
Computers and Chemical Engineering 23 (1999) 341—355

Approaches to asynchronous decentralized decision making

I.P. Androulakis*, G.V. Reklaitis

School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA

Received 11 February 1997; revised 22 September 1998; accepted 22 September 1998

Abstract

Motivated by the ideas of asynchronous relaxation algorithms this paper investigates optimal decision-making problems that
exhibit decentralized characteristics. Such problems consist of a collection of interacting sub-systems, each one described by local
properties and dynamics, joined together by the need to accomplish a common task which achieves overall optimal performance.
Special properties of such systems that make them ideally suited for the framework of asynchronous computing are (a) the lack of
a single overall objective describing the collective performance, and (b) the asynchronism in implementing topologically optimal
decisions based on information which is local in space and time. A methodology for decentralized decision making is developed based
on the solution of a series of sub-problems in which each minimizes a local objective while maximizing a common Lagrangian
function, by generating independent approximations of an ascent direction in the space of the dual variables. The concepts are
illustrated by means of motivating examples. (1999 Elsevier Science Ltd. All rights reserved.

Keywords: Asynchronous distributed computing; Decision making; Agreement algorithms; Decentralized operations

1. Decentralized decision making

Classical centralized models of decision making and
computation deal with the situation in which a single
decision maker possesses (or collects) all available in-
formation related to a certain system and performs some
computational and/or makes a decision so as to achieve
a certain objective. Our interest in distributed decision
making stems from the fact that real-world systems are
too large for the classical model of decision making to be
applicable. There may be a multitude of decision makers
none of which possesses all relevant knowledge because
this is impractical, inconvenient, or expensive due to
limitations of the system’s communication channels,
memory, computation and information processing capa-
bilities. Aggregation of data might be undesirable or even
impossible. In general, distributed decision making and
support systems are more flexible and robust in absorb-
ing various and sudden changes and can accommodate
more gracefully failures in individual components
(Bryant, 1993; Towill, 1993).

*Corresponding author. Present address: Corporate Research
Science Laboratories, Exxon and Research and Engingeering C., Roure
22 East, Annandale, NJ 08801, USA. Tel.: 908 7302-111; fax:
908 730 3344; e-mail: ipandro@erenj.com

Although a more detailed description of distributed
decision-making problems will be provided shortly we
point out that in the content of the Chemical Process
Industries, and in particular in Process Operations, sev-
eral problems are distributed by nature. Multiple batch
plant facilities may cooperate in order to supply different
markets while competing for utilizing limited resources
(Wilkinson et al., 1994), plant-wide operations such as
decentralized scheduling systems, (Hasebe et al., 1994),
rely on accumulating data at different rates and ana-
lyzing them in an independent but cooperative way.
Furthermore, it is clear that future computer integrated
manufacturing systems will become distributed (Cow-
drick, 1991). Often, within the same organization or
plant, independent decisions which are related via feasi-
bility; or other, constraints are made (Malone, 1987).

Finally, the planning subproblem, known as the supply
chain management problem involves the coordinated op-
eration not only of the multiple plant and distribution
sites of a given business unit but also the set of produc-
tion sites of its suppliers of feed materials or intermedi-
ates, the production sites of the customers who use the
products, and the logistical system which is engaged to
transport all of these materials. Clearly, each of these
entities (plant, suppliers, customers, and shippers) has its
own characteristic decision variables, is related to other

0098-1354/99/$ — see front matter (1999 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 9 8 - 1 3 5 4 (9 8) 0 0 2 7 8 - 6

entities through production and demand constraints, and
has its own characteristic economic objective functions
which is in general not commensurate with that of other
entities and thus cannot be lumped into a meaningful
explicit overall objective function. To achieve efficient
supply chain management, a plan must be developed
under which each entity is allowed to make independent
decisions on a time-scale appropriate to its operation so
as to optimize its own objective function while satisfying
constraints which link its operation to those of the
entities with which it communicates. Thus, as will be
apparent from the subsequent discussion, supply chain
management is inherently an asynchronous distributed
decision-making problem which involves asymptotic
agreement with computation.

These local decisions, although related, are made at
different rates and points in time. Therefore, in all of the
above systems, we have individual components related
by physical constraints, such as material balances, in-
put—output relations, different descriptions of the same
physical reality, etc. Each individual component is char-
acterized by its own local dynamics and rate of generat-
ing, exchanging, data. Mathematically speaking, these
decision-making problems can be viewed as independent
sub-problems with overlapping decision spaces. Our goal
then is to identify the response of the sub-systems within
the overlapping regions through a process of information
exchange.

Formally, the decision problem has two different as-
pects. It is possible to formulate the problem as a distrib-
uted decision problem whereby one tries to choose an
optimal distributed scheme subject to certain limitations,
such as the amount of information that can be transfer-
red, etc. Alternatively, one can choose to focus on distrib-
uted systems with prespecified structure in which each
decision maker chooses an initial decision and iteratively
improves this decision as more information becomes
available from the environment or other decision centers.
By this we mean that the ith decision maker updates,
from time to time, a decision, xi using some formula

xiQf i (xi, Ii), (1)

where Ii is the information available to the ith decision
maker at the time of the update.

Mathematically speaking, since there is no strict se-
quence according to which computation and commun-
ication take place at various decision centers, the state of
computation tends to evolve according to a point-to-set
mapping and possibly in a probabilistic manner that may
give rise to many other states depending on which of the
processing centers executes iteration (1) next and depend-
ing on possibly random exogenous information made
available to the decision maker during the execution of
the algorithm.

In most situations the information I of decision maker
i contains some of the most recent decisions of the others.

However, we allow the possibility that some decision
centers compute more often that they exchange informa-
tion, in which case the information Ii may be outdated.
Thus, any formulation should include asynchronous al-
gorithms where there is no strict a priori sequence ac-
cording to which iteration (1) is carried out at the various
processors. Asynchronous algorithms (Bertsekas and
Tsitsiklis, 1989), have several advantages over their syn-
chronous counterparts. Synchronization protocols may
require complex implementation and might introduce
considerable overhead. Furthermore, in a synchronous
algorithm the progress of computation is controlled by
the slowest processor. Such bottlenecks were realized
early and efforts have been made to mitigate them, for
instance via dynamic load-balancing schemes. Finally, in
situations where the problem data changes with time,
synchronous algorithms require restart protocols that
may complicate the implementation. From the point of
view of numerical computation, synchronous iterative
algorithms are easier to understand and their conver-
gence can be more readily established than their asyn-
chronous counterparts. Indeed some well-known
algorithms simply do not converge when implemented in
an asynchronous mode.

The challenge is thus twofold. First, we need to under-
stand, analyze and make efficient use of the principles
and ideas of asynchronous distributed computing. The
process of analyzing and understanding the behavior of
asynchronous computation will, in the future, be crucial,
in developing new numerical algorithms that are able to
combine the advantages of asynchronous algorithms
while preserving desired convergence properties, or even
improve them by making efficient use of the synergistic
effects that may occur. As a next step, we should consider
the potential advantages of asynchronous distributed
decision making since, as will be shown shortly, such
a framework presents a very natural way of modeling
reality in several distinct areas.

