
© Oxford University Press 2005 1

Original Paper 

A Systematic Framework for the Synthesis and Analysis of Regulatory 
Networks
P. Foteinou1, E. Yang1, G.K. Saharidis2, M.G. Ierapetritou2  and I.P. Androulakis1,2,*

1Department of Biomedical Engineering, Rutgers University, NJ 08854 
2Department of Chemical and Biochemical Engineering, Rutgers University, NJ 08854 
*Corresponding Author 

ABSTRACT 
Motivation: The reverse engineering of regulatory networks is 
emerging as a viable method for deciphering the transcriptional 
regulation programs that underlie gene expression. In this paper we 
propose an optimization model that combines prior biological infor-
mation and expression data to identify multiple regulatory structures 
which can be subsequently analyzed in order to identify robust tran-
scription factor activity profiles, as well as alternative regulatory 
networks that could be used for developing and testing relevant 
hypotheses. 

1 INTRODUCTION  
Significant efforts have been made experimentally and computa-

tionally, to identify transcription factors (TF), their target genes 
and the interaction mechanism that control (regulate) gene expres-
sion (Iyer et al. 2001; van Steensel et al. 2003). However the pro-
duction of a TF is a necessary but not sufficient condition for tran-
scription initiation and regulation. Therefore, regulator transcrip-
tion levels are generally not appropriate measures of transcription 
factor activity (TFA). Recently, methods combining TF-gene con-
nectivity data and gene expression measurements have emerged in 
order to quantify these regulatory interactions (Alter and Golub 
2004; Boulesteix and Strimmer 2005; Bussemaker et al. 2001; Gao 
et al. 2004; Kao et al. 2005; Kato et al. 2004; Sun et al. 2006; Tran 
et al. 2005; Yeung et al. 2002). The main goal of this reverse engi-
neering is to identify the activation program of transcription mod-
ules under particular conditions (W. Wang et al. 2002) so as to 
hypothesize how activation/deactivation of gene expression can be 
induced/suppressed (Ng et al. 2006).  Aside from the development 
of descriptive models that correlate TFA and expression of target 
genes, a critical question becomes how to identify those TFs that 
significantly contribute to regulation and should be modulated. 
Along those lines (Gao et al. 2004) speculate that the mRNA pro-
file of the target gene should be similar to the reconstructed TFA 
for the regulating proteins, (Sun et al. 2006) claim that accurate 
binding information should lead to robust TFA reconstructions 
whereas (K. C. Chen et al. 2005) develop a greedy-based selection 
of critical regulators.

In the present study we explore an optimization-based model 
that identifies optimal reconstruction and architectures in a rigor-
ous manner. We propose systematic construction of alternative 
regulatory architectures and propose a consistency metric for as-
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sessing the robustness and specific transcription factors. We fur-
ther evaluate the biological implications of the multiple alternative 
structures in their biological context and demonstrate how a sys-
tematic framework can define the basis for a consistent hypothesis 
generation mechanism related to putative regulatory interactions. 
Another key aspect of our model is that we can take known direc-
tionality in regulation of a transcription factor into account. Com-
plementary to this we can also infer the role for those regulators 
that their activity on certain promoter regions is unknown – it can 
be either activation or repression (unknown). Identifying robust 
transcription factors might serve as a diagnostic tool for in silico 
target identification (Sun et al. 2006). 

2 METHODS 

2.1 Network Model 
The rate of production of mRNA is modeled using simple syn-

thesis and degradation terms (Sun et al. 2006) expressed by a set of 
reactions which involve the specific binding of TFs to DNA se-
quences as well as the recruitment of RNA polymerase I complex.  
The dynamics of gene expression can thus be described as:  

The index “i” denotes a gene being regulated by transcription fac-
tor “j”, “t” denotes time. TFA denotes the activity of the factors, 
and [mRNA] denotes the concentration of the mRNA of the corre-
sponding gene. This power-law rate expression assumes a rate of 
synthesis depending on the activities of TFs whereas the degrada-
tion term is also considered proportional to the actual mRNA lev-
els (Tran et al. 2005). The interaction strengths are denoted by ij.
Making the quasi-steady state approximation for mRNA(i,t) and 
solving the corresponding algebraic equation leads to the following 
expression, accounting for an appropriate normalization with re-
spect to the initial conditions: 

