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ABSTRACT 
Motivation: The living cell array quantifies the contribution of 
activated transcription factors upon the expression levels of their 
target genes. The direct manipulation of the regulatory mecha-
nisms offers enormous possibilities for deciphering the machinery 
that activates and controls gene expression. We propose a novel 
bi-clustering algorithm for generating non-overlapping clusters of 
reporter genes and conditions and demonstrate how this informa-
tion can be interpreted in order to assist in the construction of 
transcription factor interaction networks. 

1 INTRODUCTION  
One of the goals of molecular biology is deciphering the un-

derling mechanisms that give rise to the observed experimental 
responses to injury, disease or drug administration. In most long 
term compensatory responses, an organism responds to changes 
in its environment by altering its gene expression and therefore 
the relative levels of different proteins or enzymes which regu-
late key cellular processes. Therefore, understanding the under-
lying transcriptional regulation would give insights as to why 
organisms respond in the fashion that they do, and offer possible 
ways of altering the responses for a more desirable outcome.  

The general mechanism by which transcriptional regulation 
occurs involves an incoming signal which activates a transcrip-
tion factor through a mechanism such as phosphorylation or 
dimerization. This activated complex then translocates into the 
nucleus and binds to the promoter region of certain genes in the 
genome which then either activates or represses the transcription 
of a given gene. The complexity in the system arises from the 
fact that genes which are activated can themselves be transcrip-
tion factors which in turn regulate other genes, or code for an 
enzyme which degrades the original signal.  

The methods normally used for deciphering the underlying 
network architecture fall under three primary categories. The 
first category consists of predicting the overall network architec-
ture either through computational means or through experimen-
tal data such as Chip-Chip experiments(Lee et al. 2002). These 
techniques attempt to decipher the network structure by first 
identifying the regulators and genes which they regulate. The 
second method for understanding transcriptional networks falls 
under the category of utilizing gene expression data to create a 
network where a link is drawn if two genes are co-expressed 
under the experimental conditions(D'Haeseleer et al. 2000). 
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There exists a third technique with attempts to reconcile the 
results of these two techniques. 

The strictly computational techniques focus upon the predic-
tion of transcription factor binding sites and then using these 
predicted transcription factor binding interactions to generate a 
network(Pritsker et al. 2004). These techniques however suffer 
from the inaccuracies associated with computational predictions 
and therefore the network derived from the results can be ques-
tionable. Secondly, even if the predictions are accurate, what 
these techniques yield is a set of all possible connections, of 
which only a few may be active at a given time due to the com-
plexities of transcription factor activation or through processes 
such as cooperative binding of transcription factors(Janson and 
Pettersson 1990). Chip-Chip experiments on the other hand 
attempt to derive connections by identifying through fluores-
cence labeled transcription factors which transcription factors 
bind to which genes, and constructing a network from this 
data(Lee et al. 2002). Such techniques have been successful in 
simple organisms such as yeast, but ambiguities in the promoter 
region of more complex species is problematic for this type of 
experiment. In mammalian systems, promoters that lie more 
than 5k away from the transcriptional start site may have an 
effect upon the transcription of the gene (Kirmizis and Farnham 
2004), and therefore the experiment may not have captured all 
relevant promoter regions. Additionally, it had been shown that 
transcription factors can bind in the coding region of a given 
gene in Chip-Chip experiments calling into question the process 
of immobilizing a given DNA strand as preparation for the bind-
ing(Wormald et al. 2006) and removing the contribution of in 
vivo DNA configuration on transcription factor binding.  

Expression data can be used to build a network by making the 
assumption that genes which are co-expressed probably have a 
causal link between them. Techniques such as Boolean networks 
have been applied in the creation of such network but oftentimes 
offer contradictory network structures than the networks derived 
from the experimental methods(D'Haeseleer et al. 2000). 

