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ABSTRACT

Fluorescence microscopy is widely used to analyze the
distribution of proteins within cells.  As currently
practiced, the assignment of a protein to a particular
organelle is done by visual inspection of images or
comparison between the distribution of the unknown
protein and markers with known location patterns. In
order to use fluorescence microscopy for large scale or
proteome-wide analysis of protein location, improved
approaches that are more automated, objective, and
sensitive are needed.  Our group has therefore developed
automated systems that can recognize the major
subcellular location patterns in images of single cultured
cells, and has shown that these systems are more sensitive
than visual inspection.  The foundations of these systems
are sets of numerical features that describe the essential
characteristics of a subcellular pattern without being
overly sensitive to the size, shape and orientation of that
cell within the field of view.  These features can be used
to measure the similarity between protein patterns and
therefore for the first time to group proteins in an
objective manner based on their high-resolution patterns.

1. INTRODUCTION

The subcellular location (or locations) of each protein
is a critical property that provides the context in which
that protein carries out its functions.  While large scale,
comprehensive efforts to catalog other protein properties
(such as sequence, structure, binding partners, and
enzymatic activities) have been mounted, subcellular
location has received far less attention.  Until recently, the
only information on subcellular location in protein
databases was in the form of unstructured text.  This made
determination of whether two proteins had similar
location patterns difficult.  A laudable effort by the
Genome Ontology (GO) Consortium to create a
standardized vocabulary (or ontology) for subcellular
location (the GO Cellular Component Ontology) has
partially addressed this problem, as databases have added
references to GO terms.  However, as shown in Table 1, it
remains difficult to use these terms to determine the

extent of similarity of the subcellular patterns of two
proteins.  While it is clear that the two proteins are both
Golgi proteins, it is unclear whether the differences in
terms applied to the two should be interpreted to mean
that the two proteins would be expected to reside in
distinct regions of the Golgi, whether they would partially
overlap, or whether they would be identical.  This
problem is even greater when trying to determine the
similarity of the patterns of proteins found in distinct
organelles.   For example, based on GO terms, how
similar would we expect the pattern of proteins described
by the GO term for lysosomes be to the pattern of
proteins described by the GO term for endosomes?  If
comparison of entries for similar proteins suggests the
possibility that protein is incorrectly described, is it more
likely that its entry describing a pattern as mitochondrial
is actually endosomal or lysosomal?  Spatial similarity is
simply not captured by these terms.  What is needed is an
approach that can describe the location patterns of all
proteins in quantitative rather than qualitative terms.

2. SUBCELLULAR LOCATION FEATURES

Fluorescence microscopy is the most frequently used
method for determining subcellular location, with current
practice involving visual examination of images or
comparison of an unknown protein to one or more marker
proteins (proteins that are known to localize to a particular
organelle).  The widespread availability of fluorescence
microscope systems that produce digital images provides

Table 1. Comparison of terms used to describe subcellular
location in protein databases.
Protein giantin gpp130
Accession Swiss-Prot Q14789 TrEMBL O00461
Comments:
Subcellular
location

Golgi; membrane-
associated

(none)

GO Cellular
component
terms

0000139, Golgi
membrane;
0005795, Golgi
stack;
0016021 integral to
membrane

0030139,
endocytic vesicle;
0005801, Golgi
cis-face;
0005796, Golgi
lumen;
0016021, integral
to membrane
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an opportunity to automate the process of determining
subcellular location and thereby make it objective and
quantitative.  Towards this end, our group has developed
systems for recognizing the major subcellular structures in
images of individual cultured cells [5, 6].  The difficulty
of this problem lies in the fact that many cell types show
highly variable shape (especially in culture) and that
organelles do not have fixed locations within cells.  This
makes it difficult to design systems that recognize a
pattern by direct pixel-by-pixel comparison with either a
library of images or a model (either rigid or deformable)
of a subcellular pattern.  The alternative is to use
numerical features to describe the characteristics of a
pattern in a shape and orientation-independent manner and
use these features to train classifiers.  We have therefore
described and evaluated a large number of features of
various types for this purpose [1, 6, 7].  The evaluation
has been done primarily using collections of 2D [6] and
3D [8] images of the patterns of 10 or 11 probes in HeLa
cells, which contain 50-100 images of single cells for each
probe.  By training classifiers with a subset of these
images and then measuring the performance on test
images not used for training, the utility of specific feature
sets (and classification approaches) could be evaluated.
To facilitate reference to features found to be useful, we
term them Subcellular Location Features and define them
in sets used for various purposes.  Some of these sets are
large general purpose collections (such as SLF7 which
contains 84 features) and others are smaller sets that have
been selected to discriminate particular sets of patterns
(such as SLF8 which was selected from SLF7 using
Stepwise Discriminant Analysis to find only features
which were useful for classifying ten patterns in 2D
images of HeLa cells).  The features we have used include
ones derived from morphological image processing
(including features measuring object size, the distance of