Finally, a log-transformation results in the following generalized 
linear expression: 
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where E matrix is the log-ratio of the gene expression level of gene 
i at time point t relative to the initial condition (t=0), and its dimen-
sions are Ng (number of genes) x NT (number of time points), is
the connectivity matrix whose entries are constant and characterize 
the strength of interaction between any regulatory pair (i,j) with j 
refers to the regulator and its dimensionality is  Ng x NTF (number 
of transcription factors). The matrix P describes the inferred effec-
tive dynamic activities for each regulator, expressed also as log-

ratios, during time course of the experiment. In certain decomposi-
tion schemes (Tran et al. 2005)  is treated as an unknown vari-
able that must be identified. In our formulation we opted to treat 
the strength coefficients as surrogates for the binding affinity of the 
transcription factor to the promoter region. In the mathematical 
formulation,  is similar to the Hill-Coefficient. Considering the 
binding of transcription factors to the promoter region, we hy-
pothesize that the strength of the binding interactions is related to 
the cooperative binding interactions of the separate binding do-
mains in the transcription factor. Therefore, the interaction coeffi-
cients will be considered to be either known from experimental 
studies (Harbison et al. 2004; Lee et al. 2002) or determined com-
putationally by associating binding affinities to position weight 
matrices (Stormo and Fields 1998).  

In addition to the strength of the interactions, the directionality 
of the activation is also critical given that transcription factors are 
known to exhibit multifunctional characteristics (Drazinic et al. 
1996). TFs are known to act as activators, repressors or exhibit 
both characteristics depending on conditions. Therefore, given the 
effective activity of a transcription factor we need to be able to 
simulate its corresponding effect, whether it is activating or re-
pressing the expression of the target genes. Assuming for simplic-
ity that one TF regulates a single gene, then depending on the na-
ture of the interaction the effect of changes in the TFA will have 
distinct effects on the changes in gene expression. If the activity of 
the factor increases (panel a) and if the factor activates the expres-
sion of the gene, then the corresponding expression should increase 
(panel b), whereas if the factor represses the expression of the 
gene, then the increase in activity should result in decrease in the 
expression of the gene (panel c). Equivalent arguments can be 
made for the case where the activity of the factor decreases, Figure

1. We model the activation/repression by introducing a new vari-
able, Peff(i,j,t) which represents the effective TFA of a regulator for  
gene “i” given that the type of interaction, either repressor or acti-
vator, has been identified. The definition is done through the intro-
duction of a binary variable, r(i,j) and defining the effective TF 
activity as follows:  

Given, therefore, the architecture describing the superstructure of 
all possible regulatory interactions the possible interactions are 
defined by: 

Finally, approximate the log-ratio of the expression data as: 

The “error” term is incorporated to simulate error-in-measurement, 
potential sources of uncertainty and the general lack of detailed 
knowledge about transcription factors, connectivity and he rela-
tionship between binding and activity. 

2.2 Predicting Alternative Regulatory Structures 
It has long been hypothesized that alternative pathways connect-

ing regulators and targets do exist and the implications are signifi-
cant in order to understand the cellular behavior (Wagner and 
Wright 2007). The systematic computational identification of puta-
tive regulatory structures would therefore enable a more detailed 
analysis. Within an optimization framework however, such alterna-
tive structures can be identified and critical nodes whose removal 
would be lethal can be speculated. Similarly, interchangeable 
nodes can also be proposed. These sub-optimal alterative structures 
provide mechanisms by which an organism compensates for 
changes in environmental conditions. Therefore, while the re-
sponse may not be optimal, the organism is more flexible and re-
mains viable under a wide range of environmental conditions. One 
piece of evidence which supports the activation of alterative struc-
tures is the continuing viability of different E. coli strains despite 
knockouts of important regulatory proteins. If alternative network 
architectures do not exist, then the viability of a given strain would 
be severely compromised. Therefore, we believe that our method 
of deciphering alternative regulatory networks corresponds bio-
logically to the inherent flexibility exhibited by organisms. 

2.3 Analysis of regulatory networks 
Deciphering the structure of regulatory networks should be con-

sidered as the prelude to further analyses that attempt to eclucidate 
putative roles of the regulators rather than a rigorous and restrictive 
reconstruction of experimental data. After all, it is widely accepted 
that multiple, alternative, regulatory networks can reproduce ex-
perimental data (Tran et al. 2005). As such, a number of questions 
emerge, namely: Can these networks be identified in a systematic 
and unbiased manner? Are there any persistent interactions that 

1 TF(j) regulates gene(i), i.e. (i,j) 0
D(i, j)

0 otherwise, i.e. (i,j) = 0                   

eff

1 TF(j) activates gene(i)
r(i, j)

0 otherwise                  

P (i, j, t) 2 r(i, j) 1 P( j, t)

Figure 1: Activation/repression of gene expression 
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emerge from multiple architectures? Are there specific transcrip-
tion factors whose activity profiles remain robust across multiple 
realizations? Can the specific function of the undetermined factors, 
i.e., factors can act either as activators or repressors, be system-
atically determined? Do preferential patterns emerge in terms of 
the nature, i.e., activator or repressor, of these factors be identi-
fied?