Attempts have been made to reconcile the two different regu-
latory structures as well as quantify the links between the regula-
tors and the genes which they regulate. Methods such as  Mod-
ule Networks attempt to resolve the differences in the two net-
works(Segal et al. 2003). However, even with the reconciliation 
of two disparate solutions, there still exists a great deal of ambi-
guity in the results, i.e. the possibility that there exist multiple 
transcription factors which may be co-regulating a set of co-
expressed genes. Techniques such as NCA which quantify the 
links given the structure have shown that multiple structures can 
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reconstruct identical expression profiles(Brynildsen et al. 2006). 
This is a problem because multiple structures can be shown to 
have the exact same error in reconstructing the gene expression 
data.  

The crux of the difficulty in obtaining these gene regulatory 
networks is the fact that individual contribution of a given tran-
scription factor to the expression level of a given gene is un-
known. This is because researchers are essentially solving an ill 
posed problem, which results in the fact that one is unable to 
determine the correctness of multiple structures. Essentially, 
researchers have been attempting to solve for more parameters 
than can be justified in the data. The Living Cell Array 
(LCA)(King et al. 2007; Thompson et al. 2004; Wieder et al. 
2005) simplifies the process of computationally determining the 
structure by allowing for the measurement of activated transcrip-
tion factor activity and its effect upon the expression level of a 
gene. With information as to the overall expression, it becomes 
possible to not only identify the underlying transcriptional net-
work, but also to quantify the links between the genes and their 
associated transcription factors. 

1.1 Living Cell Array 
The Living Cell Array is a microfluidics device which allows 

the precise control of both molecular cellular signals as well as 
the seeding of cells from a certain population. The apparatus is 
more comprehensively described in the original paper(King et 
al. 2007). In essence, the LCA device contains hepatocytes 
which were transfected with a reporter gene that transcribes a 
fluorescent protein when activated by a given transcription fac-
tor. 

The promoter regions for these genes were constructed in 
such a manner where only its specific transcription factor will 
cause the activation. However, in spite of this design, it was 
found that there was significant cross talk, for instance the acti-
vation of the reporter gene for IL-6 (STAT3 promoter) being 
activated as well by TNF-α. The possibility of non-specific 
binding of TNF-α that normally binds to the response element 
sequence GGGAATTTCC to the response element sequence for 
STAT3 (TTCCCGAA) was examined. While this is possible 
due to a common run of the short TTCC motif, this possibility 
seems to be unlikely.  

An alternative explanation being explored is that the nonspe-
cific activation of the reporter gene can occur via a secondary 
mechanism, i.e. the transcription of its associated transcription 
factor due to the effect of another transcription factor. To exam-
ine this possibility, a tri-clustering approach to determine which 
genes are co-expressed over a variety of conditions has been 
formulated. If the reporter gene is highly co-expressed over a 
range of different conditions, then it would suggest that there is 
a definite link between the two transcription factors in terms of 
their activation. 

The tri-clustering formalism is an extension of the bi-
clustering formalism except that one clusters over conditions, 
genes as well as time. For the purposes of deciphering the LCA, 
time can be treated independently and therefore a preprocessing 
clustering step can be performed to reduce the overall formula-
tion into a bi-clustering problem. 

Our attempt at handling data which can be tri-clustered is dif-
ferent from the TriCluster algorithm(Zaki 2005), in which the 

time vectors are all treated independently. For the LCA, the 
interest is which transcriptional events are tightly coupled and 
therefore have similar time expression profiles within the differ-
ent conditions. 

Given the artificial construction of the reporter genes, the di-
rect effects of a given activator/transcription factor is clear. 
What is less clear are the effects of indirect activation (IDA). 
Under all of the different activation conditions, all of the re-
porter genes appear to be activated to a certain extent. The pri-
mary question is therefore, what the indirect links are. From the 
initial results obtained from the LCA(King et al. 2007), it would 
appear that under all of the conditions, there is significant acti-
vation of the reporter genes. It may be possible to isolate tran-
scription factors which are tightly coupled, where the activation 
of one transcription factor causes the activation of a second tran-
scription factor, or which are complementary i.e. the activation 
of one system can be accomplished via the activation of any one 
in a set of transcription factors. This essentially allows for the 
identification of the mechanism behind the cross-talk and ad-
dresses issues such as why blocking a specific regulator does not 
always lead to the blocking of a given cellular response.   

