) by analyzing the accompanying captions.   The system 
is called SLIF (for Subcellular Location Image Finder), and our 
long-term goal is to develop a large library of annotated and 
analyzed fluorescence microscope images, in order to support 
data-mining. 
 
More generally, there are many reasons for wishing to 
investigate extraction from the text and images in figures.  
Figures occupy large amounts of valuable page space, and are 
likely to be seen disproportionately by casual readers. Thus 
figure and caption pairs often concisely summarize a paper’s 
most important results as perceived by the author.  
 
In the following sections, we will first describe how SLIF works. 
We will focus on the recent extensions to the system; 
specifically our approaches to extracting information from 
caption text, and associating this information with the image 
data. 
2. SLIF 
2.1   Overview 
SLIF applies both image analysis and text interpretation to the 
figure and caption pairs harvested from on-line journals, so as to 
extract assertions such as “Figure N depicts a localization of 
type L for protein P in cell type C”.  The protein localization 
pattern L is obtained by analyzing the figure, the protein name 
and cell type are obtained by analysis of the caption. Figure 1 
illustrates some of the key technical issues. The figure encloses 
a prototypical figure harvested from a biomedical publication,1 
and the associated caption text. Note that the text “Fig. 1 
Kinase…experiments”  is the associated caption from the journal 
article, and that the figure contains several panels 
(independently meaningful subfigures). 

                                                 
1 This figure is reproduced from the article “Ras Regulates the 
Polarity of the Yeast Actin Cytoskeleton through the Stress 
Response Pathway”, by Jackson Ho and Anthony Bretscher, 
Molecular Biology of the Cell Vol. 12, pp. 1541–1555, June 
2001. 
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Figure 1: A figure caption pair reproduced from the biomedical literature. 

Figure caption pair analysis involves several distinct tasks. The 
first is to extract all figure and caption pairs from articles in on-
line journals and to identify those that depict fluorescence 
microscope images. The second is to identify numerical features 
that adequately capture information about subcellular location. 
The third is extraction of protein names and cell types from 
captions. The fourth is mapping the information extracted from 
the caption to the right sections of the figure. We will provide a 
brief review of SLIF in this section.        
 
Figure 2 shows the overall structure of SLIF. Tasks described in 
light grey characters represent future or ongoing work. Not 
illustrated are supporting tools for browsing and querying the  
extracted information, which are also under development; 
however, flexible tools for accessing extracted information are 
also extremely important, since often only part of the 
information present in a figure is extracted. 
 
The original SLIF system used a web robot to automatically 
retrieve PDF versions of online journal articles from PubMed 
Central that matched a particular query.  Figures and 
accompanying captions were extracted and paired together using 
a modified version of PDF2HTML, a public domain tool. The 
figure-extraction step achieved a precision (number of correct 
figure-caption pairs returned divided by the number of figure-
caption pairs returned) of 98% and a recall (number of correct 
pairs returned divided by the number of actual pairs) of 77%.  
The new version of SLIF includes web robots to extract papers 
from sources such as BioMedCentral, and we also have obtained 
an extensive collection of articles directly from the publisher.  
These sources are in XML format, so figure/caption pairs can be 
extracted without errors. 

2.2   Figure processing 
2.2.1 Decomposing figures into panels 
For figures containing multiple panels, the individual panels 
must be recovered from the figure. In the current system, figures 
are decomposed into panels by recursively subdividing the 
figure by looking for horizontal and vertical white-space 
partitions. The system achieves a precision of 73% and a recall 
of more than 60% on these steps. 
2.2.2 Identifying fluorescence microscope images  

