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Abstract. The ongoing biotechnology revolution promises a complete understanding of the mechanisms by which
cells and tissues carry out their functions. Central to that goal is the determination of the function of each protein
that is present in a given cell type, and determining a protein’s location within cells is critical to understanding
its function. As large amounts of data become available from genome-wide determination of protein subcellular
location, automated approaches to categorizing and comparing location patterns are urgently needed. Since sub-
cellular location is most often determined using fluorescence microscopy, we have developed automated systems
for interpreting the resulting images. We report here improved numeric features for describing such images that
are fairly robust to image intensity binning and spatial resolution. We validate these features by using them to
train neural networks that accurately recognize all major subcellular patterns with an accuracy higher than any
previously reported. Having validated the features by using them for classification, we also demonstrate using them
to create Subcellular Location Trees that group similar proteins and provide a systematic framework for describing
subcellular location.

Keywords: protein localization, subcellular location features, fluorescence microscopy, pattern recognition,
location proteomics

Introduction

The genome of each organism encodes tens of thou-
sands of proteins, some of which are made in all cells
of that organism and some of which are made only
in specific cell types. Recent years have seen the de-
termination of the entire DNA sequences of a number
of genomes, leading to a major paradigm shift in bi-
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ological research. This is from research groups each
studying many aspects of an individual protein (pri-
marily by manual methods) to larger scale projects in
which a specific aspect of all proteins expressed in
a given cell type are studied primarily by automated
methods. Aspects that have received significant atten-
tion include the amount of each protein expressed, their
three-dimensional structures, the ways in which they
are chemically modified after synthesis, and their abil-
ity to bind to other proteins.

Animal and plant cells have a number of subcom-
partments (such as lysosomes) and subcellular struc-
tures (such as the cytoskeleton) that play distinct and
essential roles in cell functions. When characteriz-
ing a protein, determining its location within cells is
critical to understanding its function, since each sub-
compartment has a different biochemical environment.
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A comprehensive, systematic approach to determining,
describing and/or predicting the subcellular location of
proteins is needed for this purpose.

A number of factors have limited progress in this
area in the past. The first is ambiguity in the words
used to describe subcellular locations. Different inves-
tigators use different terms to describe the same pat-
tern and the same term is often used to describe pro-
tein patterns known not to be identical. Second, there
have been no reliable, automated methods to map be-
tween images depicting patterns and words describing
them. Third, comprehensive knowledge of all possible
locations (and combinations of locations) that proteins
may exhibit does not exist. Restated, what is missing
is a grouping of all proteins such that the proteins in
each group all have an identical distribution in cells
(and thus the unique identifier of that group can be
assigned to each of the members). This is necessary
if location information is to be satisfactorily included
in biological databases, as has been done for protein
sequence and structure families. Fourth, while meth-
ods for comparing protein and nucleotide sequences
(and structures) are well established and can be used
directly from database entries, comparing protein lo-
cations from database entries is not yet possible. The
concepts of hierarchical organization and distance have
not yet been developed for location analysis.

Recently, progress has been made towards overcom-
ing these problems. Laudable efforts towards address-
ing the first problem have been made by the Gene On-
tology Consortium. However, words do not currently
exist to describe the full complexity of subcellular lo-
cation. Our group has addressed the second problem by
developing automated methods for determining subcel-
lular location from fluorescence microscope images.
Fluorescence microscopy is the most commonly used
method for analyzing subcellular location, and it is
well-suited to high throughput automation. We began
by developing sets of numerical features that describe
protein patterns in fluorescence microscope images.
We validated these descriptors by using them to develop

Table 1. Image sources for development of methods for analysis of protein subcellular location.

Dataset
Number

of classes
Number of

images per class
Microscopy

method Objective

Size of pixel
region in

original field Reference

2D CHO 5 33–97 Deconvolution 100× 0.23 µm Boland et al. [2]

2D HeLa 10 73–98 Deconvolution 100× 0.23 µm Boland and Murphy [4]

3D HeLa 11 50–58 Confocal 100× 0.0488 µm Velliste and Murphy [16]

automated classifiers capable of determining subcellu-
lar location from previously unseen images [1–4]. In
this paper, we describe improved sets of features that
are robust to differences in intensity and spatial resolu-
tion between images. We also use these features to be-
gin to address the third and fourth problems discussed
above by presenting the first systematic framework for
capturing complexity and similarity in protein subcel-
lular location.