As a first step we have attempted to characterize the
dynamic behavior of some relaxed models of asyn-
chronous algorithms in the presence of nonlinearities and
a plethora of possible outcomes was presented. Based on
these results (Androulakis and Reklaitis, 1995), the com-
putational efficiency of asynchronous algorithms was
challenged in most instances. Specifically, the presence of
arbitrary nonlinearities was found to render convergence
of asynchronous iterative algorithms extremely difficult
for a variety of problems. The extreme measures that had
to be taken in some cases made the distributed counter-
part of ordinary sequential algorithms substantially
slower in terms of the number of iterations as well as
CPU time.

As the next step, we proceed to address a more general
problem, that of asynchronous distributed decision mak-
ing, in an attempt to take advantage of the inherent
structure of certain classes of decision-making problems,

342 I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355

for which the framework of asynchronous computing is
very natural. In short, we will attempt to use the ideas
and principles of asynchronous distributed computing as
a modelling tool of physically realizable systems, and not
simply as a solution methodology. Our argument is that
asynchronous computing with all of its shortcoming,
should not be introduced in situations where asynchron-
ism is actually absent. On the other hand, a number of
decision-making problems such as the optimal allocation
of resources in a computing environment, the distribu-
tion of production among multiple plant sites, the co-
operation of several teams of decision makers within
a certain organization, etc., have the common character-
istic of being inherently distributed. Furthermore, they
exhibit the need to asynchronously implement decisions
that affect each other only with respect to some common
knowledge. Clearly, the satisfaction of a higher goal
should be the ultimate focal point of such a decision
making process.

The focus of this work will be primarily decision mak-
ing problems in which decision making centers (agents)
are not simply committed to achieve optimal local objec-
tives, but are also trying to achieve a global, common,
goal. A coordination mechanism will therefore be needed
so as to guide local objectives towards this common goal.
The nature of the coordination is precisely to drive the
overall system towards eventual agreement which is
a higher goal than local optimality.

In what follows, we will first introduce the ideas of
distributed consensus and asymptotic agreement. We will
discuss the key characteristics of a specific model of
distributed computing in which multiple processors up-
date the same variable. We will subsequently reformulate
the problem of asynchronous distributed decision mak-
ing and will derive an asynchronous solution of it based
on the ideas of the asymptotic agreement algorithms.
These constructions will be illustrated by means of simple
examples.

2. Asynchronous relaxation algorithms

Since the concept of asynchronous iteration is funda-
mental to the developments to be presented in the follow-
ing sections we will very briefly define the key ideas of
asynchronous iterations so as to not only introduce the
new concepts but also to make clear the important exten-
sions to this type of computing that is important to the
subsequent developments.

Let us consider the following fixed point problem:

¸et x"(x
1
,2 , x

n
)3Rn, and the nonlinear mapping

F"(F
1
,2, F

n
) : RnPRn. Given x

0
3Rn, we wish to find

a fixed point of F, i.e. a point x*3Rn such that
x*"F (x*).

If an iterative scheme of the form

x(k#1)"F (x (k)), k"1,2 (2)

is used in order to generate approximations to x* then, it
is well known that as long as the mapping F is a contrac-
tive one, i.e. o (F(x)!F (y)))o (x!y)), ∀x, y3Rn, then
lim

k?=
F(x (k))"x*3Rn and further x* is unique.

Let us now consider a decomposition of Eq. (2) as
follows:

x
i
(k#1)"F

i
(x (k)), k"1,2 , (3)

F
i
: RnPRni, x

i
3Rn.

In such a case, it is natural to envision a situation in
which, given p partitions of the domain, i.e.
Rn"Zi/p

i/1
Rni, the workload of iteration (3) is distrib-

uted among distinct processing elements, with each per-
forming one of the p iterations. Let us further suppose
that each processing element performs its elementary
operations, i.e. computation and communication, accord-
ing to a given schedule. In such a case we assume that for
each processing element there exists a set of times
¹

i
LM1 2,2N, such that for a given processing element

i if k3¹
i
, then i performs iteration (3), otherwise that

processing node remains idle, i.e. does not perform any
computation. Furthermore, in large computing systems,
especially in distributed ones, such a work load distribu-
tion often introduces communication delays. In the pres-
ence of such delays, the asynchronous counterpart of
Eq. (3) becomes

x
i
(k#1)"G

F
i
(xi (k!ui) (k); a(k)),

x
i
(k),

k3¹
i
,

kN¹
i

. (4)

In Eq. (4), xi stand for the realization of x* that is known
to processing element i at time k, /i is a vector of retarded
arguments, 0)/i

j
)k quantifying the amount by which

the information from node j reaching node i is outdated.
Finally, a stand for a set of time-dependent, node-specific
parameters needed in order to guarantee convergence
of Eq. (4). Conditions for convergence of such a
model, under various assumptions, have been derived,
(Bertsekas and Tsitsiklis, 1989). It was further observed
(Androulakis and Reklaitis, 1995), that the quantitative
nature of the delays, /i, strongly affects the asymptotic
behavior, and thus the convergence, of Eq. (4), for general
non-linear problems. It should be noted that the reason
for introducing the model of Eq. (4) was so as to over-
come the effects of multiple communication barriers
which are the results of differences in computational
power in heterogeneous distributed systems and also
the result of unexpected and unpredictable network
congestion.

In a sense the difference between synchronous and
asynchronous iterations is similar to the difference
between Gauss—Seidel and Jacobi iterations. It was
realized (Androulakis, 1993), that qualitatively the key

I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355 343

Fig. 1. Synchronous iterations (Gauss—Seidel) vs asynchronous
iterations (Jacobi).

problem that the presence of delays introduce is the fact
that partial solutions are identified by each processor
performing the constituent iterations. In Fig. 1 we depict
the ‘‘implementational’’ differences of the method that
accentuate the differences between Gauss—Seidel and Jac-
obi iterations.

In a Gauss—Seidel setting, a global synchronization
protocol is established which requires that certain pro-
cessors may remain idle until all the computing element
complete their corresponding computations. At that
point only is communication among all processing ele-
ments allowed. On the other hand, in a Jacobi setting
computation occurs as soon as an individual processing
element has completed its assigned task. Communication
occurs at time instances which may differ from processor
to processor and depend on the local nature of the
computing task.

3. Consensus in distributed systems

Although the concept of asynchronism, as introduced
in Section 2, has interesting conceptual features, it also
possesses a number of undesirable counter consequences.
It has been argued (Androulakis, 1993) that the model of
asynchronous relaxation can only be successfully applied

to a limited number of problems, since the introduction
of delays confounds the convergence characteristics of
the original iterative schemes and, further, introduces
severe implementational problems. Nevertheless, we
strongly believe that we can use the basic concepts of
asynchronous relaxation in order to address specific
types of distributed decision making problems in which
‘‘asynchronism’’ is an integral part of the problem in the
sense that any attempt to remove it would result in an
oversimplification of physical reality. The model to be
presented in what follows, expands on several of the ideas
of asynchronous computing and derives a novel ap-
proach for describing decision-making problems which
are inherently both distributed and asynchronous.

In this section, we will show that there exist optimal
decision-making problems that are inherently distributed
and asynchronous, thus making the framework of asyn-
chronous distributed computing very well suited for their
analysis. In doing so, we will introduce the idea of asymp-
totic agreement and also a model of distributed comput-
ing with overlapping computation.

3.1. Distributed decision making

A large number of optimal decision-making problems
exhibit, to a certain extent, decentralized characteristics,
namely, they involve a collection of sub-systems, each
one characterized by its local properties and dynamics,
joined together by the need to accomplish a certain
common task in order to form the overall decision mak-
ing problem. Clearly, a system would be perfectly decen-
tralized if and only if there are no connections between
two or more sub-systems. Such systems are informally
defined as the activity of independent agents making har-
monious, non-conflicting decision (Billard and Pasquale,
1995). A connection, expressed in the context of mathemat-
ical programming by means of constraints, represents a po-
tential flow of information from one sub-system to another.

