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Introduction33

In this paper we consider a quadratic programming34

(QP) problem of the following form:35

min f (x) =
1

2
xTQx + cTx

s.t. x 2 D

(1)36

where D is a polyhedron in Rn, c 2 Rn. Without any 37

loss of generality, we can assume that Q is a real sym- 38

metric (n � n)-matrix. If this is not the case, then the 39

matrix Q can be converted to symmetric form by re- 40

placing Q by (Q + QT)/2, which does not change the 41

value of the objective function f (x). Note that if Q is 42

positive semidefinite, then Problem (1) is considered to 43

be a convex minimization problem. When Q is negative 44

semidefinite, Problem (1) is considered to be a concave 45

minimization problem. When Q has at least one positive 46

and one negative eigenvalue (i. e., Q is indefinite), Prob- 47

lem (1) is considered to be an indefinite quadratic pro- 48

gramming problem. We know that in the case of convex 49

minimization problem, every Kuhn-Tucker point is a lo- 50

cal minimum, which is also a global minimum. In this 51

case, there are a number of classical optimization meth- 52

ods that can obtain the globally optimal solutions of 53

quadratic convex programming problems. These meth- 54

ods can be found in many places in the literature. In 55

the case of concave minimization over polytopes, it is 56

well known that if the problem has an optimal solution, 57

then an optimal solution is attained at a vertex of D. On 58

the other hand, the global minimum is not necessarily 59

attained at a vertex of D for infinite quadratic program- 60

ming problems. In this case, from second order opti- 61

mality conditions, the global minimum is attained at the 62

boundary of the feasible domain. In this research, with- 63

out loss of generality, we are interested in developing 64

solution techniques to solve general (convex, concave 65

and indefinite) quadratic programming problems. 66

Complexity of Quadratic Programming 67

In this section we discuss the complexity of quadratic 68

programming problems. The complexity analysis can 69

give an idea of the possibility of developing efficient al- 70

gorithms for solving the problem. In [10], the QP was 71

shown to be NP -hard in the case of a negative definite 72

matrix Q. The QP was also proven to be NP -hard by 73

reduction to the satisfiability problem [11], and reduc- 74

tion to the knapsack feasibility problem [5]. Moreover, 75

it has also been shown that checking local optimality 76

for the QP itself is an NP -hard problem [11]. In addi- 77

tion, checking for strict convexity (checking local opti- 78

mality as part of the second order necessary conditions) 79

in the QP was proven to be NP -hard [8]. In fact, find- 80

ing a local minimum and proving local optimality of 81

such a solution to the QP may take exponential time. 82
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2 Quadratic Integer Programming: Complexity and Equivalent Forms

This is true even in the case of a small number of con-83

cave variables. For instance, although the matrix Q is of84

rank one with exactly one negative eigenvalue, the QP85

is still NP -hard [9]. However, a large number of neg-86

ative eigenvalues does not necessarily make the prob-87

lem harder to solve. For example, consider the follow-88

ing problem:89

min
1

2
xTQx + cTx

s.t. x � 0 :

