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Introduction24

Progress in digital data acquisition and storage tech-25

nology has resulted in the growth of huge databases.26

This has occurred in a variety of scientific and engi-27

neering research applications [8] as well as medical28

domain [19,20]. Making sense out of these rapidly29

growing massive data sets gave birth to a “new” scien-30

tific discipline often referred to as Data Mining. Defin-31

ing a discipline is, however, always a controversial32

task. The following working definition of the area was33

recently proposed [9]: Data mining is the analysis of34

(often large) observational data sets to find unsuspect-35

ed relationships and to summarize the data in novel36

ways that are both understandable and useful to the data37

owner.38

Clearly the term data mining if often used as a synonym 39

for the process of extracting useful information from 40

databases. However, the overall knowledge discovery 41

from databases (KDD) process is far more complicat- 42

ed and convoluted and involves a number of addition- 43

al pre and post-processing steps [6]. Therefore, in our 44

definition data mining refers to the ensemble of new, 45

and existing, specific algorithms for extracting structure 46

from data [8]. The exact definition of the knowledge 47

extraction process and the expected outcomes are very 48

difficult to characterize. However, a number of specific 49

tasks can be identified and, by and large, define the key 50

subset of deliverables from a data mining activity. Two 51

such critical activities are classification and clustering. 52

A number of variants for these tasks can be identi- 53

fied and, furthermore, the specific structure of the data 54

involved greatly impacts the methods and algorithms 55

that are to be employed. Before we proceed with the 56

exact definition of the tasks we need to provide work- 57

ing definitions of the nature and structure of the data. 58

Basic Definitions 59

For the purposes of our analysis we will assume that 60

the data are expressed in the form of n-dimensional fea- 61

ture vectors x 2 X � <n. Appropriate pre-processing 62

of the data may be required to transform the data into 63

this form. Although in many cases this transformations 64

can be trivial, in other cases transforming the data into 65

a “workable” form is a highly non-trivial task. The goal 66

of data mining is to estimate an explicit, or implicit, 67

function that maps points of the feature vector from 68

the input space, X � <n, to an output space, C, giv- 69

en a finite sample. The concept of the finite sample 70

is important because, in general, what we are given is 71

a finite representative subset of the original space (train- 72

ing set) and we wish to make predictions on new ele- 73

ments of the set (testing set). The data mining tasks can 74

thus de defined based on the nature of the mapping C 75

and the extent to which the train set is characterized. 76

If the predicted quantity is a categorical value and if 77

we know the value that corresponds to each elements of 78

the training set then the question becomes how to iden- 79

tify the mapping that connects the feature vector and the 80

corresponding categorical value (class). This problem is 81

known as the classification problem (supervised learn- 82

ing). If the class assignment is not known and we seek 83

to: (a) identify whether a small, yet unknown, number 84
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2 Mathematical Programming for Data Mining