There are two main characteristics of such systems that
make them ideally suited for the framework of asyn-
chronous computing. First of all, an overall objective
describing the collective behavior of all the sub-systems
need not exist, but even if it does it does not have to be, or
may not be, known to all of the sub-systems. As long as
the effect of the interactions can be perceived by the local
decision makers, the complex systems should still be
driven to optimality, assuming of course that an optimal
solution exists. The second characteristic, of no lesser
importance, is that once an optimal decision has been
made, by a certain decision maker and based on some
information which is local in space and time, this decision
has to be implemented with no further delay. Clearly, the
first characteristic is present in any distributed system,
whereas the second one emphasizes the need for an
asynchronous operation. Observe, for instance, the situ-
ation depicted in Fig. 2d. We have a collection of users,

344 I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355

Fig. 2. Asynchronous and distributed decisions: (a) multi-site opera-
tions, (b) plant-wide operations; (c) ‘‘horizontal’’ flow of information, (d)
sharing of computer resources.

effectively ignoring the existence of each other, attempt-
ing to access the same resources at different rates, for
different time periods, and at different levels. Open com-
putational ecologies (Ceccato and Huberman, 1989), of-
fer the ultimate example in asynchronous and distributed
decision making. Systems exhibiting those characteristics
include:
f A collection of computer processes whose objective is

to complete a certain task in an optimal way while, at
the same time, competing for common resources.

f In an organization setting, Different decision makers
within the same organization try to access and/or build
a common database (Plouffe, 1987), different teams of
agents seek to optimize the performance of their divis-
ions while striving to meet specified goals, (Carlosson
et al., 1992) often referred to as horizontal cooperation
(Bond, 1990) different production sites have to distrib-
ute the production of certain goods among themselves
so as to minimize a certain objective, while sharing
some common resources or striving to meet the same
due dates.

f In the Chemical Process Industries setting, cases (a)
and (b) described in Fig. 2 often arise. Representative
distributed operational decision-making problems in-
clude multiple batch plant operation where there is
a need to coordinate resource consumption or main-
tain certain production levels, plant-wide control based
on distributed observations and, so forth.
Clearly, these example systems are distributed in na-

ture, and exhibit the need to reach optimal local decisions
while also striving for consensus. What is even more
important, is the fact that in all of these systems, once
a local decision has been made (i.e. user decides to access
a certain software item, or a certain number of processing

nodes, a team of experts decides on a policy, a production
site decides on certain production level, etc.), this decision
has to be implemented with no delay in order to keep the
collection of sub-systems operating. Therefore, the de-
scription of the decisions to be made is local, in the sense
that the competing computer users do not need to know
the details of each others problems, one team of experts
does not necessarily need to know the exact objective of
another team of experts, or the details of operation of
a certain production facility are not important to some
other facility. Thus, although a global model describing
the overall operation might exist in principle, it does not
have to be made explicitly known to all the members.
Further, the asynchrony is introduced since the local
decisions have to be implemented as soon as they are
made, without waiting for approval from other entities at
specific points in time.

3.2. Algorithms for asymptotic agreement

A key aspect of the previously discussed decision-mak-
ing problems is agreement, that is, the attainment of
consensus among decision makers on values of decision
variables.

The associated agreement problem can be stated as
follows:

a set of processors try to reach agreement on a common
scalar value by exchanging tentative values and combin-
ing them by forming linear combinations of their esti-
mates (Bertsekas and Tsitsiklis, 1989).

Pictorially, this situation is depicted in Fig. 3, where
the first form of the problem involves no local variables u

i
but the second form does. We first consider the former
version.

3.2.1. Asymptotic agreement without computation
There exists a trivial solution to the problem of agree-

ment without computation in which a processor is

Fig. 3. Distributed agreement problems.

I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355 345

selected and transmits its own value to all the others.
Such a situation is not considered here for reasons to be
explained latter.

One algorithm that addresses this form of the agree-
ment problem can be defined as follows. Let the vector
x3Rn and consider a set P"M1, 2,2 , pN of processors
each having stored in its local memory the starting values
of a sub-set of the coordinates of x. Let us denote by
)iLM1,2, pN the subset of processing nodes having
access to component i, i.e. x

i
. We would like all of the

processors having access to the same components to
exchange messages and eventually agree on a common
value. We further denote by PpLN the set of compo-
nents of x to which processor p has access. The common
limit each node is expected to reach is defined as follows:

min
p|)i

xp
i
(0))y

i
)max

p|)i

xp
i
(0), ∀i. (5)

The agreement problem can be stated as the simulta-
neous solution of a set of optimization problems, as
many as the number of processing nodes, with each one
having the following form:

min
xji i|

Pj
+
i|Pj Axj

i
! +

l|)i

ai
jl
xJ l
iB

2
,

(6)

+
l|)i

ai
jl
"1, ai

jl
*0, ai

jj
O0.

Analyzing Eq. (6), it is evident that each processing node
j, has access to a sub-set of components i3Pj. There is
also a set of processing node l3)i that also have access
to the same component i. Therefore, the current estimate
of component i of node j, xj

i
, should approximate the

weighted sum of the components of the other processing
nodes, i.e. +

l|)i aijlxJ li . By assuming that each node per-
forms to completion such a minimization we observe that
the local1 solutions that are identified are

xj
i
" +

l|)i

ai
jl
xJ l
i

(7)

or in vector form,

xj"AjxL. (8)

It is clear, that Eq. (8), via successive minimizations,
defines a linear iterative map A, which has following
important characteristics:
1. Since:

(a) A*0
(b) +

l|)i aijl"1
A is a ‘‘stochastic’’ matrix.

2. By construction, if we follow the entries of A, there is
always a path that leads from i to j. Therefore A is also
‘‘irreducible’’.

1The term ‘‘local’’ as used in this context does not reflect the convex
or nonconvex nature of the problem, rather it is used in a topological
sense.

3. Based on the Perron—Frobenious Theorem, (Wilf,
1978), o(A)"1 is an eigenvalue j of A, and further it is
essentially unique.

4. Because ai
jj
O0, A is ‘‘acyclic’’.

Therefore, the solution of Eq. (8), as a function of the
iteration count, is Ak and lim

t?=
Ak"A*.

Based on the above the underlying agreement is
convergent (8). Furthermore, because of all of the above
properties Eq. (8) also belongs to the class of iterative
schemes for which even their asynchronous counterpart,
as presented in Section 2, is know to be convergent
(Bertsekas and Tsitsiklis, 1989). Therefore, Eq. (7) now
becomes

xj
i
(t#1)" +

i|Ti : l|)i

ai
jl
xJ l
i
(qi

ij
(t)). (9)

3.2.2. Asymptotic agreement with computation
We can now proceed one step further to analyzing the

problem of achieving agreement when computation is
also involved. In this case suppose that in addition to the
variable x, on which the processing nodes have to agree,
each processing node also has access to a set of ‘‘local’’
variables. Local variables are those associated with a spe-
cific node and whose values are not available to other
nodes. A similar situation has been very elegantly ana-
lyzed in Tsitsiklis et al. (1986) where the assumption was
made that all processing elements not only generate
weighted sums of their estimates through a series of
communication steps, but also generate, based on their
own perception of the world, directions of change for
their ‘‘local’’ variables. These directions, which can be
gradient estimates for instance, are generated based on
the assumption that all processing nodes attempt to min-
imize the same functional. This important and very re-
strictive assumption will be relaxed in our work. Accord-
ing to the development presented in Tsitsiklis et al.
(1986), the formulation of Eq. (9) should be expanded as
follows:

xj
i
(t#1)" +

i|Ti : l|)i

ai
jl
xJ l
i
(qi

ij
(t))#

computation
dgegf

cj
i
(t) sj

i
(t) (10)

hggggiggggj
communication

The following powerful result was shown to hold.2

Proposition 1. Assume that iteration (10) is being per-
formed. Further assume that

H1. F is ¸ipschitz continuous.
H2. &K*0; +

j
F (xi(t))E[si

j
(t)I(t)])!KE+

j
F (xi(t))E2.