90

If the matrix Q has (n � 1) negative eigenvalues, then91

there must be at least (n � 1) active constraints at the92

optimal solution [3]. Correspondingly, it is sufficient to93

solve (n � 1) different problems, in each case setting94

(n�1) of the constraints to equalities, to find the optimal95

solution. In general, if the matrix Q has (n�k) negative96

eigenvalues, then we are required to solve n!
k!(n�k)! inde-97

pendent problems. In addition, the total computational98

time required to solve this problem is proportional to99

k3ckn!
k!(n�k)! . Thus, if k is an constant and independent of100

n, then the computational time is bounded by a polyno-101

mial in n. On the other hand, if k grows with n, then the102

computational time can grow exponentially with n [3].103

Equivalence Between Discrete104

and Continuous Problems105

Before we show the equivalence between discrete and106

continuous programs, it is important to discuss an107

equivalence property between two extremum prob-108

lems [2]. Therefore, we refer to the following theorem109

(see [2] for a proof).110

Theorem 1 Let Z̄ and X̄ be compact sets in Rn; R111

be a closed set in Rn, and let the following hypotheses112

hold.113

H1) f : Rn ! R is a bounded function on X̄ , and114

there exists an open set A � Z̄ and real number115

˛; L > 0 such that, for any x; y 2 S; f satisfies116

the following Hölder condition: jf (x) � f (y)j117

� Lkx � yk˛.118

H2) It is impossible to find ' : Rn ! R such that119

(i) � is continuous on X̄ ,120

(ii) '(x) = 0; x 2 Z̄; '(x) > 0; x 2 X̄ � Z̄;121

(iii) 8z 2 Z̄; there exists a neighborhood S(z)122

and a real "̄ > 0 such that, for any x 2123

S (z) \ (X̄ � Z̄); '(x) � "̄kx � zk˛ .124

Then a real �0 exists such that for any real � � �0, 125

min f (x); x 2 Z̄ \ R is equivalent to min[f (x) + 126

�'(x)]; x 2 X̄ \ R. 127

Now we can show an equivalence between discrete and 128

continuous programs from the following theorem [2]. 129

Theorem 2 Let eT = (1; 1; : : : ; 1); Z̄ = Bn; X̄ = fx 2 130

Rn; 0 � x � eg; R = fx 2 Rn; g(x) � 0g. Consider 131

the problem 132

min f (x)

s.t. g(x) � 0; x 2 Bn ;
(2) 133

and the problem 134

min [f (x) + �xT(e � x)]

s.t. g(x) � 0; 0 � x � e :
(3) 135

Then we suppose that f verifies assumption H1 from 136

Theorem 1 with ˛ = 1; that is, it is bounded on X̄ and 137

Lipschitz continuous on an open set A � Z̄. Subse- 138

quently, there exists some �0 2 R such that 8� < �0 139

Problems (2) and (3) are equivalent. 140

Integer Programming Problems 141

and Complementarity Problems 142

The connections between integer programs and com- 143

plementarity problems can be exhibited by applying 144

KKT conditions. The results can be generalized in the 145

quadratic programming case [4]. 146

Theorem 3 Let us first assume 147

3a) f : Rn ! R; g : Rn ! R are continuously 148

differentiable functions. 149

3b) g(x) satisfies a constraint qualification condition 150

at x0 to ensure that KKT conditions are validated. 151

Then the nonlinear programming problem 152

min f (x)

s.t. g(x) � 0; x � 0 ;
(4) 153

has an optimal solution x0 if there exist u0 2 Rn; 154

y0; v0 2 Rv such that (x0; y0; u0; v0) is an optimal 155

solution to the following problem: 156

min f (x)

s.t. f 0(x) � yTg0(x) � u = 0;

g(x) � v = 0;

yTv = 0

xTu = 0

x; y; u; v � 0 :

(5) 157
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Quadratic Integer Programming: Complexity and Equivalent Forms 3

Proof 1 Necessity. If x0 is an optimal solution to Prob-158

lem (4), from KKT conditions we obtain (y0; u0) such159

that160

f 0(x0) � y0T
g(x0) � u0 = 0;

g(x0) � 0;

x0T
u0 = 0;

x0; y0; u0 � 0 :

161

Let v0 = g(x0), then (x0; y0; u0; v0) is an optimal solu-162

tion to Problem (5).163

Sufficiency. The proof is trivial. �164

We now generalize the results of Theorem 3 to the165

quadratic programming case. Consider the following166

problem167

min
1

2
xTQx + cTx

s.t. Ax � b;

x 2 Bn ;

(6)168

where Q is a symmetric matrix. Using Theorem 2, Prob-169

lem (6) is equivalent to170

min

�
1

2
xT(Q � 2�I )x + (cT + �eT)x

�

s.t. Ax � b;

x � e;

x � 0 :

(7)171

Applying Theorem 3 to Problem (7), we then obtain172

min

�
1

2
xT(Q � 2�I )x + (cT + �eT)x

�
(8)173

174

s.t. c + Qx + �(e � 2x) � yTA + t = u ; (9)175

176

b � Ax = v ; (10)177

178

e � x = w; (11)179

180

xTu = 0 ; (12)181

182

yTv = 0 ; (13)183

184

tTw = 0 ; (14)185

186

x; y; t ; u; v; w � 0 : (15)187

Arrange the terms in (9), we then have Qx � 2�x =188

�(c + �e) + yTA � t + u. Consequently, (8) becomes189

min[ 1
2 (cT + �eT)x + 1

2 (bTy � eTt). From (12), (13), 190

and (14), we have 191

xTu = 0;