Once panels have been identified, it is necessary to determine 
what sort of image the panel contains, so that appropriate image 
processing steps can be performed. In the current system, panels 
are classified as to whether they are fluorescence microscope 
images (micrograph) using the grey-scale histogram as features. 
The k-nearest neighbor classifier used for this task achieves a 
precision of 97% and a recall of 92%. 
2.2.3 Image preprocessing before feature 
computations  
2.2.3.1 Annotation detection and removal 
Many micrographs contain annotations such as labels, arrows 
and indicators of scale, within the image itself. They must be 
detected, analyzed, and then removed from the image. 
Annotation detection relies on finding areas that are bright and 
have sharp edges. Annotation removal consists of filling the 
annotation area with background pixel values. On a test set of 
100 fluorescence microscope panels, this step achieves precision 
of 83% and recall of 82%.  
2.2.3.2 Multi-cell image segmentation  
Many (if not most) published fluorescence microscope images 
contain more than one cell and our methods for classifying 
subcellular location patterns require images of a single cell. 
Each micrograph is therefore segmented into individual cells by 
a “seeded watershed” algorithm [13]. The seeded watershed 
segmentation works well for some location classes (e.g., tubulin, 
with 52% precision and 41% recall) but is not expected to work 
well for others (e.g., Golgi, with 62% precision but only 32% 
recall). Improving this step is a subject of current research. 
2.2.3.3 Determining the scale of each micrograph 
Automated analysis of fluorescence microscope images requires 
knowing the scale of an image since some of our previously 
developed subcellular location features (SLF) directly depend on 
the scale of the images. Imaging processing techniques are used 
to locate the scale bar associated with a panel. The size of the 
scale bar is extracted from the accompanying caption. Scale bar 
extraction is currently done with a precision of 76% and a recall 
of 50%. Improving this step is a subject of current research. 
2.2.3.4 Subcellular location pattern computation  
Finally, SLFs are produced that summarize the localization 
pattern of each cell. We have extensively characterized a 

Fig. 1. Kinase inactive Plk inhibits Golgi fragmentation by 
mitotic cytosol. (A) NRK cells were grown on coverslips and 
treated with 2mMthymidine for 8 to 14 h. Cells were 
subsequently permeabilized with digitonin, washed with 1M 
KCl-containing buffer, and incubated with either 7 mgyml 
interphase cytosol (IE), 7mgyml mitotic extract (ME), or 
mitotic extract to which 20 mgyml kinase inactive Plk (ME + 
Plk-KD) was added. After a 60-min incubation at 32C, cells 
were fixed and stained with anti-mannosidase II antibody to 
visualize the Golgi apparatus by fluorescence microscopy. 
(B) Percentage of cells with fragmented Golgi after 
incubation with mitotic extract (ME) in the absence or the 
presence of kinase inactive Plk (ME + Plk-KD). The 
histogram represents the average of four independent 
experiments. 
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Figure 2: Diagram of SLIF. 

 
number of feature types for this purpose and have achieved over 
92% accuracy using these features on single cells [12, 13]. Our 
work in [13] demonstrated the feasibility of determining the 
preparation, cell type and microscopy method, and image 
alterations introduced during publication.  

2.3   Caption processing 
2.3.1 Entity name extraction  
Caption interpretation aims to identify the name and cell type of 
the visualized protein in each microscope image. These 
extraction tasks have been heavily studied in the literature; 
however, there are still few publicly-available extraction 
systems. Rather than expend substantial resources to developing 
our own extractors,  for the current version of SLIF we hand-
coded some relatively simple extraction methods for this task. 
Protein names tend to be either single words with upper case 
letters, numerical figures, and non-alphabetical letters such as 
“Nef” , “p53” , or compound words with upper case letters, 
numerical letters, and non-alphabetical letters such as 
“ Interleukin 1 (IL-1)-responsive kinase” , or single lowercase 
words ending in –in or –ase such as “actin” , “ tubulin” , “ insulin” . 
Similar rules are used to identify cell type. The protein-name 
extractor obtains a precision of 63% and a recall of 95%, and the 
cell-type extractor obtains a precision of 85% and recall of 92%. 
2.3.2 Entity to panel alignment  
To integrate the features obtained via figure processing and 
entity names extracted from captions, entity to panel alignment 
must be done. The goal here is to determine, for each entity 
extracted from the caption, to which panel that entity is 
associated.  The linkage between the images which are the 
figure panels and the text of captions is usually based on textual 
labels which appear as annotations to the images, and which are 
also interspersed with the caption text. So, entity to panel 
alignment is based on extracting the labels from panels, and 
extracting the corresponding image pointers from captions. 
Image pointers are strings in the caption that refer to places in 
the accompanying images, for example, “A” , and “B” , in Figure 
1. 
 