2This is a simplified version of the convergence result, the interested
reader is advised to consult Tsitsiklis et al. (1986) for an excellent
description of all the details.

346 I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355

¹hen it can be shown that3

C1. lim
t?=

SF(xi(t))T"F*.
C2. lim

t?=
Sxi

j
(t)!xl

j
(t)T"0, ∀i, l3)i.

C3. lim
t?=

+
j
F(xi(t))"0.

Analyzing this key Proposition, we observe that the
hypothesis part, H2, simply requires that as long as the
expected direction si

j
(t) of update, given the previous

history of updates, I (t), up to time t, is a descent one. and
as long as the underlying agreement is convergent, then:
C1 the limit of the cost functional is the same for all
participating nodes; C2 the estimates are the same for the
nodes; and C3 the common limit is a minimum.

3.3. Limitation of the model of asymptotic agreement with
computation

Clearly, although Eq. (10) is very powerful, it suffers
from one major limitation. It requires that all processing
nodes minimize the same cost functional. In the distrib-
uted decision-making setting which is of interest to us,
this assumption requires that all of our decision makers
have identical perceptions of the physical reality. This
fact is not true in any problem which is decentralized. We
can always of course reformulate it so as to fit into this
description but this would be undesirable since most of
the interesting and appealing properties of distributed
decision making would be lost. All theories and algo-
rithms for agreement and consensus break down when
different and conflicting objectives are assigned to the
decision makers. Such a situation can be illustrated
through the following trivial example.

Example 1. Suppose that two decision makers would
like to optimize their perceptions of the world, given by
f
1
(x)"!x for one and f

2
(x)"x2 for the other, and

assuming that the space of admissible values for their
corresponding decision in [0, 1]. It is clear that these two
objectives are not only different but also conflicting. We
do know though, that this trivial problem has a solution.
Nevertheless, if we allow one decision maker to minimize
f
1

and the other to minimize f
2

there is not way that they
will ever achieve agreement since the estimates that are
being generated move one towards the upper and one
towards the lower bound of the acceptable values for x.
This example shows that the theories of asymptotic
agreement are not applicable to agreement problems
involving conflicting objectives.

In the next section, we will attempt to present a novel
approach for distributed decision making problems. By
combining the principles of asynchronous asymptotic
agreement with Lagrangian duality theory in order

3The notation lim
t?=

SzT"0 implies that z is 0 with probability
1 and in the mean square sense.

to reformulate the problem in the common space of
Lagrange multipliers we will develop an asynchronous
algorithm for addressing certain classes of distributed
decision making problems with conflicting objectives.

4. Asynchronous distributed decision making

4.1. Relations to mathematical programming

The systems under consideration exhibit a character-
istic of cooperation in the sense that there exists a set of
collective properties that has to be satisfied when the
sub-systems, comprising the overall problem, reach opti-
mality. By this we mean that the decisions made by each
sub-system have to become locally optimal subject to the
constraint that a certain set of hypothesis is satisfied. We
should point out that such systems are reminiscent of
the large-scale programming problems that generated
the entire theory of decomposition methods. For in-
stance, in Dantzig and Wolfe (1961), the properties of
structured linear programming were very efficiently ex-
ploited to solve large LPs. Subsequently (Everett, 1966).
Lagrange Multiplier constructions were employed to
solve structured nonlinear as well as decentralized con-
trol problems (Lasdon and Schoeffler, 1966). Finally, the
concept of ‘‘complicating variables’’ motivated (Geof-
frion, 1972), the extension of the seminal work of Benders
(1962), to the Generalized Benders Decomposition con-
struction. The motivation behind this line of research is
to identify parts of the problem that when fixed, would
make the resulting problem ‘‘easier’’ to solve. Obviously
‘‘easy’’ can have different meanings as it might mean an
LP with special structure, a convex NLP, or an IP with
known solution. Even notions of using parallel process-
ing were introduced as early as 1972 by Geoffrion.

Although the above decomposition constructions are
not explicitly connected to this work, they must be men-
tioned because of conceptual similarities and the fact that
some of these ideas will be used in what follows. The key
differences between our approach and the earlier de-
composition literature is basically that all of the above-
mentioned methods assume that at some point in time,
all partial results have to be collected in order to formu-
late a ‘‘master’’ problem whose task is to deal with the
complicating part of the problem. This is clearly a syn-
chronization bottleneck which we would like to avoid.
There is no doubt that substantial speed-up could be
achieved if one were to devise a parallel implementation
of any of the above methods, as has been done very
successfully for similar types of algorithms, (Zenios,
1994). Our principal interest is in addressing opera-
tional types of problems, i.e. problems where decisions
are made at rates, which are different for each sub-
system and have to be implemented without delay once
they are made.

I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355 347

As was explained in the previous sections, we envision
a situation were a collection of decision makers, each
one operating within its own decision space, as defined
by the particular problem specifications, has to come up
with an optimal decision. The complexity characterizing
these problems stems from the fact that the decision
spaces are not disconnected regions, but rather over-
lapping sub-spaces as illustrated in Fig. 4. Because of
such overlap, if two decisions made by different decision
makers, say D

1
and D

2
take values of the corres-

ponding decision variables from the overlap region,
these decisions have to either be the same (same level of
production, same due date etc.) or they have to satisfy
certain property requirements (their sum must not
exceed an upper bound if they represent some resource
utilization etc.). Local decision are made independently
in the beginning, and in later stages they will be re-
adjusted so that, eventually, the connecting constraints
are satisfied.

4.2. Two-level optimization and the Lagrangian dual
problem

Consider specific decision-making problems that are
characterized by the following features:
f There exist n decisions that are to be made indepen-

dently.
f Each local decision depends upon two distinct set of

decision variables denoted by x and u respectively. The
first set, x, is assumed to be local.
From a mathematical point of view, two x’s belonging

to different systems are not related via any constraint.
The second set of variables, u, are considered to be the
complicating set of decisions. From the mathematical
point of view this implies that for a given component, say
k, of the vector ui, there exists a set Ci

k
LM1, 2,2, nN

containing the indices j of those uj, j"1, 2,2, n to
which the kth component belongs.4

Based on the above, each decision-making problem is
described by a local optimization problem of the form:

min
xi,ui

f
i
(xi, ui)

s.t. xi3XiLRn, XiWXj"0,

ui3ºiLRm, ºiWºjO0,

gi
j
(xi))0, j"1, 2,2 , Ji,

hi
m
(ui

k
Dk3Ci

k
))0, m"1, 2,2, Mi. (11)

The sets Ji and Mi are local set of inequality and equality
constraints, respectively. These need not be the same for
different sub-systems. Note the fact that the complicating

4We slightly altered the notation used in Section 3. We do so because
a more compact notation is easier to follow at this stage.