We propose a mixed-integer formulation able to effectively ad-
dress the aforementioned questions in a unified framework. The 
complexity of the regulatory network is controlled through the 
introduction of a binary variable z(j) which denotes the existence, 
z(j)=1, or non-existence of a particular regulator’s activity. It 
should be emphasized that eliminating the effect of a regulator 
implies blocking he activity of the TF and not, necessarily, the 
expression of the corresponding gene. The underlying assumption 
behind this modeling exercise is to identify what types of alterna-
tive structures can be constructed that reproduce optimally the 
experimental expression data. The complexity of the network is 
controlled by setting the required number of non-zero elements in 
this variable. Furthermore, alternative structures for the same num-
ber of transcription factors can be generated by introducing appro-
priate cuts that exclude previous integer solutions, i.e., combina-
tions of non-zero z(j)’s (Biegler et al. 1997).  In order to identify 
structurally robust elements of the regulatory architecture we in-
troduce a robustness metric which quantifies the number of times a 
particular TF appears in each of the alternative structures in con-
junction with the robustness of the reconstructed activity profile. 
The metric is therefore: R(j)=[f(j)/M]*C(j), where R(j) is the ro-
bustness of TF “j” when we generate multiple network modules,  
f(j) describes the frequency of TF j across the multiple solutions M 
(simply it shows how many times TF j appears in different network 
architectures), C(j) corresponds to the average Pearson’s Correla-
tion coefficient for the multiple inferred activities (P(j,t)) of TF j 
and M is the total number of alternative structures under considera-
tion.

2.4 Model Linearization 
It should be noted that the definition of Peff introduces a non-

convex bilinearity in the formulation due to the product of the 
continuous variable P(j,t) and the binary variable r(i,j). However, 
this product is exactly linearized through the introduction of the 
following set of constraints: 

In the case of a repressor the general form reduces to (1). The 
second constraint is inactive (M is a big number) whereas the first 
constraint forces Peff(i,j,t)=-P(j,t). The implication is that because 

“j” acts a repressor of “i” if the activity of P(j,t) increases, i.e., 
P(j,t)>0, the effect of E(i,j,t) should be of the opposite sign and 
therefore result in reduction of E(i,j,t), i.e, E(i,j,t)<0. Similarly, if 
the activity of P(j,t) < 0, because “j” is a repressor, then reduction 
in its activity should enhance the expression of E(i,j,t), i.e., 
E(i,j,t)>0. When r(i,j)=1(“j” is a activator of “i’) the system re-
duces to form (2) which makes the first constraint redundant, 
whereas the second constraint forces Peff(i,j,t)=P(j,t) and therefore 
it acts as an activator. NTF is the number of transcription factors, Ng
is the number of genes, and NT  is the number of time points.  

2.5 Integer Optimization Formulation 
The optimization framework attempts to deconvolute the gene 

expression profiles in terms of a reduced “basis set” defined by the 
activities of the corresponding TFs. The aim is to achieve the best 
possible decomposition while utilizing prior knowledge about the 
systems, in terms of known interactions as well as the possibly 
known directionality of a subset of those interactions (activa-
tion/suppression). Furthermore, we are interested in identifying 
systematically alternative structures in order to unravel the poten-
tial underlying structure of the regulatory network by pint pointing 
robust and, presumably, critical regulators.   All of the above ques-
tions can indeed be addressed by the solution of the following 
mixed-integer linear optimization problem (miSARN, Table 1)
solved using the GAMS modeling software (Brooke et al. 2004) 
running CPLEX for the solution of the corresponding MILP.  