In analyzing caption text, we decided to break down the task of 
entity to panel alignment into several subtasks. The first step is 
image-pointer extraction. After image pointers are extracted, 
they are classified according to their linguistic function. Bullet-
style image pointers function as compressed versions of bulleted 
lists, for example, the strings “ (A)”  and “ (B)”  in figure 1. NP-
style image pointers are used as proper names in grammatical 
text, for example, the string “ (A)”  in the text: “Following a 
procedure similar to that used in (A), …”. Citation-style image 
pointers are interspersed with grammatical caption text, in the 
same manner that bibliography citations are interspersed with 
ordinary text. The remaining image pointers in Figure 1 are 
citation-style. 
 
We combined the steps of extraction and classification, as 
follows. Most image pointers are parenthesized, and relatively 
short.  We thus hand-coded an extractor that finds all 
parenthesized expressions that are (a) less than 40 characters 
long and (b) do not contain a nested parenthesized expression, 
and also extracts all whitespace-surrounded expressions of the 
form “x” , “X” , “x-y”  or “X-Y” that are preceded by one of the 
words “ in” , “ from”, or “panel” . This extractor has high recall 
(98%) but only moderate precision (74.5%) on the task of 
finding image pointers.   
 
Using a classifier trained with machine learning approaches, we 
then classify extracted image pointers as bullet-style, citation-
style, NP-style, or “other” .  Image pointers classified as “other” 
are discarded, which compensates for the relatively low 
precision of the extractor. This classifier has an overall accuracy 
of 87.8%. Performance is extremely good (recall of 98% and 
precision of 94.6%) on bullet-style labels, which are the ones 
most likely to severely impact performance. Most errors are 
made by incorrectly rejecting citation-style image pointers [14]. 
 
After image-pointer classification, the scope of each image 
pointer is determined.  The scope of an image pointer specifies,  
indirectly, what text should be associated with that image 
pointer. The scope of an NP-style image pointer is the set of 
words that (grammatically) modify the proper noun it serves as.  
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The scope of a bullet-style image pointer is all the text between 
it and the next bullet-style image pointer. The scope of a 
citation-style image pointer is some sequence of tokens around 
the image pointer, usually corresponding to a nearby noun 
phrase--currently approximated with heuristic hand-coded 
methods.  
 
In the remainder of the paper, we will discuss in detail the 
methods used to find the panel-label annotations which appear 
in images, and the methods used to match these annotations to 
image pointers.  In the remainder of this section, we will briefly 
review how image pointers are found and associated with 
extracted entities [14]. 
 
. 
3. PANEL LABEL EXTRACTION AND 
PANEL-TEXT MATCHING 

 
Figure 3: Panels with internal labels. 

 
Extracting panel labels and mapping information derived from 
captions to panels are crucial steps in SLIF since it serves at the 
bridge between image analysis and caption interpretation. Since 
panels containing an internal label (such as “A”~”F”  in Figure 3) 
hold the vast majority, we first focus our work on extracting 
these internal labels. 
 