0 = yTv = yTb � yTAx;

0 = tTw = tTe � tTx ;

192

therefore, yTb = yTAx and tTe = tTx. Taken all to- 193

gether, Problem (6) is equivalent to the following prob- 194

lem. 195

min ĉTx̂

s.t. Âx̂ + û = b̂;

x̂û = 0;

x̂; û � 0 ;

196

where 197

x̂T = (xT; yT; tT);

ûT = (uT; vT; wT);

Â =

0
@ �Q + 2�I AT �I

A 0 0
I 0 0

1
A ;

ĉT =
1

2
(cT + �eT + eT; bT; eT);

b̂T = (cT; bT; eT) :

198

Note that there are no restrictive assumptions made on 199

Q, this transformation is applicable to the convex case 200

as well as the nonconvex case. 201

Integer Programming Problems 202

and Quadratic Integer Programming Problems 203

Integer programming is used to model a variety of im- 204

portant practical problems in operations research, engi- 205

neering, and computer science. Consider the following 206

linear zero-one programming problem: 207

min cTx

s.t. Ax � b; xi 2 f0; 1g; (i = 1; : : : ; n)
208

where A is a real (m � n)-matrix, c 2 Rn and b 2 Rm. 209

Let eT = (1; : : : ; 1) 2 Rn denote the vector whose com- 210

ponents are all equal to 1. Then the zero-one integer lin- 211

ear programming problem is equivalent to the following 212

concave minimization problem: 213

min f (x) = cTx + �xT(e � x)

s.t. Ax � b; 0 � x � e
214
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4 Quadratic Integer Programming: Complexity and Equivalent Forms

where � is a sufficiently large positive integer. We know215

that the function f (x) is concave because �xTx is con-216

cave.217

The equivalence of the two problems is based on the218

facts that a concave function attains its minimum at219

a vertex and that xT(x � e) = 0; 0 � x � e, im-220

plies xi = 0 or 1 for i = 1; : : : ; n. We note that a vertex221

of the feasible domain is not necessarily a vertex of the222

unit hypercube 0 � x � e, but the global minimum is223

attained only when xT(e � x) = 0, provided that � is224

a sufficiently large number.225

These transformation techniques can be applied to re-226

duce quadratic zero-one problems to equivalent con-227

cave minimization problems. For instance, consider228

a quadratic zero-one problem of the following form:229

min f (x) = cTx + xTQx

s.t. x 2 f0; 1g230

where Q is a real symmetric (n � n) matrix. Given any231

real number �, let Q̄ = Q + �I where I is the (n � n)232

unit matrix, and c̄ = c � �e. Because of f̄ (x) = f (x),233

the above quadratic zero-one problem is equivalent to234

the problem:235

min f (x) = c̄Tx + xTQ̄x

s.t. xi 2 f0; 1g; (i = 1; : : : ; n)
236

In this case, if we choose � such that Q̄ = Q + �I237

becomes a negative semidefinite matrix (e. g., � = ��;238

where � is the largest eigenvalue of Q), then the objec-239

tive function f̄ (x) becomes concave and the constraints240

can be replaced by 0 � x � e. Thus, this problem is241

equivalent to the minimization of a quadratic concave242

function over the unit hypercube [4].243

Various Equivalent Forms244

of Quadratic Zero-One Programming Problems245

The problem considered here is a quadratic zero-one246

program, which has the form247

min f (x) = xTQx;

s.t. xi 2 f0; 1g; i = 1; : : : ; n;
(16)248

where Q is an n � n matrix [6,7]. Throughout this sec-249

tion the following notation will be used.250

� f0; 1gn: set of n dimensional 0–1 vectors.251

� Rn�n: set of n � n dimensional real matrices.252

� Rn: set of n dimensional real vectors.253

In order to formalize the notion of equivalence we need 254

some definitions. 255

Definition 1 The problem P is “polynomially re- 256

ducible” to problem P0 if given an instance I(P) of 257

problem P, an instance I(P0) of problem P0 can be ob- 258

tained in polynomial time such that solving I(P) will 259

solve I(P0). 260

Definition 2 Two problems P1 and P2 are called 261

“equivalent” if P1 is “polynomially reducible” to P2 and 262

P2 is “polynomially reducible” to P1. 263

Consider the following three problems: 264

P : min f (x) = xTQx; x 2 f0; 1gn;