Fig. 4. Problem domain of distributed making.

set of constraints, h, depends only on the complicating
variables. This is a limitation that can be easily relaxed
but, as will be discussed later, more elaborate updating
schemes would be required. Qualitatively speaking the
first set of implicit constraints expresses the local charac-
teristics of the decision making processes, while the sec-
ond set expresses the exchange of information between
different decision centers.

Example 1. We consider a simple case in order to make
a few points clear. Consider the simplest form of such
a decision-making process:

min
x,u

f
1
(x

1
, u

1
)#f

2
(x

2
, u

2
)

s.t. u
1
!u

2
"0. (12)

Clearly, in the absence of the constraint, this would
have been a perfectly decomposable optimization prob-
lem and thus no further analysis would be required. This
would have corresponded to harmonious non-conflicting
decision. In the context of mathematical programming,
the variables u are termed ‘‘complicating’’ and usually
‘‘two level’’ optimization methods are used to solve such
problems. These involves a lower level of decision mak-
ing which selects values for the x’s, and then a second
level, at which the values of the u’s are selected so as to
improve the solution.

Basically, one can envision two major types of ap-
proaches for solving the high level decision making prob-
lem. One is based on solving the Lagrangian dual, to be
defined shortly, directly (usually termed the ‘‘classical
Lagrangian’’), and others based of solving some trans-
formation of the Lagrangian dual, say for example the
Generalized Linear Programming Technique. Other
methods are primarily based on the idea of Benders
Decomposition, and basically solve a master problem
which is a projection of the space of the complicating
variables, ui, on the feasible space.

348 I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355

All of these approaches have a synchronization bottle-
neck, as can be easily seen by the respective implementa-
tions. We will show that this bottleneck can be relaxed
using the first approach, namely solving the Lagrangian
dual directly, whereas the other two methods cannot
since the master problems generated need, at least, a feas-
ible solution (Minoux, 1986). If feasibility is not achieved,
usually a perturbed problem has to be solved which will
recover feasibility. Conceptually, this is very similar to
the idea of back-tracing in the context of ODE integra-
tion, such as in shooting methods for example. Once
a non-feasible solution, or one with high error, has been
found, it is corrected using all the available information,
and then the search proceeds. Of course, the idea of
back-tracking is meaningless within the context of asyn-
chronous computing (Androulakis, 1993), and thus such
improvements have to be abandoned. Further, the syn-
chronization bottleneck would prevent sub-systems from
implementing their local policies independently. We will
focus therefore on methods that address the Lagrangian
Dual Problem directly.

By way of example, dualizing the constraint of Eq. (12),
we obtain the Lagrangian relaxation:

min
x,u

f
1
(x

1
, u

2
)#f

2
(x

2
, u

2
)#j (u

1
!u

2
), (13)

where j is the Lagrange multiplier. Provided that the
optimal value of j, was known, then Eq. (13) can be
solved to optimality as two separate problems yielding
a solution to problem (12). In order to extend the validity
of the method to cases in which the convex structure
of Eq. (12) is not preserved and also to improve the
computational efficiency of the method, a combination
of a penalty and Lagrangian approach was proposed
(Bertsekas, 1976), thus resulting in

min
x,u

f
1
(x

1
, u

2
)#f

2
(x

2
, u

2
)#j (u

1
!u

2
)#C(u

1
!u

2
)2.

(14)

Since it is clear that the presence of the cross-product
term u

1
u
2

will destroy the separable structure, the use of
a first order Taylor Series expansion around a nominal
point (uN

1
, uN

2
) was suggested (Stephanopoulos and Wes-

terberg, 1975), so as to preserve the separability. Thus,
Eq. (14) becomes

min
x,u

f
1
(x

1
, u

2
)#f

2
(x

2
, u

2
)#j (u

1
!u

2
)

#C(u2
1
#u2

2
!2u

1
uN
2
!2u

2
uN
1
#2uN

1
uN
2
). (15)

The classical methods for solving this problem belong to
the family of two level algorithms described earlier. If we
define the dual function as

h(j)"min
x,u

f
1
(x

1
, u

2
)#f

2
(x

2
, u

2
)#j (u

1
!u

2
)

#C(u2
1
#u2

2
!2u

1
uN
2
!2u

2
uN
1
#2uN

1
uN
2
). (16)

Then the dual problem, or upper-level optimization
problem becomes

min
j

h (j). (17)

It is obvious therefore that we have to perform
the outer maximization in order to update the values of
the Lagrange multipliers and thus to be able to move
towards optimality.

As was explained earlier, there exist several ways for
solving the dual problem. We will focus on the simplest
choice, namely the steepest ascent method applied dir-
ectly to the problem defined in Eq. (17). From classical
nonlinear optimization (Bazaraa et al., 1993), we know
that the dual function is characterized by a set of nice
properties such as differentiability for the case where the
underlying problem is differentiable, and has subgradi-
ents for the cases where it might be nondifferentiable. In
the differentiable case, it can be shown, that the gradient
of the dual function, i.e. the direction of steepest ascent,
can be very easily computed as

s(j)"u
1
!u

2
. (18)

Basically, the gradient with respect to a certain multi-
plier, or a subgradient in an ascent direction, is nothing
but the constraint associated with that multiplier evalu-
ated at the optimum point of Eq. (16). This is a fairly
strong result since it provides us with an ascent direction,
in the space of the dual variables, without actually having
to solve the dual problem. A number of methods using
the Lagrangian approach have been based on this idea.

We propose to combine such Lagrangian-based
methods with the agreement algorithm and the model of
distributed computing with overlapping computation as
developed in Section 3 so as to derive convergent asyn-
chronous approaches.

4.3. Asynchronous distributed solution of the dual problem

If the original decision making problem takes the form

min
x

f (x)

s.t. h (x)"0, x3X, (19)

then the penalized Lagrangian function associated with
this problem will be

¸(x, j)"f (x)#jh(x)#Ch (x)2. (20)

The first step of the procedure would be to minimize
Eq. (20) with respect to the x’s and the second step will be
to solve the dual problem by maximizing the minimum of
Eq. (20) with respect to the j’s. For solving the second
problem, let us recall that

j(k#1)"j (k)#C(k)h (x(k)). (21)

I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355 349

The index k is simply a counter reflecting the number
of times (20) has been minimized. Note that updating
j according to Eq. (21) results in an increase of the dual
function. The convergence properties of such schemes are
well established (Bertsekas, 1976). The implementational
details of this scheme will be discussed in the context of
the first of the computational examples.