of classes exist; (b) define the mapping assigning the85

features to classes then we have a clustering problem86

(unsupervised learning).87

A related problem associated with superfluous infor-88

mation in the feature vector is the so-called feature89

selection problem. This is a problem closely related to90

over-fitting in regression. Having a minimal number of91

features leads to simpler models, better generalization92

and easier interpretation. One of the fundamental issues93

in data mining is therefore to identify the least num-94

ber of features, sub-set of the original set of features,95

that best address the two issues previously defined. The96

concept of parsimony (Occam’s razor) is often invoked97

to bias the search [1]: never do with more what can be98

done with fewer.99

Although numerous methods exist for addressing these100

problems they will not be reviewed here. Nice reviews101

of classification and were recently presented in [8,9]. In102

this short introduction we will concentrate on solution103

methodologies based on reformulating the clustering,104

and classification questions as optimization problems.105

Mathematical Programming Formulations106

Classification and clustering, and for that matter most107

of the data mining tasks, are fundamentally optimiza-108

tion problems. Mathematical programming methodolo-109

gies formalize the problem definition and make use of110

recent advances in optimization theory and applications111

for the efficient solution of the corresponding formula-112

tions. In fact, mathematical programming approaches,113

particularly linear programming, have long been used114

in data mining tasks.115

The pioneering work presented in [13,14] demonstrated116

how to formulate the problem of constructing planes to117

separate linearly separable sets of points.118

In this summary we will follow the formalism put forth119

in [2] since it presented one of the most comprehensive120

approaches to this problem. One of the major advan-121

tages of a formulation based on mathematical program-122

ming is the ease in incorporating explicit problem spe-123

cific constraints. This will be discussed in greater detail124

later in this summary.125

Classification126

As discussed earlier the main goal in classification is to127

predict a categorical variable (class) based on the values128

of the feature vector. The general families of methods129

for addressing this problem include [9]: 130

i) Estimation of the conditional probability of observ- 131

ing class C given the feature vector x. 132

ii) Analysis of various proximity metrics and based 133

the decision of class assignment based on proximi- 134

ty. 135

iii) Recursive input space partitioning to maximize 136

a score of class purity (tree-based methods). 137

The two-class classification problem can be formulat- 138

ed as the search of a function that assigns a given input 139

vector x into two disjoint point sets A and B. The data 140

are represented in the form of matrices. Assuming that 141

the set A has m elements and the set B has k elements, 142

then A 2 <m�n; B 2 <k�n, describe the two sets 143

respectively. The discrimination in based on the deriva- 144

tion of hyperplane 145

P = fxjx 2 <n; xT ! = �g 146

with normal and distance from the origin j� j
jj!jj2 . The 147

optimization problem then becomes to determine ! and 148

� such that the separating hyperplane P defines two 149

open half spaces 150

fxjx 2 <n; xT ! < �g
fxjx 2 <n; xT ! > �g 151

containing mostly points in A and B respectively. 152

Unless A and B are disjoint the separation can only be 153

satisfied within some error. Minimization of the aver- 154

age violations provides a possible approximation of the 155

separating hyperplane [2]: 156

min
!;�

1

m
k(�A! + e� + e)+k1 +

1

k
k(�B! + e� + e)+k1 157

In [2] a number of linear programming reformulations 158

are discussed exploring the properties of the structure 159

of the optimization problem. In particular an effective 160

robust linear programming (RLP) reformulation was 161

suggested making possible the solution of large-scale 162

problems: 163

min
!;�;y;z

eT y

m
+

eT z

k

s.t. � A! + e� + e � y

B! � e� + e � z

y; z � 0:

164
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Mathematical Programming for Data Mining 3

In [17] it was demonstrated how the above formulation165

can be applied repeatedly to produce complex space166

partitions similar to those obtained by the application167

of standard decision tree methods such as C4.5 [21] or168

CART [4].169

Clustering170

The goal of clustering is the segmentation of the raw171

data into groups that share a common, yet unknown,172

characteristic property. Similarity is therefore a key173

property in any clustering task. The difficulty arises174

from the fact that the process is unsupervised. That is175

neither the property nor the expected number of groups176

(clusters) are known ahead of time. The search for the177

optimal number of clusters is parametric in nature and178

the optimal point in an “error” vs. “number of clusters”179

curve is usually identified by a combined objective the180

weighs appropriately accuracy and number of clusters.181

Conceptually a number of approaches can be developed182

for addressing clustering problems:183

i) Distance-based methods, by far the most commonly184

used, that attempt to identify the best k-way parti-185

tion of the data by minimizing the distance of the186

points assigned to cluster k from the center of the187

cluster.188

ii) Model-based methods assume the functional form189

of a model that describes each of the clusters and190

then search for the best parameter fit that models191

each cluster by minimizing some appropriate likeli-192

hood measure.193

There are two different types of clustering: (1) hard194

clustering; (2) fuzzy clustering. The former assigns195

a data point to exactly one cluster while the latter196

assigns a data point to one of more clusters along with197

the likelihood of the data point belonging to one of198

those clusters.199

The standard formulation of the hard clustering prob-200

lem is:201

min
c

mX

i=1

min
l

kxi � cl kn202

That is given m points, x, in an n-dimensional space,203

and a fixed number of cluster, k, determine the centers204

of the cluster, c, such that the sum of the distances of205

each point to a nearest cluster center is minimized. It206

was shown in [3] that this general non convex problem207

can be reformulated such that we minimize a bilinear 208

functions over a polyhedral set by introducing a selec- 209

tion variable ti l : 210

min
c;d ;t

mX

i=1

kX

i=1

ti l(e
T di l )

s.t. � di l � xi � cl � di l

kX

l=1

ti l = 1

ti l � 0

i = 1; : : : ; m; l = 1; : : : ; k:

211

d is a dummy variable used to bound the components 212

of the difference x � c. In the above formulation the 213

1-norm is selected [3]. 214

The fuzzy clustering problem can be formulated as fol- 215

lows [5]: 216

min
w

mX

i=1

kX

l=1

w2
i lkxi � cl k2

s.t.
kX

l=1

wi l = 1

wi l � 1;