2 METHODS 

2.1 Bi-clustering  
Bi-clustering, or condition specific clustering, attempts to iso-

late genes that are co-expressed under a specific set of condi-
tions(Cheng and Church 2000). Bi-clustering is nominally per-
formed over a set of genes vs. conditions with only a single 
value per condition. However, in the given dataset, each 
gene/condition combination is described as a time series. In bi-
clustering, genes that have similar expression values under a 
given condition are considered as possible candidates to be clus-
tered together for that specific condition. Given the temporal 
expression data, the temporal expression can be simplified into 
an integer, so that gene expression profiles with the same integer 
would have similar expression profiles. This could have been 
accomplished in a variety of ways from Hashing Based meth-
ods(Lin et al. 2003), to standard clustering algorithms in which 
the cluster memberships are used to assign an integer denoting 
similarities in the expression profiles of different genes under a 
given condition. 

For this problem k-means clustering with a cosine similarity 
metric(Rahnenfuhrer et al. 2004) was selected. K-means was run 
with 4 clusters, the minimum number of clusters needed for 
consistent clusters over multiple runs. Therefore, the temporal 
expression profiles were converted into integers which indicate 
the similarity under a given condition of 2 or more genes. 

Bi-clustering itself is NP-Hard(Zhang 2002), and therefore 
most of the algorithms which have been used for bi-clustering 
are heuristics. The most obvious problem with most of the tech-
niques which are based upon heuristics is the fact that they do 
not solve the problem to global optimality. However, just as 
important is the inability for most of the heuristic based methods 
to identify an arbitrary number of over-lapping bi-clusters. In 
most of the bi-clustering algorithms, finding multiple solutions 
involves removing a previously found bi-cluster from the dataset 
through techniques such as setting all of the values in a previous 
found bi-cluster to random numbers therefore breaking up any 
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relationships within that cluster. There has been some work in 
finding overlapping clusters(Liu and Wang 2007). However, 

such techniques are 
limited in the fact that 
one must determine 
before the structure of 
the overlap such as 
overlapping percentage 
as well as the number 
of possible overlapping 
structures within the 
data, something which 
is not known a priori. 

The issue of over-
lapping bi-clusters is 
important because with 
non-overlapping bi-
clusters, the networks 
which can be recon-
structed from expres-

sion data will be a set of disjoint and independent networks. This 
contradicts with the general notion that transcriptional networks 
form highly interconnected networks (Jeong et al. 2000). There-
fore, networks generated from the current algorithms cannot 
fully capture the level of interconnectedness present in transcrip-
tional networks. The advantage of utilizing a math programming 
approach is that it is very easy to exclude previous solutions and 
re-solve the problem to find other bi-clusters which may overlap 
with a previous solution. Without overlapping bi-clusters, the 
overall network is then reduced to a set of independent cliques 
of which the most complex network which can be created is a 
feed forward network.  

The biggest issue that complicates the search of overlapping 
clusters is illustrated in Figure 1. The primary problem is that 
after an optimal solution is found and that solution is rejected, 
there exists an overlapping cluster which is wholly a subset of 
the original solution. A mixed integer optimizations framework 
was selected due its ability to explicitly model constraints as 
well as solve the problem to global optimality, something which 
cannot be guaranteed with the standard heuristic based method. 
In this mixed-integer framework, it is possible to eliminate a 
solution as well as all subsets of its solution through a modified 
system of integer cuts. 

The LCA experimental results had 8 conditions 2 of which 
represented composite stimulus corresponding to inputs with 
multiple factors which were excluded. The overall goal of the 
LCA has been the generation of a network which can be used for 
the quantitative prediction of gene activity, and these conditions 
were excluded to be used as a testing set to determine how well 
our network can predict overall activity given an arbitrary input. 
At this point, the primary concern is whether a rational network 
can be generated, and the quantification of the network i.e., de-
termining the weight of the links that connect the individual 
nodes will be revisited at a later date. 