Sources of Data on Subcellular Location

With the development of automated, digital fluores-
cence microscopes over the past 15 years, it is possi-
ble to collect the large numbers of fluorescent images
for diverse proteins that are required in order to de-
velop, test and use automated interpretation methods.
We have created three image datasets to this end (sum-
marized in Table 1). The 2D HeLa dataset has been our
primary reference point for developing features and
testing methods. It covers all major subcellular struc-
tures and organelles and was generated using fluores-
cent probes that bind to molecules known to be located
in those structures: a probe that binds to DNA to la-
bel the nucleus, a probe that binds to microfilaments to
label the actin cytoskeleton, and antibodies against pro-
teins located in the endoplasmic reticulum, the Golgi
apparatus, lysosomes, endosomes, mitochondria, nu-
cleoli and microtubules.

In addition to these datasets, a major National Can-
cer Institute-funded project led by Jonathan W. Jarvik,
Peter B. Berget and Robert F. Murphy is beginning to
provide images of the subcellular location of randomly-
tagged proteins in 3T3 cells. Preliminary wide-field
2D images (40×, pixel size 0.475 microns) have been
acquired for approximately 100 clones produced by
random CD-tagging [5–7]. By sequencing DNA ad-
jacent to the tag, the tagged gene has been identi-
fied (if it is present in current sequence databases).
A high resolution 3D image database for these clones
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is currently being acquired by spinning disk confocal
microscopy.

Other approaches to random-tagging of genes have
also been described [8–10] and thus we can anticipate
increased availability of detailed information on pro-
tein location over the next few years.

Subcellular Location Features

We have designed a number of sets of numerical
features—which we term SLF for Subcellular Loca-
tion Features—to describe protein subcellular distri-
butions [4]. The types of feature used include Haralick
texture features, Zernike moment features, features de-
rived from morphological image processing, and, in
some cases, features derived from comparison with a
reference image of the DNA distribution in the same
cell (see Table 2). The feature sets have been used with
several classification methods (linear classifiers, deci-
sion trees, k-nearest neighbor classifiers, and one- and
two-hidden-layer backpropagation neural networks or
BPNNs) and two-hidden-layer BPNNs were found
to produce the best results for the 2D HeLa dataset
[3] (although the improvement over one-hidden layer

Table 2. Comparison of subcellular location feature sets. All features that measure length or area are calculated in pixels that are 0.23 µm
square in the sample plane.

Feature description SLF3 SLF7

Morphological features: Number of fluorescent objects in image, Euler
number of image, average object size, variance of object size, ratio
of largest to smallest object size, average object distance to cell
center of fluorescence, variance of object distance to cell center, ratio
of largest to smallest object distance to cell center

SLF1.1 through SLF1.8 SLF1.1 through SLF1.8

Edge-related features: Fraction of above-threshold pixels along edge,
measure of edge gradient intensity homogeneity, measure of edge
direction homogeneity 1, measure of edge direction homogeneity 2,
measure of edge direction difference

SLF1.9 through SLF1.13 SLF7.9 through SLF7.13
(minor error corrections)

Convex hull features: Fraction of convex hull occupied by
above-threshold pixels, roundess of convex hull, eccentricity of
convex hull

SLF1.14 through SLF1.16 SLF1.14 through SLF1.16

Zernike moment features through order 12, calculated for a unit circle
with radius equal to the average radius of the cell type being
analyzed (150 pixels or 34.5 µm for HeLa)

SLF3.17 through SLF3.65 SLF3.17 through SLF3.65

Haralick texture features: angular second moment, contrast, correlation,
sum of squares variation, inverse difference moment, sum average,
sum variance, sum entropy, entropy, difference variance, difference
entropy, info. measure of correlation 1, info. measure of correlation 2

SLF3.66 through SLF3.78 SLF7.66 through SLF7.78
(after downsampling to
1.15 µm/pixel and 256 gray
levels)

Fraction of non-object fluorescence – SLF7.79

Skeleton features (see text) – SLF7.80 through SLF7.84

networks was within the estimated error). A BPNN
with 30 nodes in both hidden layers achieved an aver-
age correct classification accuracy of 84% using a set
of 37 features (termed SLF5) that was selected by step-
wise discriminant analysis [11] from a larger set of 84
features (SLF4) that includes all four types of features.