Within the framework discussed in Section 3, let us
note the following:
f If f (x) is a decomposable function, then Eq. (20) along

with the expansion of the quadratic terms will provide
us with independent sub-problems which can be solved
separately.

f After each minimization sub-problem has been solved,
the j’s have to be updated so that they generate an
ascent direction within the dual space. We saw that
identifying such ascent directions is as simple as evalu-
ating a set of constraints.

f Recall that within the previous development, the con-
straints that we dualized contain the complicating vari-
ables, and that the Lagrange multipliers have to be
known to all the decision-making sub-problems that
are associated with a particular h

j
, and therefore j

j
. As

a result, we can envision a situation in which approxi-
mations of the same j

j
are made by different decision

makers based on their local data. Each decision maker
solves his own sub-problem and then can generate his
own approximation of j

j
by evaluating the complicat-

ing constraints and thus generating (local) ascent direc-
tions. Recall that all Proposition 1 stated was that the
direction of ascent generated by each individual proces-
sor had to be ascent/descent in the mean sense, i.e. the
expected direction had to be ascent/descent. This fact
implies that we can even absorb locally incorrect esti-
mates. We can clearly see now that the model of distrib-
uted computing with overlapping computation, can be
very nicely used in order to allow for the asynchronous
implementation of the steepest ascent algorithm.

f In the previous development, we repeatedly mentioned
the fact that a master problem, the dual, had to be
maximized and that this should be the cooperative
effort of all of the sub-problems. It is clear that we do
not need an explicit representation of the dual problem,
nor does it have to be known by all the decision
makers. The only requirement is the ability of the local
decision makers to generate moves that are expected to
lead to ascent in the space of the dual variables.

f Finally, the initial decision-making problem was trans-
lated from the primal to the dual space. We required
agreement in the space of the dual variables, and that
was achieved in a distributed and asynchronous way.

4.4. Preliminary computational results

In this section we will discuss implementational details
regarding the solution of the primal and dual problems,

some important computational aspects related to the
gradient ascent and penalty method used, as well as
details regarding the use of multiprocessor machines.

As was explained earlier, the key task of each sub-
problem is to provide estimates for the Lagrange multi-
pliers associated with the complicating constraints. The
primal problem given by Eq. (16) is a separable minimiz-
ation problem, in the sense that each sub-problem, for
fixed j depends only on xi, ui. Solution of the separate
minimization problems will thus yield the u’s needed in
order to construct the ascent direction (18). Obviously,
the values of ui are generated at different rates and they
become available at different rates. The result is that the
direction given by Eq. (18) is ‘‘expected’’ to be ascent, but
this is a sufficient condition. Once an estimate of the
ascent direction is obtained, using the values of the
u variables as generated locally, the Lagrange multipliers
j are updated by each sub-problem following a scheme
similar to Eq. (10).

The first part of the summation will be replaced by the
corresponding agreement part of Eq. (10), according to
which estimates of the Lagrange multipliers, as they are
being communicated from other processing element will
be summed, in a manner analogous to Section 3.2.1.
The part corresponding to the computation step will be
replace by a local evaluation of the constraint that cor-
responds to the particular Lagrange multiplier. Initializa-
tion of the multipliers is a key feature, but in the cases
reported the starting values were j"0 for all sub-prob-
lems. Note that the zero values correspond to purely
local solutions, i.e. the solutions without considering any
interactions.

A very important question deals with the update of the
penalty term C(k), in Eq. (21). We used a relatively simple
scheme in which the penalty parameter is updated only
once a new value has been received and the update
penalty parameter is ‘‘time’’ dependent:

C(k)"abck, a+1, b+1.0, c+0.5. (22)

Clearly, some experimentation is needed in selecting effi-
cient values. Unfortunately, as will be discussed later,
asynchronous iterations are not very well suited for de-
veloping corrective mechanisms. As a result, several ‘ad
hoc’’ decisions have to be made.

The steepest ascent method for solving the dual prob-
lems was selected because it only incorporates first order
information. From a sequential, or synchronous, point of
view, second order methods would be more accurate.
Note that using Hessian information about the Dual
function would require knowledge about the effect of non
local variables on the Lagrangian dual. We do risk to
run into the problem of incorporating additional errors
into our calculation in an attempt to reduce the com-
putational effort. Finally, each local NLP was solved
using the Generalized Reduced Gradient Method. The

350 I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355

min
x1,x2

x2
2
!x

1
,

s.t. x
1
!x

2
"0,

0)x
1
, x

2
)1 G

x@
1
"arg min

x1

xN 2
2
!x

1
#j

1
(x

1
!xN

2
)

s.t. 0)x
1
)1

x@
2
"arg min

x2

x2
2
!xN

1
#j

2
(xN

1
!x

2
)

s.t. 0)x
1
)1 H j

1
"a

11
j
1
#a

12
j
2
#(x@

1
!xN

2
)

j
2
"a

21
j
1
#a

22
j
2
#(xN

1
!xN

2
),

above procedures were used while solving each one of the
following example problems.

Example 1 (revisited). From a compuational point of
view, Example 1 is quite trivial. However, it will be used
in order to illustrate some of the intrinsic properties and
characteristics of the method developed with special em-

phasis on distributed decision making problems in which
there is the need to achieve agreement under conflicting
partial objective functions which produce opposing re-
sults. Recall that the objectives of the two decision
makers are to minimize f (x)"x, for the first and
f (x)"!x2 for the second, and the agreement requires
that at the final decision both these numbers are equal.
Clearly, the centralized decision making problem is

min
x1,x2

x2
2
!x

1
,

s.t. x
1
!x

2
"0, (23)

0)x
1
, x

2
)1.

It should be clear that had we chosen to work in the
space of the primal variables, i.e. x

1
, x

2
, we would never

be able to reach agreement, unless each decision maker
considers the entire problem, because the effects of the
two optimal decisions point at opposing directions. If we
generalize this problem, it is obvious that this is a prob-
lem in which even if the two decision makers share the
identical information, agreement would never be reached
simply because their objective are different. One ap-
proach would be to constantly change the sub-problems
by introducing artificial constraints that would drive the
sub-problems to consensus, but it is easy to see that such
a method will fail. If, on the other hand, we view this
problem from the dual perspective, we realize that the
Lagrange functions has the form

x
1
#jx

1
!x2

2
!jx

2
. (24)

We observe that this function is separable, and thus the
task of maximizing the dual problem can be perceived as
a unique problem, i.e. both precessors are aiming to-
wards the same point which is the maximum of the dual
function. The decomposition is somehow ‘‘artificial’’ and
is achieved through the use of the Lagrange multiplier.
Therefore, from the dual point of view, both decision
makers are after the same objective, i.e. maximize the

dual function. Further, they do not have to actually solve
the dual problem, it suffices that they generate approxi-
mations of the dual variable by estimating an update
direction in the dual space. Once agreement has been
reached, then the separability of the dual problem is
‘‘exact’’ and the solution follows in an independent way.
The two-stage problem is defined as follows:

It can be seen that the centralized problem is broken into
two individual problems, each defined in its own domain.
Communication between the two problems is in the form
of locally generated estimates of the Lagrange multi-
pliers, as well as estimates of the local solutions, i.e.,
xN
1
, xN

2
. It is important therefore to realize that by com-

bining the ideas of Lagrangian duality with those of
asymptotic agreement, we are able to extend the prin-
ciples of distributed consensus even in problems where
the decision makers have different objectives. This is
a key property for general problems although so far the
focus has been solely in problems in which the decision
makers aim towards the same objective, i.e. minimize the
same function. It is also important to mention that the
partial sub-problems do not involve the complete solu-
tion of the dual problem, but simply the generation of
directions of change of the dual variables which produce
ascent with respect to the dual problem. The equations
defining the updates of the Lagrange multipliers through
the addition of the linear combination of the estimates
and the local updates are the results of the application of
the principles of agreement with computation.

The problem of consensus was thus moved from
the primal space, in which it may not be well defined
to the dual space, in which the problem was switched
from minimizing the local objectives, which can be con-
tradictory and thus generate oscillating sequences of
solution points, to maximizing the dual function,
which is a well defined problem because of its separable
structure. In practically all of the decision making
problems of interest, the partial objectives will be differ-
ent and thus consensus, even when sharing identical
information, is impossible. The combination of Lagran-
gian duality and agreement algorithms may offer an
alternative to these classes of distributed decision making
problems.