Automatic detection and recognition of panel labels is a 
challenging problem because the label is usually a single 
character embedded in the panel, and the background might be 
complex. However, current OCR (Optical Character 
Recognition) technology is largely restricted to finding text 
printed against clean backgrounds, and cannot handle text 
printed against shaded or textured background, or embedded in 
images directly [15, 16]. Our current system applies a four-stage 
strategy to the label contained within the panel itself, text 
detection, where a segmentation scheme is used to focus 
attention on regions where a panel label may occur, image 
enhancement, where the text region is enhanced by increasing 
the resolution and converting the gray image to a binary image, 
OCR (Optical Character Recognition), where the enhanced text 
image is passed through an OCR engine for recognition, string 
match, where the OCR results of all the panels in one figure are 
passed through the list of panel labels obtained by interpreting 
the caption associated with this figure, so that the possible 
missing (or incorrect) labels from OCR could be corrected. The 
final step also serves as the mapping between labels recognized 
from the image and image pointers obtained by caption 

interpretation so as to combine the information extracted from 
figure and caption.  
Below we will describe results of our four-stage strategy for 
panel label extraction and panel-text matching. These 
experiments are based on a dataset of 427 hand-labeled panels 
from 95 randomly-chosen Pubmed Central papers. 

3.1 OCR directly on panels 
Directly running the OCR software we are using, GOCR[17], on 
panels only yielded 15 labels; this emphasizes the point that  
current OCR software is not well suited to recognizing text 
embedded in images.  

3.2 Text detection 
Because characters usually form regions of high contrast against 
the background, a typical text region can be characterized as a 
rectangular region with a high density of sharp edges. Therefore 
our text detection method relies on finding areas that have sharp 
edges. We used the Roberts method [18] for edge detection. 
Applying edge detection to the original panel (image A) resulted 
in a binary image B. Image B contains the edges of the labels as 
well as some noise. We noticed that the noise usually consisted 
of short line segments while label edges were represented by 
longer continuous regions or short nearly-connnected segments; 
for example the edges for a letter “a” , might be disjoint. We 
therefore used a two-stage process to reduce noise. We first 
closed the binary image using a 3x3 pixel structural element to 
connect the disjoint sections making up the edges of the labels. 
Then we removed any objects of size 25 pixels or less to delete 
any remaining noise. This results in a binary image C in which 
connected regions have a high density of sharp edges. As an 
example, Figure 4 shows the process of text detection from A to 
C. The text region appeared as a connected component in C. 
 
We then bounded the connected components in C with their 
maximum and minimum coordinates in the x and y directions to 
get candidates for text regions. Several constraints were then 
applied to filter out candidates that are not text regions.  

• Since a panel label is usually a single letter, the ratio 
between the height and the width of a text region 
should be in a certain range. We only kept regions 
with this ratio greater than or equal to 0.3, i.e. we 
discarded horizontally strip-shaped regions. 

• Panel labels are usually located in one corner of the 
panel, so the distance between the boundary of a text 
region and the panel boundary should be small. We 
only kept regions with this horizontal/vertical distance 
less than 1/10 of the width/height of the panel. 

• Panel labels are usually small in size compared with 
the panel, so the area of the text region should be in a 
certain range. Experimentally, we noticed that the 
height/width of the text region ranged between 1/20th 
and 1/4th of the height/width of the panel, so we only 
kept regions with areas between 1/202 and1/42 of the 
area of the panel. 

 
The experimental results are shown in Table 1. 380 of the 467 
candidate text regions were correctly detected. While 81.3% 
precision appears low, most of the regions incorrectly 
considered to be text regions do not contain characters at all. 
They therefore do not yield any characters during OCR and do 
not affect the final set of panel labels. 
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       (A) original image        (B) binary edge map                      (C) regions rich in edge  

Figure 4: Process of text detection. 

 
No. of panels Total predicted ‘ text’  region Actual text region Precision Recall 

427 467 380 81.3% 89.0% 
Table 1: Text detection result. 

3.3 Intensity normalization 
Because GOCR assumes the character to be black font on a 
white background, we must identify whether the text appears as 
a black font in a white background or a white character in a 
black background before applying OCR. In panel images, the 
intensity value of text may be lower or higher than that of the 
background. For the later, the intensity of text images should be 
inverted before running GOCR. We call this procedure intensity 
normalization. Our normalization method is as follows: First, we 
choose the top 20% pixels and the bottom 15% pixels of a text 
region, where pixels are mainly background pixels, and calculate 
the mean value m1 of these pixels. Then we choose the middle 
area from 0.3h to 0.65h (h is the height of text region) and 
calculate the mean value m2. If m1 < m2, we consider the 
intensity of text to be lower than that of the background; 
otherwise the intensity of text is considered to be higher than 
that of the background.  