This represents the best accuracy so far achieved for
single 2D images of all major organelle patterns. By
analyzing sets of images taken from the same slide,
the accuracy for these classes was improved to 98%
[3, 4]. It is important to note that this classification ap-
proach can distinguish two Golgi proteins with very
similar patterns that cannot be distinguished by a hu-
man observer.

Recently, exciting confirmation that protein subcel-
lular location patterns can be distinguished by auto-
mated classifiers with high accuracy has been reported
by Danckaert et al. [12]. They employed a Modular
Neural Network classifier (MNN, a topological varia-
tion on the back-propagation network), to classify 2D
images from confocal microscope stacks representing
six different subcellular location classes. Instead of us-
ing features, the input to the MNN was composed of
raw pixel values from a downsampled version of the
original image. Each module covered a specific area of



314 Murphy, Velliste and Porreca

the organelle image. They found that the trained clas-
sifier can recognize individual 2D images from previ-
ously unseen 3D image stacks with 84% accuracy. It
is worth noting that the image set of Danckaert et al.
consisted of images from four different cell types. We
had previously observed that classifiers can be trained
to recognize images from two cell types and two modes
of microscopy [13].

Improving the Subcellular Location Features

The classification accuracy achieved when using the
previously described SLF features is already high con-
sidering the amount of within-class variability of pat-
terns and the similarity between some pairs of classes.
However, when creating a systematics of all proteins
in a cell type where thousands of proteins have to be
placed within an overall hierarchy, it is desirable to have
the best possible representation of the location patterns.
We have therefore developed an improved version of
our previously developed SLF3 features [4] in combi-
nation with six new features described below.

SLF3 includes 13 Haralick texture features that we
have subsequently found to be overly sensitive to image
pixel resolution and number of gray levels. We there-
fore characterized the contribution of Haralick features
to overall classification accuracy after resampling in
various ways (Table 3). To do this, we started with
the 34 (out of 37) features from SLF5 that did not re-
quire a parallel DNA image and determined average
classification accuracy using a BPNN with a single
hidden layer of 20 nodes. We did this for only eight
of the ten classes in the 2D HeLa dataset, since we
found that the original images of the two Golgi classes

Table 3. Relative percent benefit of Haralick features calculated on
downsampled and rebinned 2D HeLa images (excluding the giantin
and gpp130 classes). At the original resolution of 0.23 µm/pixel
and 256 gray-levels the classification accuracy was 86.4%. After
scrambling the Haralick features the accuracy decreased to 81.4%,
giving a relative benefit of 5.0% (shaded). A similar comparison was
made after reducing the resolution (using bi-linear interpolation)
and/or the number of gray levels (by division and integer rounding).

Number of gray-levels

Pixel size (µm) 256 32 16

0.23 5.0 4.4 3.8

0.69 5.4 3.1 2.9

0.92 5.8 3.1 2.9

1.15 6.2 3.6 3.5

(giantin and gpp130) are sufficiently different in inten-
sity scale that the original Haralick features can artifi-
cially discriminate them on that basis alone. The result
was 86.4%. We then determined average accuracy us-
ing a set in which the values of the Haralick features
were scrambled between images so that the number of
features used was still the same (34) but any informa-
tion in the Haralick features was lost. The result was
81.4%. Thus, the 12 Haralick features included in SLF5
provided a net benefit of 5.0%. Average accuracies for
sets containing Haralick features calculated on down-
sampled images were also found and converted to net
benefit. (Note that in all cases the non-Haralick features
were calculated using the original images.) We found
that Haralick features at a resolution of 1.15 µm/pixel
and 32 gray levels were nearly as informative as those
calculated on images of higher resolution. Perhaps sur-
prisingly, rebinning to 1.15 µm/pixel but keeping 256
gray levels had a net benefit greater than that of the
original features. The Haralick features calculated this
way have the advantage of being essentially insensi-
tive to the original spatial resolution of an image, be-
cause fluorescence microscope images generally come
at a resolution higher than 1.15 µm/pixel and there-
fore can always be down-sampled to this “standard”
pixel size. In addition, these features are essentially
insensitive to the original intensity resolution of an im-
age because images are expected to have more than
256 graylevels, and can therefore be re-quantized to
the “standard” 256 levels. Even if an original image at
high (e.g., 0.23 µm/pixel) spatial resolution only had
gray-level values in the range of 0 to 17 (the lowest ob-
served in the 2D HeLa dataset), the down-sampled ver-
sion will be expected to have more than 256 gray levels
since the gray level counts of around 25 pixels would
be summed in the course of spatial down-sampling.