One of the issues with using a formal mixed integer formula-
tion is that it requires solving the full problem and not conduct-
ing an approximation. Therefore, the NP-hard issue still re-
mains. The mixed integer formulation solves the problem effi-
ciently through intelligent pruning of infeasible and sub-optimal 

solutions, but does not change the overall algorithmic complex-
ity. In the current iteration of the LCA, there are 6 specific tran-
scription factors being utilized under 6 different conditions, and 
therefore the computational complexity is not an issue. Even in 
the most comprehensive case for transcriptional regulation, the 
problem set is still relatively small, on the order of 200 tran-
scription factor binding sites having been quantified(Harbison et 
al. 2004), and therefore still within the limits of solvability. 

The mixed integer formulation is divided up into two portions, 
the bi-clustering formulation Equation 1, and the subset re-
moval cuts Equation 2. The problem is solved parametrically 
for the number of genes starting from N genes and decreasing 
until the number of genes equals 2. The optimization criterion 
maximizes the number of conditions. With this formulation, it is 
not necessary to define constraints of what a good bi-cluster 
entails though such constraints could be formulated. We find 
this to be an artificial constraint, for there could exist two genes 
which are well correlated over a large number of different condi-
tions, of which the implications would be just as important as a 
bi-cluster of 10 genes that were well correlated over fewer con-
ditions.  

Equation 1 

i j k i k j k

i j k i k j k

[( ) 3]*M ( )*D(i,k) ( )*D(j,k)

[3 ( )]*M ( )*D(i,k) ( )*D(j,k)

λ +λ +µ − ≤ λ +µ − λ +µ

− λ +λ +µ ≥ λ +µ − λ +µ
 

 

The bi-clustering portion described in Equation 1 requires the 
discretization of the signal. This works well for the time series 
data which is provided by the LCA. It essentially checks to see 
if two genes under a given condition have the same value with 
binary variables to indicate whether a given gene is included for 
the assessment. In Equation 1, D represents the integer trans-
formed data, λ represents the genes selected within the bi-
clusters where µ represents the conditions under which the genes 
are co-expressed. The indices i,j,k represent the index in the 
array for which the gene or condition exists. M represents a 
large number that functions to essentially eliminate the con-

A

B

C A B= ∩

 

Figure 1: The problem of overlap-
ping bi-clusters: Given two bi-
clusters, A and B, the intersection of 
the two bi-clusters, C should be elimi-
nated 

 

Figure 2: A schematic of how the formulation in Equation 1 
works. Rows indicate genes and columns indicate condi-
tions. Two genes (

2 
 = 1 and 

6
 = 1) are similarly expressed 

under four conditions (µ
k
 = 1, k=1, 3, 6, and 7).  
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straint when either of the two genes or conditions are not part of 
a given bi-cluster. In other words, genes i and j belong to bi-
cluster k, i.e., λi = λj = µk = 1, if and only if the symbolic repre-
sentation of both genes are the same under condition k, i.e., 
D(i,k) = D(j,k). This is the only situation that would make 
Equation 1 feasible. If λi = λj = µk = 1 whereas D(i,k) ≠  D(j,k) 
Equation 1 would be infeasible since the left hand side of both 
inequalities will be zero, whereas the right hand side is not. A 
schematic of how this assessment finds bi-clusters is shown in 
Figure 2. In Figure 2 there are two λ variables which denote the 
two genes which are being checked for co-expression whilst the 
µ represents the condition in which they are checked from. If 
two genes are part of a bi-cluster, then the value under the two 
different conditions ought to be identical.  

The problem with excluding subsets is simplified by the fact 
that the problem will be solved to optimality at every iteration 
with every iteration parametrically solving for different number 
of genes. The primary idea behind Equation 2 is that a new 
solution requires a condition to be included that was not in a 
previous solution. Equation 2 guarantees that each solution will 
not be a subset of a previously identified set of conditions. In 
Equation 2, µk

iter represents the previous solution and µk
citer 

represents the current solution which may or may not be ex-
cluded. Therefore, the bi-clusters are generated sequentially and 
the exclusion constraints of Equation 2 guarantee that the bi-
cluster at iteration “citer” is not a subset of the previous clusters 
“iter”. 