3 RESULTS 
Temporal expression profiles of E coli during transition from 

glucose to acetate as the sole carbon source were detected using 
DNA microarrays. The importance of such experiment lies on the 

eff

eff

eff

eff

general form
r(i, j) M P( j, t) P (i, j, t) r(i, j) M P( j, t)

r(i, j) 1 M P( j, t) P (i, j, t) 1 r(i, j) M P( j, t)

(1) modeling a repressor: r(i, j) 0
P( j, t) P (i, j, t) P( j, t)
M P( j, t) P (i, j, t) M P( j, t)

(2) m
eff
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odeling an activator: r(i, j) 1
M P( j, t) P (i, j, t) M P( j, t)
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mixed-integer Synthesis & Analysis of Regulatory Networks (miSARN)
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ti

subject to
effE(i, t) - (i, j)P (i, j, t) = e (i, t) - e (i, t) i, t
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Table 1: miSARN Formulation 
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premise that glucose and acetate are utilized by distinct metabolic 
pathways and thereby understanding such profiles in different car-
bon sources gives us a more thorough insight about the dynamic 
behavior of E coli (Oh et al. 2002). The temporal E coli expression 
data as well as the connectivity matrix for this system are publicly 
available at http://ww.seas.ucla.edu/~liaoj/. The data included the 
log transformed expression levels (relative to initial time point) of 
100 genes recorded at 10 time points. Such expression data have 
been part of studies (Boulesteix and Strimmer 2005; Kao et al. 

2004; Pournara and Wernisch 2007) . The corresponding connec-
tivity matrix given the available information of RegulonDB 
(Salgado et al. 2001) database. Based on RegulonDB information 
we fix the binary variables r(i,j) to be either 0 or 1 if j is known to 
repress or activate gene i, respectively. All others are treated as 
variables whose type of regulation will be determined based on the 
solution of the optimization problem. 

3.1 Systematic generation of alternative regulatory 
structures 

The complete regulatory structure is composed of 30 transcrip-
tion factors. Given the hard constraint that each gene must be regu-

lated by at least on TF, the miSARN formulation becomes infeasi-
ble if less than 18 factors are used since this many factors are 
needed to guarantee that all genes are properly regulated, that is 
there is no combination of less than 18 TFs that would make sure 
each gene is regulated by at least one factor. Varying the control 
parameter “m” in the range of 18-30 TF generates an equivalent 
non inferior set as shown in Figure 2. Interestingly we observe that 
there are 5 different network architectures (m=26…30) that gener-
ate architectures resulting in the same reconstruction error, despite 
the fact that each utilizes a different number of TFs. 

Given the availability of these alternative structures, we proceed 
to evaluate the robustness of each factor across multiple solutions. 
The results are summarized in Table 2. It is clear that a critical 
subset emerges that not only persist as a selection of active TF, but 
also the corresponding reconstructed profiles are very robust across 
multiple solutions. The reconstructed profiles for all factors across 
all the 13 solutions (m=18…30) are depicted in Figure 3. For each 
of the cases that result in the lowest reconstruction error (m=26, 
27, 28 and 29) we evaluate the number of alternative structures for 
each value of m that generate networks with the same reconstruc-
tion error. This is achieved by activating the integer cuts that 
eliminate the previous integer optimal solution. The miSARN for-
mulation identifies 8 alternative structures for m=29, 24 structures 
for m=28, 32 structures for m=27 and 16 structures for m=26. In 
total 80 alternative structures with different number of factors for 
each family and different connections are identified that result in 
the same approximation error. The implications of the robust selec-
tion as well as the alternative architectures are discussed in the 
following section. Typical reconstructed expression profiles are 
provided in Figure 4.

4 DISCUSSION 

Figure 3: Reconstruction of TFA profiles  

Figure 4: Reconstruction of gene expression profiles 

Figure 2: Reconstruction error as a function of the number of 
active transcription factors 
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Analysis of the results of Table 2 provides us with a list of puta-
tive critical regulators, which are characterized by robust activity 
profiles. Concentrating on the sub-set of regulators that correspond 
to R(j)=1, we identify the following factors: Ada, CysB, FadR, 
GatR, LeuO, Lrp, PurR, TrpR, and TyrR.ll play a critical role in the 
metabolism of E coli when carbon source transition occurs from 
glucose to acetate. In particular, Ada regulates aidB, which belongs 
to the adaptive response genes and encodes for a protein that is 
homologous to mammalian acyl coenzyme A dehydrogenases. 
This activation is crucial during either anaerobiosis state or acetate 
metabolism (Landini et al. 1994). Moreover, all the other regula-
tors influence the expression of crucial metabolic genes necessary 
during the specific growth arrest. CysB regulates genes essential to 
sulfur utilization and nitrogen metabolism whereas GatR regulates
genes important to galactol utilization and transport. In addition to 