We therefore chose to define a new feature set,
SLF7, incorporating the 78 features of SLF3 but
with Haralick features from images downsampled to
1.15 µm/pixel and 256 gray levels. We also added six
new features:

SLF7.79: The fraction of cellular fluorescence not in-
cluded in objects

SLF7.80: The average length of the morphological
skeleton of objects

SLF7.81: The ratio of object skeleton length to the area
of the convex hull of the skeleton, averaged over all
objects

SLF7.82: The fraction of object pixels contained
within the skeleton
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Table 4. Confusion matrix for classification of images from the 2D HeLa dataset using SLF8 with a BPNN with a single layer of 20 hidden
units over 10 cross-validation trials. The average correct classification rate was 86%.

Output of the classifier (%)

True class DNA ER Gia GPP LAM Mit Nuc Act TfR Tub

DNA 98 2 0 0 0 0 0 0 0 0

ER 0 87 0 0 3 5 0 0 1 3

Giantin 0 0 73 25 0 0 0 0 1 0

GPP130 1 0 26 70 0 0 1 0 1 0

LAMP2 0 3 0 0 84 1 0 0 12 0

Mitochond. 0 4 0 0 2 88 0 0 4 2

Nucleolin 2 0 2 0 3 1 93 0 0 0

Actin 0 0 0 0 0 0 0 99 0 1

TfR 0 3 1 0 14 5 0 0 74 3

Tubulin 0 2 0 1 0 1 0 1 3 93

SLF7.83: The fraction of object fluorescence contained
within the skeleton

SLF7.84: The ratio of the number of branch points in
the skeleton to the length of skeleton

SLF7.79 was added to measure the amount of fluo-
rescence that is not contained in discrete objects. An ob-
ject in SLF3 is defined as a contiguous region of above
threshold pixels. The relatively dim fluorescence from
small vesicles or other structures dispersed through-
out the cytoplasm is excluded from objects. The new
feature is expected to provide an important distinction
between proteins that localize mainly to the same or-
ganelle but have different amounts in the cytoplasm.
Features SLF7.80 through 7.84 were defined based on
the morphological skeleton of objects obtained by thin-
ning using a homotopic interval. This was implemented
using the “mmthin” function from the SDC Morphol-
ogy Toolbox for MATLAB (SDC Information Systems,
Naperville, IL, USA). (During the testing of the new
features, we discovered that the code for the edge fea-
tures, SLF1.9 through SLF1.13, had a very minor error;
the code was corrected and the corrected features are
referred to as SLF7.9 through SLF7.13.)

We validated these features (for all ten classes) us-
ing the 2D HeLa dataset by selecting a subset (termed
SLF8) via stepwise discriminant analysis and then
training and testing using a one-hidden layer BPNN.
The 32 features selected were SLF1.3, SLF7.74,
SLF3.19, SLF7.79, SLF7.71, SLF7.76, SLF3.23,
SLF7.9, SLF1.2, SLF1.6, SLF7.68, SLF3.59, SLF1.8,
SLF7.11, SLF3.47, SLF7.70, SLF7.82, SLF1.1,

SLF3.24, SLF7.66, SLF7.80, SLF7.69, SLF3.50,
SLF1.5, SLF7.84, SLF7.77, SLF7.10, SLF7.73,
SLF3.26, SLF7.78, SLF7.72, and SLF1.7. The results
(Table 4) indicate a modest gain in performance over
our previous best, but, more importantly, demonstrate
that this performance can be obtained with fewer, more
robust features that are suitable for images from differ-
ent image sources. We also determined that if rebin-
ning to only 32 gray levels is used, the average accu-
racy is still 85% (using 27 selected features, data not
shown).