Equation 2 

iter iter citer
k k k

Q(iter) P(iter) k
iter

k
iter

k

iter citer

P(iter) {i | 1}

Q(iter) {i | 0}

µ − µ < µ ∀ <

= µ =

= µ =

∑ ∑ ∑
   

 0 1 1 0 1 0 1 1 Optimal Solution (N-1) 
0 1 1 0 1 0 1 0 Possible Optimal (N) Utilizing Standard Cuts 
1 1 1 0 1 0 0 0 Possible Optimal (N) Utilizing Subset Excluding Cuts

Conditions 

Figure 3: The solution for iterate (N-1) has 5 conditions, 
the next optimal solution has 4. However, the solution 
which is wholly a subset of a previous solution should be 
excluded. 

Figure 3 illustrates how the subset removal cuts works. Equa-
tion 2 essentially forces the next possible solution to include a 
condition that was not included in a previous solution. If the 
current solution is a subset of any previous solution, then the 
following holds. 

iter citer
k k

Q(iter) k

iter citerµ = µ ∀ <∑ ∑  

Given that the formulation solves for the maximum number of 
condition under which N genes is co-expressed, the exclusion 
only occurs for the set of conditions. The set of cuts can be lim-
ited to only the conditions rather than the genes because the 
problem is solved parametrically with the maximum number of 
genes being solved in the first iteration. This should give the 
smallest number of conditions which these genes are co-
expressed under. Once the number of genes has been decreased, 
the set of conditions in which the genes are co-expressed ought 
to have at least one condition which was not present in the pre-

vious solution. Therefore, by solving it parametrically in N, it 
removes the complexity of requiring a subset excluding cut from 
requiring both the conditions as well as the set of genes. This 
greatly simplifies the formulation. 

After the bi-clusters were generated, they were evaluated as to 
whether or not one of the condition/reporter interactions in that 
bi-cluster had a 2-fold change in the overall activity. The data 
was reported in fold-change, and it was found that in the nega-
tive control case, the variability in the overall intensity differed 
by less than 2 fold. We opted to select bi-clusters which had at 
least one of the condition/reporters show a two fold change in-
stead of filtering out the gene/condition combinations and then 
conduct the bi-clustering because it represented a compromise 
between focusing solely upon co-expression or the intensity 
values. The overall formulation is given in Equation 3 and is 
solved using the GAMS framework (Brooke et al. 2004) running 
CPLEX for the optimization. 

Equation 3 

citer
k

k
citer

i
i
citer citer citer citer citer citer citer

i j k i k j k
citer citer citer citer citer citer citer

i j k i k j k

iter
k

Q(iter

max

s.t N

[( ) 3]* M ( ) * D(i,k) ( ) * D( j,k)

[3 ( )]* M ( ) * D(i,k) ( ) * D( j,k)

µ

λ =

λ + λ + µ − ≤ λ + µ − λ + µ

− λ + λ + µ ≥ λ + µ − λ + µ

µ

∑
∑

iter citer
k k

) P(iter) k
iter

k
iter

k

citer
i

iter citer

P(iter) {i | 1}

Q(iter) {i | 0}
D(i,k)= symbolic representaion of gene "i" in condition "k"

1, if gene i belongs to bicluster "citer"
=

0, otherwise  

− µ < µ ∀ <

= µ =

= µ =

λ

∑ ∑ ∑

                                     
P(iter), Q(iter) = denote the set of conditions that comprised previous biclusters

⎧
⎨
⎩

  

2.2 Network Reconstruction 
The primary purpose behind bi-clustering was to construct a 

network which gives insight as to the underlying mechanism 
which gave rise to the observed responses. Without any a priori 
information, a bi-partite network could be obtained in which 
links can be created from a regulator to a set of genes, if those 
regulators and genes are found in the same bi-cluster Figure 6. 
However by incorporating additional information which is avail-
able due to the artificial construction of the reporter genes, one 
can generalize the bi-partite graph into a directed graph which 
gives insight as to the signaling cascade, specifically in this case, 
the induction of inflammatory/anti-inflammatory signals via 
external stimulus. 