this, PurR is a key repressor protein for purine nucleotide synthesis 
and it is likely to coregulate other genes for de novo purine nucleo-
tide synthesis (Rolfes and Zalkin 1988). Meanwhile, FadR is char-
acterized as a global regulator in fatty acid biosynthesis and degra-
dation (DiRusso et al. 1992) and the leucine responsive regulatory 
protein (Lrp) is another global regulator of metabolism in E coli 
(Calvo and Matthews 1994). Furthermore, GatR regulates genes 
essential to galacticol utilization and transport and in (C. C. Chen 
and Wu 2005) it is emphasized that LeuO is characterized by a 
gene silencing activity. Such activity is integral to the regulation of 
prokaryotic and eukaryotic gene expression and given that we are 
allowed to “target” such transcription factors we are closer to un-
raveling the underlying complexities of gene regulation. Regula-

tors such as TrpR and TyrR are characterized as major transcription 
regulators for a group of genes that are essential for aromatic 
amino acid biosynthesis and transport in E coli (Lawley and Pittard 
1994; Lawley et al. 1995). Equally important is the analysis of the 
robustness characteristics of the functional charctaerization of the 
regulators whose activity (activator/repressor) is not uniquely de-
termined. Out of the 30 TFs three have been experimentally as-
signed a dual function (act as either activator or repressor). These 
TFs along with their target genes are: (1) CRP: galE, galK, galT, 
prop; (2) LRP: kbl; (3)PhoB: ugpB, ugpE .The inferred role of the 
3 dual TFs across the 13 multiple solutions is robust for all the dual 
TFs. Specifically, there is only one solution out of 13 in which the 
transcription factor CRP acts as a repressor. The remaining solu-
tions identify the following relations: (1) CRP: activates galE, 
galK, galT; represses proP; (2) LRP: activates kbl; (3)PhoB: re-
presses ugpB, ugpE  

The incorporation of the cuts excluding previous solutions for a 
given value of m and the generation of the alternative structures 
generates equally interesting results. The multiple architectures for 
m=29 effectively define networks in which one TF is eliminated 
from the network, Figure 5. There are four distinct modules that 
give rise to these solutions and all cases effectively amount to the 
elimination of the activity of a factor provided that its contribution 
can be represented by another factor. The interchangeable pairs 
are: (PspF, RpoN), (SdiA, RcsAB), (CsgD, OmpR), and (Rob, 
GalR). These alterative structures may prove to be important in 
explaining the viability of different strains of E. coli as well as its 
ability to tolerate a variety of environmental conditions while still 
retaining its viability. Therefore, these alternative structures are 
important aspects of the network and allow us to separate the vital 
connections from those that impart flexibility. These findings, 
albeit computational, can be characterized as both challenging and 
promising on the premise that there is on-going research about 
identifying clinically intervention points whose effective combina-
torial inhibition would improve the process of therapeutic drugs. 
There are several studies (Covert et al. 2004; Kato et al. 2004) that 
seek to unravel the underlying principles that govern gene regula-
tion by either combining  sequence data with binding data such as 
Chip-chip data and expression data or by knocking out (deleting) 

TF name relative connectivity f(j) C(j) R(j)
Ada 1 13 1.0 1.0
CysB 4 13 1.0 1.0
FadR 3 13 1.0 1.0
GatR 4 13 1.0 1.0
LeuO 3 13 1.0 1.0
Lrp 6 13 1.0 1.0
PurR 3 13 1.0 1.0
TrpR 3 13 1.0 1.0
TyrR 6 13 1.0 1.0
ArcA 18 13 0.9 0.9
PhoB 5 13 0.9 0.9
FIS 7 11 1.0 0.9
NarL 9 13 0.9 0.9
CRP 21 13 0.9 0.9
RpoE 8 13 0.9 0.9
RpoS 5 13 0.7 0.7
FruR 7 13 0.7 0.7
OmpR 3 13 0.6 0.6
IHF 12 13 0.6 0.6
IclR 4 12 0.9 0.6
GlpR 1 8 1.0 0.5
LexA 1 5 1.0 0.4
PspF 1 5 0.6 0.4
FNR 16 10 0.4 0.2
CsgD 3 2 1.0 0.2
Rob 3 1 1.0 0.2
SdiA 1 5 0.2 0.1
RpoN 1 8 0.2 0.1
GalR 3 7 0.0 0.0
RcsAB 1 4 0.0 0.0