217

where xi ; i = 1; : : : ; m is the location descriptor for the 218

data point, cl ; l = 1; : : : ; k is the center of the cluster, 219

wi l is the likelihood of a data point i being assigned to 220

cluster l. 221

Support Vector Machines 222

This optimization formalism bares significance resem- 223

blance to the Support Vector Machines (SVM) frame- 224

work [25]. SVM incorporate the concept of structural 225

risk minimization by determining a separating hyper- 226

plane that maximizes not only a quantity measuring the 227

misclassification error but also maximizing the mar- 228

gin separating the two classes. This can be achieved 229

by augmenting the objective of the RLP formulation 230

earlier presented by an appropriately weighted mea- 231

sure of the separation between the two classes as 232

(1 � �)(eT y + eT z) + �
2 k!k2

2. 233

In [6] the concept of SVM is extended by introduc- 234

ing the Proximal support vector machines which clas- 235

sify points based on proximity to one of two parallel 236

planes that are pushed as far apart as possible. Non- 237

linear transformations were also introduced in [6] to 238
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4 Mathematical Programming for Data Mining

enable the derivation of non-linear boundaries in clas-239

sifiers.240

Multi-Class Support Vector Machines241

Support vector machines were originally designed for242

binary classification. Extending to multi-class problems243

is still an open research area [10].244

The earliest multi-class implementation is the one245

against all [22] by constructing k SVM models, where246

k is the number of classes. The ith SVM is classifies247

the examples of class i against all the other samples in248

all other classes. Another alternative builds one against249

one [12] classifiers by building k(k�1)
2 models where250

each is trained on data from two classes. The empha-251

sis of current research is on novel methods for gener-252

ating all the decision functions through the solution of253

a single, but much larger, optimization problem [10].254

Data Mining in the Presence of Constraints255

Prior knowledge about a system is often omitted in256

data mining applications because most algorithms do257

not have adequate provisions for incorporating explicit-258

ly such types of constrains. Prior knowledge can either259

encodes explicit and/or implicit relations among the260

features or models the existence of “obstacles” in the261

feature space [24].262

One of the major advantages of a mathematical pro-263

gramming framework for performing data mining tasks264

is that prior knowledge can be incorporated in the def-265

inition of the various tasks in the form of (non)linear266

constraints. Efficient incorporation of prior knowledge267

in the form of nonlinear inequalities within the SVM268

framework was recently proposed by [15]. Reformu-269

lations of the original linear and nonlinear SVM clas-270

sifiers to accommodate prior knowledge about the271

problem were presented in [7] in the context of approx-272

imation and in [16] in the context of classifiers.273

Data Mining and Integer Optimization274

Data mining tasks involve, fundamentally, discrete275

decisions:276

� How many clusters are there?277

� Which class does a record belong to?278

� Which features are most informative?279

� Which samples capture the essential information?280

Implicit enumeration techniques such as branch-and- 281

bound were used early on to address the problem of 282

feature selection [18]. 283

Mathematical programming inspired by algorithms for 284

addressing various data mining problems are now being 285

revisited and cast as integer optimization problems. 286

Representative formulations include feature selection 287

using Mixed-Integer Linear Programs [11] and in [23] 288

integer optimization models are used to address the 289

problem of classification and regression. 290

Research Challenges 291

Numerous issues can of course be raised. However, we 292

would like to focus on three critical aspects 293

i) Scalability and the curse of dimensionality. Data- 294

bases are growing extremely fast and problems of 295

practical interest are routinely composed of millions 296

of records and thousands of features. The compu- 297

tational complexity is therefore expected to grow 298

beyond what is currently reasonable and tractable. 299

Hardware advances alone will not address this 300

problem either as the increase in computational 301

complexity outgrows the increase in computation- 302

al speed. The challenge is therefore two-fold: either 303

improve the algorithms and the implementation of 304

the algorithms or explore sampling and dimension- 305

ality reduction techniques. 306

ii) Noise and infrequent events. Noise and uncertain- 307

ty in the data is a given. Therefore, data mining 308

algorithms in general and mathematical program- 309

ming formulations in particular have to account for 310

the presence of noise. Issues from robustness and 311

uncertainty propagation have to be incorporated. 312

However, an interesting issue emerges: how do we 313

distinguish between noise and an infrequent, albeit 314

interesting observation? This in fact maybe a ques- 315

tion with no answer. 316

iii) Interpretation and visualization. The ultimate goal 317

of data mining is understanding the data and devel- 318

oping actionable strategies based on the conclu- 319

sions. We need to improve not only the inter- 320

pretation of the derived models but also the 321

knowledge delivery methods based on the derived 322

models. Optimization and mathematical program- 323

ming needs to provide not just the optimal solution 324

but also some way of interpreting the implications 325
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of a particular solution including the quantification326

of potential crucial sensitivities.327
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