The specific piece of 
information which is 
utilized is the fact that 
the reporter genes can 
only be activated by 
their specific transcrip-
tion factor, and there-
fore the only direct 
links that can be pre-
sent in the graph is 
from a transcription 

 

Figure 4: Directed Graph Network 
Generation 
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factor to its specific reporter. These direct links are given in 
Table 1 of the original LCA manuscript. (King et al. 2007). A 
schematic of the translation from the bi-partite graph in Figure 6 
to a directed graph can be seen in Figure 4. One of the bi-
clusters in Figure 6, encompasses the activation of STAT3, and 
NFkB via LPS, TNF-α, and IFN-γ. Given the direct links of 
TNF-α to NFkB and IL6 to STAT3, the bi-cluster allows one to 
hypothesize that the activation of STAT3 given an input of 
TNF-α occurs indirectly as TNF-α activates the production 
NFkB, which thereby activates IL-6, and STAT3.  

This secondary activation mechanism is necessary due to the 
construction of the reporter genes. The reporter STAT3 cannot 
be directly activated via TNF-α due to its construction, and 
therefore the induction of STAT3 must occur via a secondary 
activation of IL-6. 

3 RESULTS 
A representative bi-cluster is given in Figure 5. In general, 

the optimizations based formulation of bi-clustering is well 
suited to process integer/discretized data, but is significantly 
affected by the initial clustering of time series. 

Without filtering for bi-clusters that showed greater than a 2-
fold change, 98 different bi-clusters of which the minimum size 
were 2 reporters being co-expressed over 2 conditions were 
obtained. After the 2-fold filtering, 5 bi-clusters in which the 
minimum size was 2x3 (either 2 conditions and 3 reporters or 
vice versa) was obtained. The overall bipartite representation 
obtained from the bi-clustering is given in Figure 6, and the 
Directed Graph associated with the bipartite graph is given in 
Figure 7. The links for HSE and LPS were not included in Fig-
ure 7 due to the fact that they did not have specific molecular 
activators identified, and IL1 AP1 was excluded due to the fact 
that it was not part of a non-trivial bi-cluster which showed sig-
nificant activation. 

From the bi-clustering result and the associated bipartite net-
work, it was found that while HSE did not have a specific acti-
vator under the different experimental conditions; it showed 
significant co-expression and activation from a variety of differ-
ent signaling factors. The activation of the Heat Shock Element 
normally occurs in temperature above 35 degrees, and yet it was 
activated under the administrations of Dexamethasone, IL-6, and 
Interferon Gamma. The possible transduction of the HSE by 
Interferon Gamma has been identified (Saile et al. 2004). The 
activation by Dexamethasone has been previously identified but 
is weak and like the other results involving Dexamethasone, this 

may be more of an artifact off the poor data obtained via the 
administration of Dexamethasone. However perhaps as a reason 
for the poor results, the administration of Dexamethasone has 
been shown to either act as an antagonist for the binding of the 
heat shock element as well as increase the production of the heat 
shock protein. Therefore, the poor results obtained from the 
LCA may be indicative of more complex behavior, for which all 
of the variables have not been adequately controlled. 

Incorporating the a priori information which comes from the 
construction of the LCA, the directed graph given in Figure 7 
was obtained. The primary salient characteristic of this graph is 
the presence of loops such as those that involve IL6 IFN-γ, and 
IFN-γ and Dex. The presence of these loops gives a possible 
mechanism by which both IFN-γ and Dex are responsible for 
changing the way an organism responds to inflammatory cyto-
kines, as well as suggesting that there may be a mechanism for 
inducing a tolerance phenomenon. This effect may be mediated 
through the transcription of the glucocorticosteroid receptor or 
the Interferon Gamma receptor which is present in the 
cell(Rakasz et al. 1993; Sanceau et al. 1992). 
 