objects from some point of reference, the amount of
fluorescence in discernible objects, and object
skeletonization), edge detection, convex hull finding,
decomposition using Zernike polynomials, texture
analysis, wavelet transforms, and comparison to a parallel
DNA image.  Table 2 shows the number of features of
various types in the base feature sets for 2D (SLF7) and
3D (SLF9) images, as well as the number of features
selected from them and the average accuracy of resulting
classifiers.  An important conclusion from Table 2 is that
the optimal feature sets include features of many types (we
have also shown that approaches using a single feature
type, such as texture features, do not perform as well).

Results for a neural network classifier using SLF16 are
presented in Table 3.  The results are in the form of a
confusion matrix, in which the value in each cell
represents the percentage of test images from the class
shown in the row heading that were assigned by the
network to the class shown in the column heading.  The
percentage of each class that is correctly classified is
shown along the diagonal.  The results show that all
major structures can be distinguished with an overall
accuracy of  92%, far better than expected at random.

3. COMPARISON WITH VISUAL ANALYSIS

Of particular importance was the finding that the
automated system could distinguish two Golgi proteins,
Giantin and gpp130, that were originally included in the
test because they could not be distinguished by visual
inspection. They could be distinguished an average of
75% with a neural network and SLF13 [1], and this
improved to 87% using a majority-voting ensemble and
SLF16 (Table 3). Examples of the images of these two
proteins are shown in Figure 1 to illustrate how similar
they are.

Table 2. Informative features for 2D subcellular pattern
classification, organized by feature type.  The number of
features of each type present in each set is shown.  The
average accuracy of a classifier trained with each set is also
shown (neural network for SLF8 and SLF13, majority-
voting ensemble for SLF16).

2D SLF set
Feature type SLF7 SLF8 SLF13 SLF16
Object size 5 4 4 4
Object distance 3 2 2 3
Non-obj. fluorescence 1 1 1 1
Skeleton 5 3 2 2
Edge 5 3 3 3
Hull 3 0 0 0
Zernike 49 7 6 6
Haralick texture 13 11 9 10
Gabor - - - 11
Daubechies - - - 3
DNA - - 4 4
No. features 84 31 31 47
Avg. classif. acc. n/a 86% 88% 92%
Reference [1] [1] [1] [3]

Table 3. Confusion matrix for 2D HeLa cell images using
an optimal majority-voting ensemble classifier and
feature set SLF16.  The average accuracy is 92%. The
probes used to define the classes were directed against
DNA (D), an endoplasmic reticulum protein (E), the
Golgi proteins giantin (gi) and gpp130 (gp), the
lysosomal protein LAMP2 (L), a mitochondrial protein
(M), the nucleolar protein nucleolin (N), actin (A), the
endosomal protein transferrin receptor (Tf), and tubulin
(Tu).  Due to rounding, the percentages in each row may
not sum to 100.  (Data from reference [3].)