We have previously described features SLF2.17
through SLF2.22 that describe protein patterns rela-
tive to a parallel DNA image [4]. By combining these
with SLF7 and performing stepwise discriminant anal-
ysis, we obtained a set of 31 features that we defined
as SLF13. The set consists of SLF1.3, SLF7.74, SLF2.
22, SLF3.19, SLF7.79, SLF7.71, SLF3.23, SLF7.76,
SLF7.9, SLF7.68, SLF1.6, SLF2.19, SLF7.11, SLF1.2,
SLF3.37, SLF3.24, SLF7.82, SLF3.60, SLF2.21,
SLF7.70, SLF1.1, SLF3.50, SLF7.77, SLF1.5, SLF7.
66, SLF2.17, SLF7.84, SLF1.8, SLF7.10, SLF7.69,
and SLF7.67. Using SLF13, we obtained an average
accuracy of 88% (Table 5).

Comparison with Human Classification

Human ability to visually recognize patterns in real
world scenes like faces or road traffic is so far unsur-
passed by any automated system. Not surprisingly hu-
mans are frequently used as role models in computer
vision research. Of course in the case of protein location



316 Murphy, Velliste and Porreca

Table 5. Confusion matrix for classification of images from the 2D HeLa dataset combined with a parallel DNA image. The SLF13 feature
set was used with a BPNN with a single layer of 20 hidden units over 10 cross-validation trials. The average correct classification rate was
88%.

Output of the classifier (%)

True class DNA ER Gia GPP LAM Mit Nuc Act TfR Tub

DNA 99 1 0 0 0 0 0 0 0 0

ER 0 89 0 0 4 4 0 0 1 2

Giantin 0 0 76 20 0 1 1 0 1 0

GPP130 0 0 23 73 0 1 2 0 1 0

LAMP2 0 2 0 0 83 1 0 0 13 0

Mitochond. 0 5 0 0 2 90 0 0 1 2

Nucleolin 0 0 0 0 0 0 98 0 0 0

Actin 0 0 0 0 0 0 0 99 0 1

TfR 0 3 0 0 16 3 0 1 75 2

Tubulin 0 2 0 0 0 2 0 0 3 93

patterns the images do not exactly represent ordinary
scenes from the real world that a typical person is likely
to grow up looking at. Since a human would have to be
specifically trained to recognize such patterns, it is not
clear whether humans would perform better than auto-
mated systems on this task. Yet most current knowledge
on protein subcellular location is based on human in-
terpretation. Therefore it is a natural question to ask
whether automated classifiers using SLF features can
do as well as humans at recognizing subcellular loca-
tion patterns, or if they can do better.

To address this question a Matlab script was set up
to train and test a human subject. In training mode the
script presented a series of images from the 2D HeLa
set to the subject and after each image allowed the sub-
ject to guess the class of the image. It then told the
subject whether the answer was correct, and if not then
what the correct class was. In testing mode the script
presented another series of images, let the subject clas-
sify each image and recorded the responses. For the
training set 30 images out of the total of approximately
90 in each class were randomly chosen. Another subset
of 30 images per class (not overlapping with the train-
ing set) was chosen for testing. The process of training
followed by testing was repeated, each time with a dif-
ferent randomly chosen subset of training/test images,
until the subject’s classification accuracy on the test
images stopped improving. The results from the final
testing round were taken as the end result of the experi-
ment, i.e. the best possible performance by the subject.

This procedure was carried out by one of the au-
thors (G.P.), a biologist with no prior experience of

seeing fluorescence microscope images depicting pro-
tein subcellular location patterns but who was well
aware of cellular structure and the shapes of all or-
ganelles. The classification accuracy reached a plateau
after ten rounds of training and testing, achieving a final
classification accuracy of 83%. Table 6 shows the con-
fusion matrix from the final test run. The overall classi-
fication accuracy was similar to that for the automated
system (83% and 86%, respectively). Comparison of
Tables 4 and 6 reveals that visual classification was
much worse for distinguishing the two Golgi proteins
Giantin and gpp130 than automated classification. Hu-
man classification performed somewhat better on mi-
tochondria, nucleolin, and TfR, while the computer did
somewhat better on LAMP2. Accuracies for the other
classes were not significantly different between human
and computer. Since Giantin and gpp130 are very sim-
ilar patterns, it can be concluded that the computer is
better than a human at detecting small, almost invisible
differences in location, while there is modest room for
improvement of the automated system for classifying
some patterns that seem clear to humans.