One of the concerns 
which we have with the 
results of both the bi-
clustering as well as the 
network reconstruction is 
the effect of noisy data. 
One of the drawbacks of 
most clustering methods 
is that they oftentimes 
cluster all of the data 
without regard to data 
quality. Given the fact 
that our bi-clustering is 
highly dependent upon the 
initial clustering, any 
shortcomings due to noisy 
data would thereby be 
carried over to the gener-
ated network. 

One of features which was noticed was the fact that the noise 
level wasn’t consistent over the entire array with some transcrip-
tion factors/reporters showing very consistent results while other 
transcription factors/reporters being very inconsistent. We hy-
pothesize that one of the factors which affect the repeatability of 
a given experiment lies in the fact that there may exist compli-
cated feedback loops that affect the transcription of receptors for 
a given signal, whereas those which show a greater repeatability 
between trials probably have a direct transcriptional link such as 
the link between TNF-α -> NFkB -> IL-6 and Stat 3. 

4 DISCUSSION 
It is arguable that bi-clustering may not be needed and that 

one could easily construct a network by utilizing only the two-
fold change criteria and creating a link between the response 
element and a given gene. Such a network has been constructed 
in Figure 8. It is notable that the TNF-α NFkB  IL-6  
STAT3 link still exists. However, what this network is not able 

LPS

5 10 15 20 25

STAT3

NFkB

TNF-α

5 10 15 20 25

STAT3

NFkB

IFN-γ

5 10 15 20 25

STAT3

NFkB

 

 
 

LPS TNF-a IFNg IL6 IL1 Dex
NT 1 3 1 1 1 1

ISRE 1 3 2 1 1 2
AP-1 1 1 1 3 1 2

STAT3 2 2 1 1 1 1
NFkB 2 2 1 3 2 2
GRE 1 3 2 1 1 2
HSE 2 2 2 1 3 2
D4G 3 3 3 2 3 3  

Figure 5: A representative bi-cluster identified. The bi-
clustering algorithm is highly dependent upon the initial time 
series clustering 

 

Figure 6: The bi-partite repre-
sentation of the bi-clusters 
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to identify is the effect that Dex and IFN-γ have upon the overall 
system and leaving them as isolated interactions. This may be 
because given the current construction of the reporter genes, that 
the only significant change in activity is through activation, and 
therefore the effects of Dex and IFN-γ are not seen because they 
have a significant down-regulatory effect upon the other in-
flammatory cytokines such as IL6. The use of bi-clustering and 
the utilization of correlation have managed to deduce relation-
ships that are not necessarily feed forward activations.  

One of the issues that was of concern was the effect of noise 
upon the overall quality of the experiments, namely the repeat-
ability between trials as well as the overall effect it would have 
on the overall network. It has been shown that the presence of 
feedback loops themselves affect the noise propagation proper-
ties of a given transcriptional system (Dublanche et al. 2006), 
and that the effect is not entirely consistent. Normally, the hy-
pothesis is that a negative feedback loop ought to dampen noise, 
and that a positive feedback loop would increase noise, however 
it was found that the mere presence of loops has an indetermi-
nate effect upon the noise characteristics. From this conclusion, 
we believe that the differences in the overall noise levels meas-
ured is evidence of the presence of loops, something which was 
not isolated in the network that only utilized up/down regulation. 

Previously identified feedback loops such as those that in-
volve IL6 TNF-α(Moeniralam et al. 1997), glucocorticoste-
orids IL6(Barber et al. 1993; Takeda et al. 1998), and 
IL6 IFN- γ(McLoughlin et al. 2003)  are evident in Figure 7. 
Given that these loops have been previously identified in litera-
ture, we believe that the noise does not adversely affect the net-
works drawn via our bi-clustering methodology and serves as a 
confirmation of the fact that loops were isolated instead of inde-
pendent feed-forward cliques. We make the additional hypothe-
sis that the feedback loop IL6 TNF-α is mediated through the 
activity of IFN-γ which has not been directly established. How-
ever, it has been established that IFN-γ illustrates non-trivial 
effects on STAT3 and TNF-α (Kaur et al. 2003; Raponi et al. 
1997) making it a possible candidate as the hub which mediates 
feedback activity. This hypothesis shows that the value of the 
LCA/Biclustering lies not only in the validation of previously 
identified links, but also as a method for generating new testable 
hypotheses. Therefore, while not every gene shows a significant 
change in the activity, the use of correlation may still be able to 
identify the presence of other links besides feed forward loops 
and allows for a much more complete picture as to the overall 
regulatory pathway.  