3.4 Image enhancement 
Applying GOCR to normalized text region obtained a precision 
of 71.3% and a recall of 63.5%. We hypothesized that most 
errors are because GOCR is designed for recognizing high 
resolution text printed against clean backgrounds. In order to 
increase the recognition rate, we introduced an interpolation 
method and a binarizing algorithm to increase the image quality. 
3.4.1 Sub-pixel Interpolation  
One crucial condition for GOCR success is sufficient resolution 
of the input image. GOCR prefers fonts of 20~60 pixels. 
However, label containing areas in figures can be less than 20 x 
20 pixels. GOCR usually fails on such low resolution images. 
To obtain higher resolution images, we expanded regions 
smaller than 20 x 20 pixels by applying bicubic interpolation 
[19]. Bicubic interpolation estimates the grey value at a pixel in 
the destination image by an average of 16 pixels surrounding the 
closest corresponding pixel in the source image. 

                     
Figure 5: (a) original text region   (b) binary image 

 
3.4.2 Binarization  
Complex backgrounds pose another difficulty for OCR. GOCR 
can accept a grey image as input and it does the binarization to 
separate text from the background by global thresholding [17, 
20]. Unfortunately, global thresholding is usually not possible 
for complicated images. Consequently, GOCR works poorly in 
these cases. Figure 5 shows one example where GOCR failed 
when given the original text region (a), while GOCR 
successfully recognized the binary image (b) obtained by 
dynamic thresholding (described in the following paragraph).  
 
A number of binarization algorithms have been proposed.  We 
chose Niblack’s method [21], which performed well in a recent 
survey [22]. Niblack’s algorithm calculates the threshold 
dynamically by gliding a rectangular window across the image.  
 
Another effective method for binarization is based on Gaussian 
mixture models [23, 24]. Histograms of gray value frequencies 
are modeled as a mixture of Gaussians as shown in Figure 6(e). 
The distribution of the character intensity will correspond to one 
Gaussian model and the background will also correspond to 
some Gaussian model(s).  The number of Gaussian mixtures is 
crucial in appropriately modeling the background. Inappropriate 
selection of Gaussian mixtures will result in errors in character 
recognition. We determine the number of Gaussian mixtures by 
considering if the character can be segmented from the 
background. In Figure 6, (a) is the original text image, (b) and (c) 
are segmentation results by assuming two and three Gaussian 
mixture models respectively. The character is confused with the 
background if using only two Gaussian mixtures, but can be 
extracted using three Gaussian mixtures. Hence we choose three 
as the number of Gaussian mixtures. The underlying reason for 
three being a good choice for the number of Gaussian mixtures 
could be that the character is more uniform in intensity than the 
background. As demonstrated in Figure 6(e), the character 
intensity corresponds to one Gaussian and the background 
intensity corresponds to two Gaussian models. The parameters 
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of the Gaussian mixture models can be estimated via the EM 
algorithm [24]. 
 
Each of the two binarization algorithms introduced in this 
section has advantages. The modified Niblack’s algorithm is 
faster, but sometimes it is too sensitive to local noise. As shown 
in Figure 6, the dynamic thresholding (d) didn’ t work as well as 
the Gaussian mixture model (c) for this case. The Gaussian 
mixture model is good at grey value distribution modelling but 
the estimation of the parameters is more expensive. Therefore 
we used the following strategy: first we apply the modified 
Niblack’s algorithm and run GOCR; if no characters are 
recognized, we apply the Gaussian mixture model algorithm and 
run GOCR again. 
 
With image enhancement, we obtained a precision 79.1% of and 
a recall of 70.7% (Table 2). 