Testing SLF8 on Downsampled Images

The goal in designing SLF7 and SLF8 was to be able
to compare and classify images collected with moder-
ately different pixel sizes. As an initial test of whether
this goal had been met, we determined the accuracy
of classifiers trained with 2D HeLa images that had
been downsampled to larger pixel sizes. To avoid po-
tential problems introduced by interpolating during
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Table 6. Confusion matrix for human classification of images from the 2D HeLa dataset. The average correct classification rate was
83%.

Output of the classifier (%)

True class DNA ER Gia GPP LAM Mit Nuc Act TfR Tub

DNA 100 0 0 0 0 0 0 0 0 0

ER 0 90 0 0 3 6 0 0 0 0

Giantin 0 0 56 36 3 3 0 0 0 0

GPP130 0 0 53 43 0 0 0 0 3 0

LAMP2 0 0 6 0 73 0 0 0 20 0

Mitochond. 0 3 0 0 0 96 0 0 0 0

Nucleolin 0 0 0 0 0 0 100 0 0 0

Actin 0 0 0 0 0 0 0 100 0 0

TfR 0 13 0 0 3 0 0 0 83 0

Tubulin 0 3 0 0 0 0 0 3 0 93

downsampling, we simply summed 2 × 2 or 3 × 3 re-
gions of the original images (resulting in images identi-
cal to what would have been obtained had a camera with
pixels twice or three times as large been used). When
calculating features for these images, we normalized
any values involving length or area by the downsam-
pling factor such that the values would be comparable
to those for the original 0.23 µm square pixels. We then
determined classification accuracies for these images
in two ways. First, the set of images for a single pixel
size were used for training and testing as was done in
Table 4. Second, mixed sets were created by randomly
choosing which magnification would be included for
each original image. The average correct classification
rates over all ten classes are shown in Table 7. The
rates for the individual classes are shown graphically
in Fig. 1. Since it can be seen that the ability to dis-
tinguish between the two closest pairs (giantin/gpp130
and LAMP2/TfR) is dramatically reduced at lower res-
olution, we also calculated accuracies for an 8 class
system created by just merging the corresponding rows
and columns in the confusion matrix. It can be seen in
Table 7 that accuracies over 80% can be obtained even
for mixtures including 0.69 µm pixels.

At least two conclusions can be drawn from these re-
sults. The first is that the SLF8 normalization was quite
successful, in that mixtures of images with 0.23 µm and
0.46 µm pixels can be classified with only 4–6% loss in
accuracy compared to classifying just the original im-
ages (as seen in Fig. 1(B) and (D), most classes show
little loss in accuracy between these two pixel sizes).
The second is that while the ability to distinguish the
two most similar pairs of classes is progressively lost

Table 7. Classification accuracy for images with varying pixel sizes.
Images originally acquired at 0.23 µm were downsampled by a fac-
tor of 2 or 3. SLF8 features were calculated for each image, with
normalization of the feature values to correct for the change in pixel
size. Shown are the average correct classification rates over 10 cross-
validation trials with a BPNN as in Table 4 (10 class) for each set of
images separately and for mixed sets (see text). Also shown are re-
sults for mixtures of downsampled images that were not normalized
for pixel size. Average correct classification rates are also shown for
8-class classifiers formed from each 10 class classifier by merging
the giantin and gpp130 classes and the LAMP2 and TfR classes.

Image set 10 class (%) 8 class (%)

0.23 µm 84.4 92.9

0.46 µm 77.2 89.4

0.69 µm 73.1 84.9

0.23 µm + 0.46 µm 79.9 87.3

0.23 µm + 0.46 µm + 0.69 µm 69.8 80.1

Mixed, unnormalized 74.5 85.4

with larger pixels, the SLF8 set permits a single classi-
fier to be trained to recognize with over 80% accuracy
the basic 8 classes in images with pixel sizes varying
over a factor of 3.