Q 2 Rn�n ;

P1 : min f (x) = xTQx + cTx; x 2 f0; 1gn;

Q 2 Rn�n; c 2 Rn :

P2 : min f (x) = xTQx; x 2 f0; 1gn;

Q 2 Rn�n;

nX
i=1

xi = k for some k

s.t. 0 � k � n;

where x = (x1; x2; : : : ; xn) :

265

Next we show that problems P, P1, and P2 are all 266

“equivalent”. Then, formulation P2 will be used in the 267

rest of the sections. 268

Lemma 1 P is “polynomially reducible” to P1. 269

Proof 2 It is very easy to see that P is a special case of 270

P1. � 271

Lemma 2 P1 is “polynomially reducible” to P. 272

Proof 3 Problem P1 is defined as follows: min f (x) = 273

xTQx + cTx; x 2 f0; 1gn; Q 2 Rn�n; c 2 Rn. If Q = 274

(qij ) then let B = (bij ) where 275

bij =

(
qij if i ¤ j

qij + ci if i = j :
276

Since x2
i = xi (because xi 2 f0; 1g), we have g(x) = 277

xTBx = xTQx + cTx. So the following problem is 278

equivalent to problem P1 : min g(x) = xTBx; x 2 279

f0; 1gn; B 2 Rn�n. � 280

Using Lemma 1 and Lemma 2, it is evident that P and 281

P1 are “equivalent”. 282
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Quadratic Integer Programming: Complexity and Equivalent Forms 5

Lemma 3 P2 is “polynomially reducible” to P.283

Proof 4 Problem P2 is as follows: min f (x) =284

xTQx; x 2 f0; 1gn; Q 2 Rn�n;
Pn

i=1 xi = k285

for some k s.t. 0 � k � n. If Q = (qij ) then let286

M = 2[
Pn

j =1

Pn
i=1 jqij j] + 1. Now, define the following287

problem P : min g(x) = xTQx + M (
Pn

i=1 xi � k)2 s.t.288

x 2 f0; 1gn; Q 2 Rn�n. Let xb = (xb
1 ; : : : ; xb

n) and x0 =289

(x0
1 ; : : : ; x0

n) such that
Pn

i=1 xb
i ¤ k and

Pn
i=1 x0

i = k;290

then g(x0) � M�1
2 as

Pn
i=1 x0

i = k; g(xb) � �(M�1)
2291

+ M or g(xb) � M +1
2 as j Pn

i=1 xb
i � kj � 1. There-292

fore, g(x0) < g(xb) if
Pn

i=1 xb
i ¤ k and

Pn
i=1 x0

i = k.293

Hence, if min g(x) = g(x0) where x0 = (x0
1 ; : : : ; x0

n)294

then
Pn

i=1 x0
i = k. So min f (x) = min g(x). From the295

above discussion, it can be easily seen that P2 is “poly-296

nomially reducible” to P. �297

The proof of Lemma 3 also illustrates how equality298

(knapsack) constraints in a quadratic zero-one program299

can be eliminated.300

Lemma 4 P is “polynomially reducible” to P2.301

Proof 5 Let problem P be defined as follows:302

min f (x) = xTQx; x 2 f0; 1gn; Q 2 Rn�n.303

Define a series of (n + 1) problems: P2(0); P2(1);304

P2(2); � � � ; P2(n), where P2(j) is the following prob-305

lem min f (x) = xTQx; x 2 f0; 1gn; Q 2 Rn�n,306 Pn
i=1 xi = j . Let the minimum of the problem P2(j) be307