Example 2. The next simple example shows the effect of
certain time-dependent decision parameters on the final

I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355 351

Fig. 5. Effect of time—dependent parameters on the distributed decision making, L"x,)"y.

agreed optimal point. Consider the following nonconvex
problem:

min Ma
1
#b

1
x3#c

1
x#d

1
xN#Ma

2
#b

2
y2#c

2
y#d

2
yN

s.t. x#y"B

This is a simplification of the following competitive
environment. A certain market requires a certain quanti-
ty of both x and y, so that their sum must satisfy the
constraints. The ‘‘production’’ of x and y depends on
a fixed cost a, an operating cost bx2, a storage cost cx and
a transportation cost dx. The idea is to distribute the
production of x and y so that the overall cost is mini-
mized. It is assumed that each production site makes
local and independent decisions that re-adjusted so that,
eventually, optimality has been achieved while the re-
quirement constraint, x#y"B, has been satisfied.

As mentioned earlier, one of the main characteristics of
dynamic distributed decision making problems, is the
fact that local changes can occur in real time, and thus
the systems should be able to adapt their behavior in
order to respond to those changes. In the present in-
stance, the local changes are introduced via changes in
the set of model parameters. The initial set of parameters
of the model, scenario 1 of Table 1, undergoes two
changes, first to scenario 2 and then to scenario 3. The
first change is introduced at step 100 and the second at
step 200. The results are depicted in Fig. 5, where the
status of each decision makes is plotted as it is being
recorded locally. Note that after about 50 computational
steps, ‘‘steady state’’ values of the decision variables begin
to be reached. As a results of the parameters changes
introduced at step 100, a sharp disturbance is observed.

Table 1
Parameter values for 3 scenarios

Scenario a
1

b
1

c
1

d
1

a
2

b
2

c
2

d
2

1 1 1 1 1 1 2 1 1
2 1 0.1 1 1 1 1 2 1
3 1 0.1 2 1 1 2 1 1

These disturbances are absorbed in a smooth way as
more estimates become available through a process of
information exchange, and new equilibrium points are
identified. At step 200, the effects of the second set of
parameter changes can be seen again and a new ‘‘steady
state’’ is reached after some 50 steps.

It should be pointed out, that this system was
simulated on two nodes of an nCºBE/2 Hypercube
machine. Each node was ‘‘simulating’’ one decision
center. The simulation was asynchronous and thus the
systems would reach the threshold of 100 computing
steps at different time instances.

Example 3. This example illustrates a situation in which
it is necessary to achieve local, as well as, global consen-
sus. It assumed that independent decision makers are
lumped into groups. Each decision maker has to identify
an optimal policy and at the same time reach consensus
with his teammates within the group. Further, global
consensus has to be reached, in the sense that some
decisions do have global effects, i.e. influence decision
makers of other groups. Such problems arise in situations
where a master planner has set some global goals that

352 I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355

have to be met (inter-group decisions), and within each
group local decision are made to drive the systems to
optimality (intra-group decisions). Obviously, local
interactions produce global changes and vice versa.
Local consensus might be the result of sharing certain
resources or items. It might also be the need to produce
a certain product at a given rate, or it might imply the
need to produce different intermediates by the same due
date. With respect to the global interactions, consensus
may imply the need to maintain an optimal flow of
a certain resource or final product, or might express
the need to maintain a uniform rate of production.
Clearly, depending on the particular instance, and pro-
vided that the interactions can be modeled as described
earlier, the connecting constraints and/or variables have
different meanings. The key idea is the fact that such
optimal decision making problems are distributed by
nature and are inherently asynchronous, in the sense that
all decisions once made are implemented without delay.

Each local decision is assumed to be optimal point of
the following optimization problem:

min A
i
x2
i,0

#B
i
x
i,1

#C
i
x
i,2

#(x
i,3

4
i`1

)2#x
i,4

#x
i,5

#4x
i,6

#4x
i,7

#4x
i,8

!x
i,9

!x
i,10

s.t. !C
i
x
i,0

#x2
i,1

#x2
i,2

#x2
i,3

!x
i,4

#x2
i,5

#x2
i,6

#x2
i,7

#x2
i,8

#x2
i,9

)0,

!A
i
x
i,0

#2x2
i,1

!x
i,3

#3x2
i,3

#x2
i,4

!x
i,5

#x
i,6

#x
i,8

#x2
i,8

#x
i,10

)0,

A
i
3M2, 6N, B

i
3M!25,!10N, C

i
3M10, 17N.

The formulation gives the problem description
for each sub-system. Different sub-systems are described
by the same functional form using different, randomly
chosen, values for the parameters A, B and C. A total
of 16 sub-problems are thus created. The interactions
between these 16 sub-problems can be represented
via explicit equivalence constraints. One such set is as
follows:

S
1
"

x
0,0

!x
6,0

x
6,1

!x
2,1

x
2,5

!x
12,5

"0, S
2
"

x
12,0

!x
7,0

x
7,1

!x
5,1

x
5,9

!x
9,9

"0,

S
3
"

x
9,0

!x
4,0

x
4,1

!x
5,1

x
8,9

!x
15,9

x
15,0

!x
10,0

"0, S
4
"

x
10,1

!x
11,1

x
11,5

!x
3,5

x
3,0

!x
13,0

x
13,1

!x
14,1

x
14,5

!x
1
, 5

"0.

Fig. 6. Intersystem agreement.

The formulation is also depicted graphically in Fig. 6.
The variables x are defined as x

subsystem ,variable
. In this

particular instance, we have four major systems. In Sys-
tem 1 belong sub-systems 0, 2, 6 and 12. System 2 is
composed of 5, 7 and 9. System 3 contains 4, 8, 10 and 15.
Finally, System 4 includes 1, 3, 11, 13, 14. The inter-
connections require that sub-systems (7, 12), (4, 9) have to
agree on the value of resource 0, and that sub-systems
(10, 11) agree on the value of resource 1. The remaining of
the constraints indicate local agreement requirements.
Therefore, System 1 is composed of 40 variables for
which 3 pairs must agree, System 2 has 30 variables, of
which 3 pairs must agree, System 3 has 40 variables and
4 pairs that must agree and finally System 4 has 50
variables and 5 pairs which must agree.

The system was simulated on 16 nodes of an nCºBE/2
machine. Each node, represents a decision maker con-
tinuously generating approximations by successive com-
putation and communication. Fig. 7 shows a sample of
convergence for two of the agreement constraints. Sim-
ilar patterns are observed for all the connecting variables
and thus only two typical examples are being presented.
It is important to mention the fact that in operational-
type problems, a decision sufficiently close to the opti-
mum is very often desirable since accurate solutions,
within e, are very costly. Moreover, truly optimal deci-
sions are almost never implemented since the operational
conditions will very quickly change, thus requiring a new
solution to the problem.