The task for these classifiers was to recognize pat-
terns in images for which the pixel size was known, and
for which the features could therefore be properly nor-
malized. We also explored whether it was feasible to
train classifiers for these patterns in which the input im-
ages varied in pixel size (0.23, 0.46, or 0.69 µm/pixel)
but the system was not provided with the pixel size for
either training or test images (and therefore normal-
ization could not be done). Perhaps surprisingly, the
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Figure 1. Classification accuracy for individual location classes determined for images with different pixel sizes. The 2D HeLa images, which
were originally collected at 0.23 µm/pixel (set 1), were downsampled to 0.46 µm/pixel (set 2, roughly comparable to reducing magnification
to 50×) or 0.69 µm/pixel (set 3, comparable to 33× magnification) by averaging 2 × 2 and 3 × 3 regions, respectively. Classification using
the SLF8 features was carried out for each pixel size separately (A, C) or for mixed sets in which a pixel size was randomly chosen for each of
the original images (B, D). The percent of the test images that was correctly classified is displayed for (A, B) DNA (diamond), ER (triangle),
mitochondria (+), nucleoli (×), actin (square), and tubulin (circle) or (C, D) giantin (diamond), gpp130 (triangle), LAMP2 (+), TfR (×), a
merged class consisting of the two Golgi proteins (square) and a merged class combining LAMP2 and TfR (circle).

performance of such systems for either 8 or 10 classes
was quite good. However, given the way this experi-
ment was performed, it is possible that the classifier
learned three distinct sets of decision boundaries (one
for each pixel size) and that such a classifier would
not perform as well on images with pixel sizes in be-
tween these values. Further exploration is needed in this
area.

An Example Subcellular Location Tree

The demonstration that the SLF features can adequately
describe the major organelle patterns (and also distin-
guish closely related patterns) allows them to be used
to create a systematic framework for protein location.

Just as comparison of DNA sequences can be used to
create phylogenetic trees that group similar sequences,
the SLF features can be used to create “subcellular lo-
cation trees” that group similar location patterns. To
create such trees, we need a measure of the degree of
similarity between each pair of classes. For this pur-
pose, we have used the new feature set SLF8. We cal-
culated a feature covariance matrix for all of the images
combined and a mean feature vector for each class. We
then calculated the Mahalanobis distance between each
pair of classes, which is the multivariate distance be-
tween the mean feature vectors weighted by the overall
covariance matrix. These distances were used to create
a dendrogram or hierarchical tree (Fig. 2), in which the
distance between adjacent nodes is proportional to the
Mahalanobis distance between them.
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Figure 2. Example subcellular location tree for the 2D HeLa dataset.

As expected, the two Golgi proteins giantin and
gpp130 were grouped together, as were the similar pat-
terns of LAMP2 (lysosomes) and transferrin receptor
(endosomes). Further examination of Fig. 2 confirms
that it is consistent with biological knowledge about
the major organelle patterns. For example, the compart-
ments that have a diffuse distribution throughout the cy-
toplasm (lysosomes and endosomes) that is thought to
involve traffic along microtubules are grouped together
with tubulin. While Fig. 2 only reflects ten subcellular
patterns and we cannot realistically imagine that the ar-
rangement of branches will remain unchanged as more
classes are added, it illustrates the utility of generating
subcellular location trees (SLT) to organize informa-
tion about protein location.

Conclusions

We have shown previously that protein subcellular lo-
cations can be determined automatically from fluores-
cence microscope images based on numeric descrip-
tors. We report some improvements in reliability of
classification of 2D images, primarily by making fea-
tures less sensitive to image spatial and intensity resolu-
tion and adding new skeleton features. These improve-

ments represent an important step towards generalizing
the approaches we have described to other cell types
and image sources.

Since the SLF features have been validated by using
them to achieve good classification accuracy for sub-
cellular location patterns, it is possible to use them as a
basis for building trees to systematize protein subcellu-
lar location. We have presented an example Subcellular
Location Tree that is consistent with current biologi-
cal knowledge. We anticipate that our introduction of
the concepts of pattern hierarchy and distance measure-
ments to subcellular location will enable new directions
in proteomics. Distance measures could, for example,
be used to create “location neighbors” in databases.
Location distance measures could also be combined
with quantitative measures of sequence similarity as
part of efforts to understand the sequence motifs that
determine subcellular locations.

It should also be noted that it is possible to use
the SLF features for other automated analyses of flu-
orescence microscope images, such as for automated
selection of representative images from a set [14], rig-
orously comparing two sets of images [15], and find-
ing and interpreting fluorescence microscope images
in journal articles or web pages [13]. The conflu-
ence of genomics, protein tagging methods, automated
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microscopy and pattern interpretation methods is open-
ing a new frontier in computational biology.
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