yj, then the minimum of problem P is easily seen to be308

the min fy0; y1; : : : ; yng. �309

Lemma 3 and Lemma 4 imply that P and P2 are “equiv-310

alent”. Since “equivalent” is a transitive relative, P, P1,311

P2 are all “equivalent”.312

Complexity of Quadratic Zero-One Programming313

Problems314

Quadratic zero-one programming is a difficult problem.315

We next will show that the quadratic knapsack zero-one316

problem in (P2) is a NP hard problem by proving that317

it is equivalent to the k-clique problem. A k-clique is318

a complete graph with k vertices.319

k-clique Problem320

Given a graph G=(V , E) (V is the set of vertices and E321

is the set of edges), does the graph G have a k-clique as322

one of its subgraphs?323

k-clique problem is known to be NP-complete. We will324

show that the k-clique problem is “polynomially re-325

ducible” to problem P2 defined in the previous subsec- 326

tion. 327

Theorem 4 The k-clique problem is “polynomially re- 328

ducible” to P2. 329

Proof 6 Problem P2 was defined as min f (x) = xTQx, 330

s.t. xi 2 f0; 1g; i = 1; � � � ; n,
Pn

i=1 xi = m for some 0 � 331

m � n. Given the graph G = (V ; E), define Q = (qij ) 332

such that 333

qij =

(
0 if (vi ; vj ) 2 E

�1 if (vi ; vj ) 62 E ;
334

where n = jV j; m = k (we are trying to find a k-clique). 335

The meaning attached to the vector x 2 f0; 1gn in prob- 336

lem P2 is as follows 337

xi =

(
1 means that vi is in the clique;

0 means that vi is not in the clique :
338

We can easily prove that the graph G has a k-clique if 339

and only if min f (x) = �k(k � 1). So the k-clique 340

problem is “polynomially reducible” to P2. � 341

Problem P2 is “equivalent” to P, so problem P is also 342

NP-hard. Therefore, as the dimension of the problem 343

increases, the necessary CPU time to solve the problem 344

increases exponentially. 345

Quadratic Zero-One Programming 346

and Mixed Integer Programming 347

In this section, we consider a quadratic zero-one pro- 348

gramming problem in the following form: 349

min f (x) = xTQx;

s.t.
nX

i=1

xi = k; x 2 f0; 1gn :
(17) 350

Let Q be n � n matrix, whose each element qi ;j � 0. 351

Define x = (x1; : : : ; xn), where each xi represents bi- 352

nary decision variables. We will show that the problem 353

in (17) can be linearized as the following mixed inte- 354

ger programming problems. The first linearization tech- 355

nique is trivial and can be found elsewhere. Recently, 356

more efficient linearization technique was introduced 357

in [1]. In addition, the linearization technique for more 358

general case (where qi ; j 2 real) and multi-quadratic 359

programming was also proposed in [1]. 360
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6 Quadratic Integer Programming: Complexity and Equivalent Forms

Conventional Linearization Approach361

For each product xixj in the objective function of the362

problem (17) we introduce a new continuous variable,363

xij = xi xj (i ¤ j ). Note that xi i = x2
i = xi for364

xi 2 f0; 1g. The equivalent mixed integer programming365

problem (MIP) is given by:366

min
X

i

X
j

qij xij

s.t.
nX

i=1

xi = k;

xij � xi ; for i ; j = 1; : : : ; n(i ¤ j )

xij � xj ; for i ; j = 1; : : : ; n(i ¤ j )

xi + xj � 1 � xij ; for i ; j = 1; : : : ; n(i ¤ j )

0 � xij � 1; for i ; j = 1; : : : ; n(i ¤ j )

(18)367

where xi 2 f0; 1g, i ; j = 1; : : : ; n.368

The main disadvantage of this approach is that the369

number of additional variables we need to introduce is370

O(n2), and the number of new constraints is also O(n2).371

The number of 0–1 variables remains the same.372

A New Linearization Approach373

Consider the following mixed integer programming374

problem:375

min
x;y;s

g(s) =
nX

i=1

si = eTs

s.t.
nX

i=1

xi = k;

Qx � y � s = 0;

y � �(e � x);

xi 2 f0; 1g; for i = 1; : : : ; n

yi ; si � 0; for i = 1; : : : ; n :

(19)376

where Q is an n � n matrix, whose each element377

qi ;j � 0.378

In [1], the mixed integer 0–1 programming problem379

in (19) was proved equivalent to the quadratic zero-380

one programming in (17). The main advantage of this381

approach is that we only need to introduce O(n) ad-382

ditional variables and O(n) new constraints, where the383

number of 0–1 variables remains the same. This lin-384

earization technique proved more robust and more effi-385

ciently solving quadratic zero-one and multi-quadratic 386

zero-one programming problems [1]. 387
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