Table 2: Robustness index for all transcription factors 

Figure 5: Alternative equivalent regulatory structures. Square: TF, 
oval: Genes; Dark Squares: interchangeable TFs. CsgD denotes the 
activity of the corresponding TF, csgD denotes the gene 
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transcription factors and binding sites with the goal of revealing 
more about functional regulatory interactions and pathways. The 
Phage-Shock-Protein System shown in the upper left is regulated 
by PspF and RpoN promoters in Y. Enterocolitica, a baterica very 
similar to E. Coli, and it was found that a PspF null mutation did 
not impart lethality upon the specific strain, but rather caused a 
slight decrease in the growth rate of the strain, as was the deletion 
of the RpoN promoter region. In fact the deletion of either the 
PspF or the RpoN sequence from the promoter region yielded a 
strain that was nearly indistinguishable(Maxson and Darwin 2006), 
suggesting that with the deletion of a single promoter sequence, in 
the pspA gene, the other transcription factor can indeed compen-
sate for the loss in control. For the regulators of  ftsZ,it was found 
that mutants in rcsB which is part of the rcsAB complex had very 
little difference from that of the wild type strain under normal 
growth conditions(Gervais et al. 1992). However, despite the simi-
larities under normal growth conditions, it was hypothesized that 
under different environmental conditions, the presence of a func-
tional rcsB protein may alter the overall response. Additionally, it 
was found that while the over-expression of sdiA would increase 
the expression of ftsZ, the deletion of sdiA like the mutations of 
rcsB did not alter the ability of the cell to divide, and appeared 
relatively normal under standard conditions (X. D. Wang et al. 
1991). This is similar to the properties of rcsAB. However, what 
has not been examined is whether a mutant in both of the sidA and 
rcsB genes would lead to a significant change in the overall behav-
ior of the organism understand conditions. Similarly, it was found 
that GalR transcription factor was not necessary under rich growth 
conditions(Chapuy-Regaud et al. 2003). Currently, there are no 
studies concerning the null Rob mutants under normal growth 
conditions, though it was found that under minimal medium condi-
tions such as glucose starved medium that the lack of the Rob tran-
scription factor alters the behavior of E.Coli, though sub-
lethally(Kakeda et al. 1995). One of the limitations in our formula-
tion is that the structure in the lower left of Figure 5 can be ob-
tained in which CsgD and OmpR are interchangeable. When this 
structure is given as a directed acyclic graph, the symmetry breaks 
down for OmpR is found to be a regulator of the transcription fac-
tor CsgD, and CsgD autoregulates. Therefore, even though the 
structures appear to be equivalent, they essentially are not. In spite 
of the shortcomings in the representation, by generating multiple 
solutions, and examining the graphs that arise, such inconsistencies 
can be post-processed into a network representation. The experi-
mental evidence that the mutant strains are indistinguishable from 
the wild type strains under normal growth conditions validates the 
computational results which indicated that the error derived from 
the alternative structures is equivalent. Our results suggest that the 
removal of both transcription factors would cause a large differ-
ence in the error. Therefore it suggests that if there were double 
knockouts of both of these transcription factors, there would be 
significant changes in the overall response of the organism. It must 
be stressed, that while these links show no effect under normal 
growth conditions, many of these links are significant under differ-
ent environmental conditions and therefore function to provide 
flexibility to the organism in the face of changing environmental 
factors. In addition to the ability to change the overall gene expres-
sion profiles, our framework also allows us to easily fix the overall 
activity of a regulator or remove a regulator depending on condi-
tions which alter the ability of a transcription factor to be activated. 

Therefore, we assert that in addition to its ability to quantify the 
strength of the interactions, our framework also has the ability to 
determine the existence of necessary regulatory structures.  

5 CONCLUSIONS 
Our results demonstrate how an optimization-based model 

(MILP formulation) can provide us with meaningful biological 
insights on gene regulation. Our model integrates high-throughput 
data, network connectivity information as well as known direction-
ality in regulation for specific regulatory pairs, with the aim to 
reveal underlying principles of the network architecture. Our 
model can provide both optimal reconstructions and multiple alter-
native network architectures. We further introduce a metric to dis-
tinguish a subset of critical transcription factors, which coupled 
with a system of integer cuts, provides us with the combinatorial 
solution of deleting transcription factors. Our model incorporates 
prior biological knowledge in terms of the effective role of a tran-
scription factor as a regulator or repressor whilst it can decipher 
the directionality of those TFs that their regulatory role is un-
known.
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