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A robot and its interaction with the task environment can be
viewed as a physical process t0 be controlled. In this for-
mulation, the robot program can be viewed as a task level
controller. The program, which is synthesized from sets of pa-
rameterized motion control primitives, embeds control strate-
gies to implement particular tasks. The automatic development
of robot program code using CAD techniques or the manual
development by experienced programmers is a difficult pro-
cess which is often complicated by uncertain, incomplete, and
varying models of the task environment. In this paper we ad-
dress the strategy and parameter selection problem by describ-
ing an approach to self-tuning of robot program parameters.
In this approach, the robot program incorporates motion con-
trol primitives with adjustable parameters and an associated
cost function. A hybrid gradient-based and direct search algo-
rithm uses experimentally measured performance data to adjust
the parameters to seck optimal performance and track system
variations. Alternative control strategies which have first been
optimized with the same cost function can then be assessed in
terms of their optimized behavior.

1 Introduction

The development of robot program code requires the transfor-
mation of abstract robotic task descriptions into desired robot
motions. This transformation is a difficult problem which is
often complicated by uncertain, incomplete and varying mod-
els of the task environment including the robot, manipulated
objects, and sensors. The transformation process includes the
selection of a control strategy to implement each task. In con-
ventional programming environments the strategy is encoded
in the Tobot program as logically connected sets of motion
control primitives. Each primitive has an associated parameter
list. For example, a representative pr_i.mitivc MOVES X, V)
tells the robot to move to position X with velocity V along
a straight line trajectory. Primitives can also incorporate sen-
sory feedback to accommodate uncertain and changing envi-
ronments. Force sensing is often used in robotic assembly
applications to accommodate contact motion constraints [12].
For example, a simple force monitored *“guarded motion” prim-
itive, MOVES (%, V, Fiuyes) terminates the motion if force
thresholds are exceeded. Primitives which explicitly specify
dynamic sensory feedback strategies such as active stiffness
control are also feasible [3].

While simple strategies may consist of a single program con-
trol command or motion primitive, more complex strategies are
formed by logically sequencing multiple primitive commands.
For example, consider the peg-in-hole mating task. If the peg
and the hole are not chamfered and the tolerance between them
is tight, then one possible multi-primitive strategy is as follows.
First, tilt the peg slightly to increase the range of relative posi-

‘ions where initial entry in the hole is guaranteed [5]. Second,

move the peg along the axis of the hole with a force monitored
motion. The monitor tests lateral and axial forces. If lateral
forces are exceeded, realign the peg in the hole using a force
feedback primitive to minimize lateral forces, then go to the
second step. If axial forces are exceeded then terminate the
motion. In contrast, if the peg and hole are chamfered, and
the end-effector has sufficient passive compliance (e.g., from
an RCC wrist) then simpler single move primitive strategies
may be appropriate. A current trend in product design for
automated robotic assembly is to incorporate parts geometries
which can be reliably mated with such simple strategies, thus
simplifying the programming requirements. *

Automatic synthesis of motion control strategies by CAD sys-
tems, and selection of motion primitive parameters has proven
to be a very difficult problem due to complex and incomplete
models of the system [2,6]. In practice, robot programming has
been left to experienced programmers who typically rely on in-
tuition and trial-and-error experimentation to select a strategy
and manually tune the program parameters. A good program-
mer will have abstract notions of optimization in mind as basis
for designing the program. For example, in assembly tasks,
the programmer seeks a strategy and a set of parameter values
which accomplishes the task quickly, while attaining nominal
mating forces, and minimizing the probability of mating fail-
ures. Humans, however, are not very efficient at searching
parameter and symbolic spaces for optimal solutions. Manual
searching is tedious and typically the resulting performance
could be improved. The process of parameter tuning by a hu-
man programmer, or automated parameter selection by a CAD
system, is further complicated by the fact that real robotic
systems drift with time due to variations in the robot and en-
vironment, and thus require periodic parameter readjustment.

In this paper we address one aspect of the strategy and pa-
rameter selection problem by describing an approach to self-
tuning of robot program parameters. In this approach, the
robot program incorporates motion control primitives with ad-
Jjustable bounded value parameters and an associated cos? func-
tion. Search algorithms, which use experimental performance
measure evaluation, and which do not rely on explicit robot
and environment models, adjust the parameters to seek opti-
mal performance and to track system variations. Alternative
control strategies, which have first been optimized with the
same cost function, can then be assessed in terms of their op-
timized behavior. In this paper, we discuss this approach for
force monitored primitives applied to parts mating tasks.