   
(a)  (b) 

   
(c)   (d) 

 
(e) 

Figure 6: Binarization based on Gaussian mixture models. 
(a) is the original text region, (b) and (c) are thresholding results 
by assuming 2 and 3 Gaussian mixture models respectively, (d) 
is the segmentation result by dynamic thresholding, (e) is the 
smoothed histogram of text regions. 

 
 

3.5 Modification based on grids and string 
match  
Even with image enhancement, we might still fail to extract 
labels from some panels. Part of the reason is that our current 
binarizing algorithm is not robust enough. For example, the 
current binarization process couldn’ t recognize the character in 
Figure 7 correctly.  
 

    
Figure 7: A case where current algorithm failed. (a) original 
panel, (b) detected text region. 

 
To succeed on such cases, we can turn to the “context”  
information, i.e., labels extracted from other panels which are in 
the same figure as the failed one. If labels of these “sibling”  
panels are extracted correctly, we can use the context to guess 
what label the panel holds.  
 
To find out the missing/incorrect label, we must figure out all 
the possible labels and the pattern of how these labels are 
assigned to the panels. We can get an idea of the range of labels 
from caption analysis. Since the accuracy of caption analysis is 
now higher than OCR, the list of labels generated from caption 
parsing is considered to be reliable here.  
 
In general the arrangement of labels might be complex: labels 
may appear outside panels, or several panels may share one 
label. However, in the majority of cases, panels are grouped into 
grids, each panel has its own label, and labels are assigned to 
panels either in column-major or row-major order.  The six 
panels shown in Figure 3 are typical of this case. For this case, 
we analyze the locations of the panels in the figure and 
reconstruct this grid, i.e., the number of total columns and rows, 
and also determine the row and column position of each panel. 
 
Given the list of all panel labels, extracted from caption analysis, 
the grid, and the distribution of panels, we compute the label 
sequence assigned to panels in column-major order and row-
major order, resulting in two strings SC and SR. Taking Figure 3 
as an example, suppose that panel C’s label is mis-recognized as 
“G”, and that no label is found for panel E.  In this case the 
string SC will be “ADB GF” and SR will be “ABGD F”.   
 
Then we computed the similarities between the string of labels S 
resulting from caption analysis, and the strings SC and SR 
resulting from OCR and grid analysis.  For instance, if caption 
analysis produces the string “ABCDEF”, we would compare this 
string to “ADB GF” and “ABGDF”.  Here we used Needleman-
Wunsch edit distance (using substitution costs reflecting likely 
OCR errors, and implemented with a package described 
elsewhere [25]) to compute the similarity between two strings. 
The edit-distance alignment for the string with the smaller 
distance to the OCR result is then used to correct the OCR result. 
For Figure 3, using our strategy, we can infer that the labels 
should be ABCDEF. 
 
Table 2 shows the contribution of the modification process. Note 
that this procedure also produces a mapping between labels 
extracted from images of panels and those generated by caption 
interpretation.   

 

  character 
background 
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Table 2: Number of panels for which the correct labels were extracted, using various algorithms. 

 
    
4. CONCLUSION 
Mining biological literature is crucial to organize and summarize 
scientific results. Most existing IE systems for the biological 
domain are limited to extracting information from text while 
figure and caption pairs in scientific publications are extremely 
dense in information. We have set as our long-term goal 
building an accurate automated toolset, SLIF, to extract 
information about protein subcellular localization from the text 
and images found in online journals.  
 
In this paper, we gave a review of SLIF and emphasized a newly 
developed module. Building on our previously developed tools 
to find fluorescence microscope images depicting protein 
subcellular location patterns, we introduced caption processing 
to extract image pointers and entity names from the text. Image 
processing and OCR techniques were used to extract panel 
labels. Finally image pointer to panel label alignment were done 
to integrate the results. Our current system can generate 
assertions such as “Figure N depicts a localization of type L for 
protein P in cell type C”. We believe that SLIF demonstrates the 
feasibility of performing IE from both text and images in 
biological sources. 
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