5. Concluding discussion

Distributed decision-making schemes, like the one just
presented, make it possible to propagate local changes in

I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355 353

Fig. 7. Convergence of connecting variables.

order to cause global effects without the explicit descrip-
tion of such deviations. Furthermore, although the over-
all decision-making problem can be described by a single
objective there is no need to do so. The only information
required by the constituent components is the knowledge
regarding the consensus, as far as the complicating vari-
ables are concerned. In our case each component minim-
izes a local objective while at the same time trying to
maximize the common Lagrangian function by generat-
ing independent approximations of an ascent direction,
in the space of the dual (Lagrange) variables. This direc-
tion is subsequently followed by each process (decision
maker) in order to generate a new approximation of
the common variable. Once again, we have to emphasize
the fact that the consensus problem has been moved from
the space of primal variables to the space of dual vari-
ables. The agreement is defined on the dual space, since
this is the only way that we can guarantee reaching
agreement. Notice that if we remain in the primal space,
each decision maker would have to minimize a different
objective. In this case, even in the presence of identical
information, agreement is not possible (Tsitsiklis et al.,
1986). By introducing the idea of the relaxed problems,
and solving the resulting maximization problem, we were
able to propose solutions for a certain class of distributed
agreement problems, in which the decision makers utilize
different objective functions.

We proposed the use of the ideas and principles of
asynchronous computing as a modeling tool and not
simply as a solution methodology. We identified a family
of decision-making problems that can be inherently char-
acterized as distributed and asynchronous. The systems

are distributed since they essentially relate to decision-
making problems where the optimal decision is the
cooperative result of a set of independent decision
makers, each one being characterized by its own, local,
decision/utility function and its own decision space. The
cooperation in those systems stems from the fact that
parts of the decision spaces are overlapping and thus
agreement among the different decision makers has to be
achieved within the boundaries of the overlapped re-
gions. The asynchrony of operation is due to the fact that
these systems are essentially dynamic entities whose opti-
mal policy has to be implemented continuously as soon
as it has been identified.

Although the principles and ideas of asynchronous
computing are almost 25 years old, they are still under-
developed mainly due to their complexity. Thus, asyn-
chronous algorithms are still in the development stage
and this is the reason why the model of asynchronous
computing has not yet enjoyed a widespread acceptance.
In this work, we were able to not only make use of an
interesting model, but also to present a novel way of
addressing distributed decision making problems. The
approach can undergo multidimensional extensions to
any type of searching or learning algorithm that is in-
herently distributed and asynchronous. Furthermore, the
simple reformulation that we proposed which makes use
of ‘‘elementary’’ knowledge of Lagrangian duality, al-
lowed us to address in a truly distributed and asyn-
chronous way, distributed agreement problems in which
the decision makers use different and often times conflict-
ing objectives. To the best of our knowledge this is the
first attempt to address this issue. Nevertheless, a lot of

354 I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355

work remains to be accomplished. Some important ques-
tions that need to be addressed are:
1. We need to examine more elaborate updating schemes

with respect to solving the dual problem to allow for
the treatment of more general and complex connect-
ing interactions. First, the restriction on the form of
the complicating constraints has to be lifted and more
sophisticated methods for updating the multipliers
have to be developed. However, further research is
required to effectively adapt similar methods to the
asynchronous and distributed computational mode.

2. We need to address the problem of hard constraints.
In Example 2, for instance, although the disturbances
were very nicely absorbed, for a short period of time
the connecting constraint was violated.

3. It is necessary to address the problem of existence of
non-convexities in the model. The interest is not so
much focused on identifying the globally optimum
response as opposed to a locally optimum one, as it
is to understand the interesting and rich behavior
that nonconvexities induce in dynamically iterating
systems in the presence of time delays. (Androulakis
and Reklaitis, 1995).

Acknowledgements

The authors wish to thank Prof. E.N. Houstis for pro-
viding unlimited access to the nCºBE/2 Parallel machine
of the Computer Science Dept. at Purdue University.

References

Androulakis, I. P. (1993). Asynchronous distributed decision making.
Ph.D. thesis, Purdue University.

Androulakis, I. P., & Reklaitis, G. V. (1995). Analysis of the spurious
behavior of asynchronous relaxation algorithms. Comput. Chem.
Engng, 19, 827—845.

Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear
programming theory and applications. New York: Wiley.

Benders, J. F. (1962). Partitioning procedures for solving mixed variables
programming problems. Numerische Mathematik, 4, 238—252.

Bertsekas, D. P. (1976). Multipler methods: a survey. Automatica, 12,
133—145.

Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and distributed
computation: Numerical methods. Englewood Cliffs, NJ: Prentice-
Hall.

Billard, E. A., & Pasquale, J. C. (1995). Adaptive coordination in
distributed systems with delayed communication. IEEE ¹rans.
Systems Man Cybernet. 25, 546—554.

Bond, A. H., (1990). Distributed decision making in organizations.
IEEE Int. Conf. on Systems, Man, and Cybernetics (pp. 869—901).

Bryant, G. B. (1993). Developments in supply management control
systems. FOCAPO Conf. Proc.

Carlosson, C. D., Ehrenberg, P., Eklund, P., Fedrizzi, M., Gustafson, P.,
Lindholm, P., Markuryeeva, G., Riissanen, T., & Ventre, A. G. S.
(1992). Consensus in distributed soft environments. Eur. J. Oper.
Res., 25, 165—185.

Ceccato, H. A., & Huberman, B. A. (1989). Persistance of nonoptimal
strategies. Proc. Natl. Acad. Sci. ºSA, 86, 3443—3446.

Cowdrick, R. M. (1991). Distributed CIM — Planning for the future.
Comput. Ind. Engng, 21, 1—4.

Dantzig, G. B., & Wolfe, P. (1961). The decomposition algorithm for
linear programming. Egronometrika, 29, 767—778.

Everett, H. (1966). Generalized Lagrange multiplier methods for solving
problems of optimum allocation of resources. Oper. Res. 11,
399—417.

Geoffrion, A. M. (1972). Generalized benders decomposition. J. Optimi.
¹heory Appl., 10, 237—260.

Hasebe, S., Kitakima, T., Shiren, T., Kurakami, Y., & Hashimoto,
(1994). J. Autonomous decentralized scheduling system for single
production line processes. AIChE National Meeting.

Lasdon, L. S., & Schoeffler, J. D. (1996). Decentralized plant control.
ISA ¹rans., 5, 178—183.

Malone, T. W. (1987).l Modeling coordination in organizations and
markets. Manage. Sci. 33, 1317—1332.

Minoux, M. (1986). Mathematical programming theory and applications.
New York: Wiley.

Plouffe, W. (1987). Databases in a distributed plant environment. In G.
V. Reklaitis, & H. D. Springs (Eds.), Computer aided process opera-
tions.

Stephanopoulos, G., & Westerberg, A. W. (1975). The use of Hestenes’
method of multipliers to resolve dual gaps in engineering systems
optimization. J. Optimization ¹heory Appl. 15, 285—309.

Towill, D. FR., (1993). Supply chain dynamics — the change engineer-
ing challenge of the mid 1990s. Proc. Institute Mech. Engineers,
106.

Tsitsiklis, J. N., Bertsekas, D. P., & Athans, M. (1986). Distributed
asynchronous deterministic and stochastic gradient optimization
algorithms. IEEE ¹rans. Automat. Control, AC-31, 803—812.

Wilf, H. S. Mathematics for the physical sciences. New York: Dover,
1978.

Wilkinson, S. J., Shah, N., Pantelides, C. (1994). Scheduling of multisite
flexible production systems. A.I.Ch.E. National Meeting.

Zenios, A. S. (1994). Parallel numerical optimization: Current status
and annotated bibliography. ORSA J. Comput. 1, 20—42.

I.P. Androulakis, G.V. Reklaitis / Computers and Chemical Engineering 23 (1999) 341—355 355