2 Self-Tuning Formulation

While the self-tuning approach has been widely studied at the
servo level to optimize control system tracking performance
[101, only recently have researchers explored self-tuning ap-
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Figure 1: Self-Tuning Approach

proaches at the program or strategy level. These approaches,
including the system described in this paper, seek to optimize
primitive parameters at the program level. This formulation
may facilitate both manual and CAD programming techniques
which currently use such primitives as their fundamental build-
ing blocks. Simons et al. [9] demonstrate the application of
stochastic automata to tune the positioning parameters of a
quasi-static force feedback strategy. While the formulation
of their approach is similar to ours, stochastic automata are
best suited to parameter spaces which have a small number
of discrete values. Whitney [11] applies optimal Kalman filter
theory to adjust the position parameter values for fine-motion
control, and suggests varying the velocity as a function of
confidence in the position estimates. This approach however
requires explicit position estimation and does not generalize
this tuning approach to other parameter values.

In the self-tuning approach described here and illustrated in
figure 1 we view the robot/task environment as a physical pro-
cess to be controlled. The underlying robot dynamics may be
described by: .

X = h(x, mi) ¢y
where X is the state variable vector and # is the vector of

kinematic model parameters. Closed-loop contro! is achieved
by a set of position feedback control parameters, ¢:

X=gE M0 ()

which responds to some preplanned reference trajectory. Such
a system description is sufficient for simple robot positioning
tasks. However, for many tasks which involve interaction with
the environment, the closed-loop dynamics of the robot/task
environment involves other parameters:

=G #¢,6,,6:,5, 7, 5) 3)
where
6, = geometric constraint parameters,
6, = force constraint parameters,
& = sensor sampling parameters,
¥ = computational delay parameters,
P = -level control parameters,

and the reference inputs, R‘,,f, are expressed as position and
force trajectories. Execution of the robot program requires
specification of 7, and resulting performance of the system
depends on 5.

Design of the control strategy for these cases is difficult due
to the uncertainty of the task parameters (6}, 65, &, 7), and the
complexity in accurately modeling them. This uncertainty oc-
curs as trial-to-trial variations and slowly varying changes with
time. As a result, performance of the system for a given task
may vary for a given implementation, between trials, as a func-
tion of time. For a given task-specific performance measure

J& P @
we would like to achieve
msin J& ) )

for best average performance and tracking of performance over
time. For example, for a parts mating task the cost function
may have the form :

(k;AT+ K,y — B+

- 1
J(X;i"%—E[m

K3 1max(Fpoat — Fro), 0)]2)] ©

where AT is task cycle time, f’,,f, f,,, and F,..,, are vectors
of the desired or reference steady-state forces, the measured
steady-state forces, and the peak overshoot forces respectively,
P, is the probability of a mating failure, and &;, K3, K3 are con-
stant scalars or vectors which weight the relative importance
of each performance component. This process control descrip-
tion of the system suggests the use of optimization techniques
to tune the program parameters. In this paper we will describe
an implementation of a system which combines gradient-based
and direct search techniques to accomplish this. While the
robot program code used in our experiments have been man-
ually derived, these optimization techniques could be used to
tune the parameter sets of CAD generated code.

3 Search Algorithms

A design goal for a self-tuning system is to achieve stable



response with fast convergence properties. The attainment
of these goals is especially difficult if the performance space
is characterized by multi-modal behavior. As will be shown
in the next section, the performance space of monitor-based
control primitives is often characterized by a complex multi-
modal function which causes simple gradient based optimiza-
tion methods to fail. In our approach we use a hybrid gradient-
based and direct search algorithm to achieve stable response.
The tuner was also designed to converge in a reasonable num-
ber of iterations. As suggested above, the performance mea-
sure is evaluated experimentally by the robot at various points
in parameter space, which can be a time consuming process.
Thus, search techniques which do not require a large num-
ber of performance measure evaluations are preferred for this
application.

Driven by the above requirements, a two-stage self-tuning pro-
cess has been designed. The goal of the first stage is to obtain
a rough estimate of the optimal parameter set using a relatively
small number of experimental trials. This coarse resolution ad-
justment is followed by a second stage fine resolution tuning
to locate a true global minimum.