D E gi gp L M N A Tf Tu
D 99 1 0 0 0 0 0 0 0 0
E 0 97 0 0 0 2 0 0 0 1
gi 0 0 91 7 0 0 0 0 2 0
gp 0 0 14 82 0 0 2 0 1 0
L 0 0 1 0 88 1 0 0 10 0
M 0 3 0 0 0 92 0 0 3 3
N 0 0 0 0 0 0 99 0 1 0
A 0 0 0 0 0 0 0 100 0 0
Tf 0 1 0 0 12 2 0 1 81 2
Tu 1 2 0 0 0 1 0 0 1 95
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To test the hypothesis that they could not in fact be
distinguished visually, we carried out training and testing
using a human subject [1].  The results indicated that
while the human observer could correctly classify the
other patterns with reasonable accuracy and could identify
both giantin and gpp130 images as being from the Golgi,
the two proteins could not be distinguished from each
other at all (the results were the same as expected for
random guesses).  A comparison of the accuracy of
automated and visual classification is shown in Figure 2.
Note that the performances are similar for 7 of the ten
classes but that the computer does significantly better not
only for the Golgi proteins but also for the lysosomal
protein LAMP2.

The discrimination between the Golgi proteins is even
better for 3D images.  Giantin and gpp130 can be
distinguished an average of 86% with a neural network
and SLF9 [8] and this improved to 97% with a majority-
voting ensemble and SLF10 [3].

4. SUBCELLULAR LOCATION TREES

The observation that the SLF can be used to train
classifiers that not only can recognize the major
subcellular patterns but can distinguish subtle differences
in proteins within the same organelle raises the possibility
that the features can also be used to measure similarity
between protein patterns, much as scoring matrices such
as PAM250 are used to measure similarity between
protein sequences.

The SLF can be used to calculate a multivariate
distance beween the average SLF values of any pair of
protein patterns.  When this is done for all pairs in the 2D
HeLa set using a Mahalanobis distance function that
adjusts the distance for the presence of correlated features,
the distances can be used to construct a hierarchical tree,
or dendrogram, in which the vertical distance reflects the
distance or dissimilarity between connected clones (Figure
3).  The distances agree with expectations in that protein
pairs with visually similar proteins have small distances
while grossly different proteins have large distances [4].
For example, the two most similar pairs are the two Golgi
proteins and the endosomal and lysosomal proteins.

Figure 1. The patterns of the Golgi proteins giantin and
gpp130 are visually indistinguishable by fluorescence
microscopy.  The four most typical images of giantin (A-D)
and gpp130 (E-H) were selected from the collection of 2D
HeLa cell images using TypIC [2].  (Data from reference [4].)

Figure 2. Comparison of classification accuracies from an
automated system and from visual examination.
Accuracies from Table 3 using SLF16 and a majority-
voting ensemble classifier [3] are presented versus the
average accuracy for the same images obtained by visual
examination [1].  Each symbol represents a different
pattern class.  In increasing order of human classification
accuracy these are: gpp130, giantin, LAMP2, TfR, ER,
Tubulin, Mitochondria, nucleolin and DNA (both at 100%
for human and 99% for computer accuracy), and actin
(100% for both).
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Therefore, just as scoring matrices can be used to
construct trees that group proteins by sequence similarity,
so we can expect that the SLFs can be used to build trees
that represent the similarity between protein patterns in a
systematic and objective manner.  As a further illustration
of this idea, we have used a collection of 3D images for
46 different clones of 3T3 cells, where each clone
expresses a different protein internally fused with GFP
[9].  The ten most informative features for these images
were selected from the 3D feature set SLF11 and used to
calculate the z-scored Euclidean distance between the
average feature values of each clone and build a
Subcellular Location Tree [10]. We observed that proteins
known from the literature to have similar location patterns
are grouped together, and proteins whose locations were
unknown could have locations assigned by virtue of their
similarity to known proteins.

5. CONCLUSIONS

The results reviewed here address the need for automated
approaches to the determination and comparison of protein
subcellular patterns.  In combination with high-
throughput microscope systems, the approaches described
here can enable a new subfield of proteomics, location
proteomics, with the goal of identifying the high-
resolution subcellular location patterns of all proteins
expressed in a given cell type or organism and
systematically organizing them into clusters that share the
same pattern.  The results of this approach can be merged
with other protein databases, which can be expected to
greatly aid the discovery of new sequence motifs
responsible for protein location.
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Figure 3. Example Subcellular Location Tree in which the
ten patterns in the 2D HeLa dataset are grouped by their
similarity as measured by the SLF8 feature set. (From
reference [1].)
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