In the first stage, least squares regression analysis is used to fit
experimentally collected performance data to a simple analytic
model of the performance surface. This model, which is de-
scribed in the next section, does not incorporate the complex
multi-modal component of the actual surface, but only the un-
derlying “low-frequency” trends. The resolution of adjacent
parameter test values is set to minimize the total number of
experiments required, while maintaining a good least-squares
fit to the low frequency component of the actual performance
space. This coarse resolution has been selected by experimen-
tally evaluating the improvement in mean-squared error versus
resolution over a large number of optimization trials. The
minimum of the resulting analytic model is then found using a
“quasi-Newton” optimization algorithm known as Successive
Quadratic Programming (SQP) [1]. This algorithm was cho-
sen because it deals well with simple constraints on the inde-
pendent variables which arise from the constrained parameter
space.

The second stage of the self-tuner uses the minimum found
in the first stage as the starting point for a “fine-tuning” high
resolution direct search. Various approaches have been evalu-
ated, each of which uses a small window in parameter space
centered around the current minimum estimate. In this re-
gion, we have found that the amplitude of the multi-modal
periodic component is often relatively small. Unfortunately,
efficient approaches such as Hooke-Geeves [4] pattern search
and gradient-based algorithms resulted in unpredictable and
often unstable behavior. Such behavior is inevitable when a
complex multi-modality is not explicitly accounted for in the
model, even in a region where its amplitude is relatively small.
Thus, to keep our approach simple we used a less efficient non-
patterned direct search which samples all the points within the
current window. The direct search selects the smallest perfor-
mance value within the window and sets this point to the new
minimum. This process of defining a window about the cur-
rent minimum, collecting a set of experimental performance
data within the window, and selecting the best operating point,
continues until the performance change from one iteration to
the next is below a specified threshold. Examples of this self-
tuning method are presented in the following sections.

Once the self-tuner has found an optimal operating point for a
given task, the robot can be put into “operational” mode. In
this mode, shifts is the optimal operating point can be caused
by tool wear, part tolerance changes, and drift within the robot.

Therefore, it is desirable to be able to track small performance
changes while the robot is operating. While we have not as
yet experimentally evaluated a tracker, fine-tuning techniques
could be applied over a relatively small window if it can be
assumed that these variations are slowly time-varying.

In order to study the self-tuning approach on actual robot tasks,
an experimental test-bed has been set up. It consists of an IBM
7565 robot with AML programming/control environment, a
robot gripper with adjustable compliance along the tool Z axis,
and a force sensor capable of measuring forces along the tool Z
axis. Additional processors were interfaced to the AML robot
system including an IBM-PC and a SUN-2 workstation. The
IBM-PC was used to implement several complex monitoring
strategies which were not available in AML, while the search
algorithms were implemented on the SUN. Additional hard-
ware was also built to perform peak force detection which was

also not available in AML.

4 Force Monitor Tasks

The application of a force monitor primitive is illustrated by
the task of affixing two parts, one of which has an adhesive
surface. More specifically, the task is to bring the parts into
contact as quickly as possible, while achieving a final steady-
state force of F,,. To understand this task, the robot tool-tip
was programmed to contact a rigid surface using the force
monitored motion primitive command, MOVE (X, V, Fuyess).
This pﬁmiti\_"c instructs the robot joint level controllers to move
to position X with velocity V, but stop if the measured force
in the direction of motion exceeds Fyves. The actual force
achieved is a function of V, Fu,..s, and the sensor monitor
sampling period. For this task, the performance measure is:

J = kAT + ky(Fryy — Fo)? ]

Note that J only contains cycle-time and steady-state force
error components, since overshoot was not present and “mating
failures” are not relevant. Expected values were not used in
equation (7) because we observed that the performance at any
point was highly repeatable for this simple experiment.

The goal of the self-tuning algorithm is to vary V and Fy,.
to minimize J. A plot of experimentally measured J vs. V and
Fuyen is shown in figure 2. For this plot, the coefficients k; and
k2 have been adjusted so that the maximum value of the cycle
time component is approximately the same as the maximum
value of the steady-state force error component. While this par-
ticular coefficient setting is arbitrary, in general, specified limits
to cycle time and forces should be considered. For example, if
the cycle time at the optimal operating point is larger than con-
straints specified by assembly queuing requirements, then the
cycle time coefficient should be increased. Conversely, if the
parts being assembled are extremely fragile, then more weight
should be assigned to the force components.

The multi-modal surface characteristic is clearly seen in fig-
ure 2. This characteristic results from the finite sampling inter-
val (20 msec) at which the monitor trip conditions are tested.
Since a trip condition may be satisfied at any time within the
interval, there can be a delay between the time at which the
trip condition is physically satisfied, and the time at which the
monitor system acknowledges the condition. This delay causes
a complex, non-linear periodic function in performance space.
We have developed an analytic model of this monitoring task
to verify our experimentally measured results. This model is
beyond the scope of this paper, however details can be found
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«Figure 2: Performance Map for the Adhesive Task

in [8]. This multi-modal behavior is typical of robots using
sensory monitored motions and is thus an important case study.
For example, we have observed similar multi-modal behavior
on a PUMA 560 robot running the VAL-II control system.

To optimize the force monitoring task, the self-tuning algo-
rithms of Section 3 are applied. The coarse resolution tuner
fits the experimentally collected performance data shown in
figure 2 to the function S given by:

S= E' [11 V, Flllnsh, WWBh,
sz Fzzhn.shv I/Va Fllvuh/V]T (8)

The vector of coefficients, 3, are estimated using the method
of least-squares to minimize the error function

E=Y UG) - Sz ©)
=0

where pg. , are the parameter values, V and Fy,.., at each of
the collected data points, and J is the actual measured per-
formance. The resulting surface model is shown in figure 3.
The minimum of the surface found by the SQP Algorithm is
marked in the figure.

The form of the surface model, S, is based on an understand-
ing of the underlying physical processes of the task [8]. No
explicit models of the robot were used to derive it. The first
six terms of this surface form a quadratic in V and F ., and
are used to model the steady state force error component of the
surface. The remaining two terms are inversely dependent on
V, and were added specifically to model the cycle time compo-
nent of the performance measure. It should be noted that the
algorithms function properly without the final two terms, how-
ever an improvement in overall convergence time is realized
if these terms are included.

The operating point found during the coarse resolution tuning
stage is used as the starting point for the direct search fine-
tuner. The window size used in the direct search was set so that
at least two full cycles of the periodic variation are included
within a window at all points in the search space. This ensures
that the search does not prematurely terminate in a valley of
the periodic variation. The sample spacing used in the direct
search was set based upon the desired resolution of the search,
and upon several performance sensitivity experiments.
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Figure 3: Surface Model for the Adhesive Task
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Figure 4: Performance at the Completion of Self-Tuning Cy-
cles

Figure 4 shows the performance measure value at the end of
each of the self-tuning cycles. The leftmost data point corre-
sponds to the gutput of the coarse tuner, while the remaining
data points correspond to the output of the fine-tuner. As seen
in the figure, the minimum is found with only one iteration
of the fine-tuner. Within the resolution of the fine tuner, this
minimum is the “true” global minimum as verified by an in-
dependent high resolution direct search of the entire parameter
space. The behavior of this self-tuner has been studied over
a variety of performance measurement gains, reference forces
and tool compliances. Typically, the minimum is found within
one or two iterations of the fine-tuner, which suggests the ap-
propriateness of the simple model fit used in the coarse tuner.

In this section we demonstrated the self-tuning approach for
a simple yet practical force monitoring strategy. Next, we
demonstrate how this approach can be applied to facilitate se-
lection of the strategy itself.




5 A Snap-Fit Task Example

We are currently studying the self-tuning approach on a vari-
ety of snap-fit tasks. Reliable snap-fit operations are a major
requirement for mating of parts which have been designed for
automated assembly. There are a number of feasible strategies
to accomplish such operations. In our approach, the strategy
selection process is based on comparing the performance of
strategies which have first been optimized with the same cost
Junction. The optimized performance measure provides a uni-
fying metric by which alternative strategies can be compared.
We are also exploring if there is a single generic strategy,
amongst the alternative strategies, which is optimum over a
broad range of “designed for assembly” snap-fit operations.
The existence of a generic strategy would facilitate the de-
sign of off-line CAD programming systems. The design for
assembly constraint is specified because it is well known that
for more general assembly and manipulation tasks the concept
of a generic strategy is not feasible. Even small variations in
parts geometry will change the appropriate strategy [7]. Our
resecarch demonstrates, however, that even for fixed geomet-
ric constraints, the optimum strategy is a function of the per-
formance requirements. This suggests that generic strategies
would be difficult to specify, even for designed for assembly
operations.

The “snap-ball” task illustrated in figure 5, provides a good
model of a generic snap-fit task, and was used a case study in
our work. The task is to insert the ball into the socket as fast
as possible, such that the resulting final force is F,,, while
ensuring that overshoot forces remain small. Figure 6 shows
a typical plot of insertion force vs. time for the snap-ball task.
As seen in the plot, there is a sharp decrease in insertion force
as the ball enters the socket. This negative change in force is
one characteristic of snap-fit operations.
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Figure 5: Snap Ball Task

To illustrate the strategy selection problem, two alternative
guarded motion strategies are described. The first strategy
uses the aforementioned force monitor motion primitive,
MOVE (X, V, Fiyess), with adjustable parameters V and Fouess.
For this strategy, the monitor trips in the region before the max-
imum pre-insertion force (MPIF) is reached and relies on the
robot’s momentum to complete the insertion. The second strat-
egy uses the IBM-PC to perform a monitor test not available in
AML. This strategy uses the primitive, MOVE (X, V,df/dturess ),
with adjustable parameters V and df /dtu,esn , Where df/ dty, e
is a threshold on the rate of change of force. For this strategy,
we limit df/dty,., to negative values so that the monitor trips
after the MPIF, and insertion is assured.
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Figure 6: Insertion Force vs. Time for Snap-Ball Task

Self-tuning of the snap-ball task must account both for mating
failures and for the significant stochastic variation which is
observed for this task. However, since only a “rough” estimate
of the minimum is desired for the coarse tuner, the stochastic
variation is not taken into account in this stage. Fdr the coarse
tuner, J is evaluated once at each point in parameter space

according to:
J(p) = i AT + ky(Frer — Fop)?

+i[M((Fpeat ~ Frer), 0 (10)

Mating failures, which occur when the ball does not enter
the socket, are accounted for by incorporating success/failure
constraint boundaries. The least-squares fit is performed only
over the successful data points in order to generate the surface
model, The resulting surface is optimized by an augmented
SQP algorithm [8], which finds minima within the success
region or on a region boundary. The fine tuner then uses
equation (6) to calculate the expected performance by aver-
aging J over successive trials, where P, is estimated as the
ratio of failures to the total number of trials.

In order to study the effects of performance measurement
weighting on the selected strategy, the snap-ball task was tuned
with two different performance measures. The first perfor-
mance measure had a large value of F,,r, and the performance
components were weighted such that their maximum values
were equal. This measure would be appropriate when parts can
tolerate large mating forces and cycle time is important. For
this case, optimization of the absolute force strategy yielded
the best performance. This is not surprising primarily because
motion is terminated earlier than for the rate of change strategy.
Therefore the optimum velocity for the absolute force strategy
can be larger.

For the next case, the performance measure was assigned a
smaller value of F,, a coefficient of zero on cycle time, and
equally weighted overshoot and steady-state components. This
performance measure would be appropriate for mating fragile
parts. For either strategy to attain low steady-state and over-
shoot forces, the parameters must be set such that the robot
speed is slow as it goes through the MPIF point. For this
performance measure, the rate of change strategy exhibited
superior performance primarily because mating successes are
guaranteed even at low speeds. However, for the absolute
force strategy the robot’s lower momentum may be insuffi-
cient to overcome friction and complete the insertion. For this
strategy, the stochastic nature of the system made it difficult to



find a parameter set for which consistently successful insertions
occur at lower speeds. Thus, the P, component dominates and
degrades the performance of the absolute force strategy.

Other strategies may exist which are optimal for both per-
formance measures. However, this simple example suggests
that robust strategies which are optimal over a broad range of
tasks and performance requirements may be difficult to find.
While, careful analysis of these requirements can narrow the
range of potential strategics, on-line evaluation of alternative
approaches may ultimately be required to select the best one.

6 Conclusion

The self-tuning formulation provides a useful method for au-
tomatic adjustment of motion primitive parameters in robot
programs. Self-tuning at the program level is appropriate for
both manual and automatic programming techniques which use
these primitives as their fundamental building blocks. How-
ever, even simple monitor based strategies are difficult to op-
timize due to the complex multi-modal behavior which they
exhibit. Dynamic control strategies which can accommodate
force constraints, such as impedance control [3], may not ex-
hibit this multi-modal behavior. Such control schemes are
worth exploring since smoother performance spaces could be
optimized using more efficient search techniques.

We also show that optimization of alternative strategies using
the same cost function provides a basis for strategy selection.
While it is well known that variations in parts geometry change
the preferred strategy [7], we have demonstrated that variations
in desired performance lead to changes in the optimal strategy
as well. This fact will complicate the design of off-line CAD
programming systems even for parts which have been designed
for automated assembly. Rather than rely on a simple menu of
generic strategies, the CAD systems will require more complex
representations of tasks and desired performance specifications.

Further work needs to be done in several areas. A tracking
system based on the self-tuning approach needs to be imple-
mented and evaluated. Alternative control strategies, particu-
larly impedance control, need to be evaluated to determine if
smoother performance surfaces exist for which more efficient
search techniques can be applied. The self-tuning approach
should be evaluated on other basic design for assembly tasks
such as “twist”, “push”, “screw”, etc. to determine the feasi-
bility of extending this approach.
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