This may arise primarily due to the fact that the LCA in its 
current iteration is more sensitive to the up-regulation of a given 
factor rather than the down-regulation of a factor. Therefore, a 
network built in such a fashion may be more complete if the 
LCA was better able to handle the down-regulation aspect of 
transcriptional networks. However, by utilizing correlation, it is 
still possible to ascertain many of the down-regulatory aspects 
of gene regulation. 

Additionally, we assert that a bi-clustering algorithm which 
was both globally optimal as well allowing for the arbitrary 
overlapping of bi-clusters is necessary. Additional bi-clustering 
was carried out utilizing BicAT(Barkow et al. 2006), which is a 
software package that has the options of running multiple clus-
tering algorithms such as CC(Cheng and Church 2000) and 

xMotifs(Murali and Kasif 2003). In this evaluation it was found 
that the method by Cheng and Church was the only one that was 
able to select non-trivial bi-clusters. The failure of the other bi-
clustering algorithms may be due to the structural constraints 
that are placed upon the data, something which may not be satis-
fied in the small dataset.  

 
 

Figure 7: The Directed Graph version of the bi-clustering data 
with HSE and LPS removed (no specific activators). The condi-
tion specific activators (red) regulate only a single reporter 
gene(black). The indrect effects observed in the LCA have been 
identified as secondary effects. The IL1->AP1 link was not in-
cluded because it was not found in a non-trivial bi-cluster. 

Figure 8: Network generated by looking only at significant acti-
vation. By ignoring the overall correlation between the different 
transcription factor activities, one is unable obtain networks which 
include the effects of Dexamethasone and Interferon Gamma 
upon inflammatory cytokines, nor obtain any feedback loops that 
characterize the biological system 

    Combining the bi-clustering results as well as the network 
architecture obtained via the directed graph, it is possible to 
make hypotheses as to the overall mechanism behind the re-
sponse to bacterial endotoxins. In the bi-clustering, it was found 
that LPS appears to regulate the activity of HSE, STAT3, and 
NFkB. Being that it regulate these reporter genes in similar fash-
ion as both TNF-α as well as IL-6, it appears that the primary 
mode of LPS upon the hepatic system is through TNF-α for 
which there is some evidence in other tissues (Miller-Larsson et 
al. 1999). Additionally, the production of IL-6 increases with the 
administration of LPS (Muramami et al. 1993), though the 
mechanism by the activation of IL-6 is not clear. One of the 
possibility is that the induction of IL-6 through LPS occurs 
through the TNF-α mechanism given observation that TNF-α 
itself stimulates the production of IL-6(King et al. 2007). How-
ever, it is also possible that IL-6 itself may be directly regulated 
via LPS. Evidence suggests the former due to the ability of 
TNF-α to stimulate IL-6, as well as the difficulty of distinguish-
ing between the modes of activation for STAT3 given the ad-
ministration of LPS, TNF-α or IL-6.  

One of the ongoing challenges in this bi-clustering framework 
lies in the creation of more efficient formulations that allow one 
to tackle larger problems. The current formulation is sufficient 
in solving problems up to around 200 transcription factors which 
is around the number of transcription factors which have been 
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previously identified(Harbison et al. 2004). However, improve-
ments to the formulation that make it more efficient would allow 
one to tackle problems that involve other aspects of intracellular 
signaling. So while the scaling aspect of both the experimental 
components that comprise up of LCA as well as the algorithms 
behind the analysis are sufficient for transcriptional networks, 
and improvement in efficiency is still desired. 

5 CONCLUSION/FUTURE WORK 
From the initial prototype of the LCA, it is possible to obtain 

a regulatory network which has many of the features that have 
been experimentally observed. For the most part, while the net-
work which has been identified via the LCA and bi-clustering 
appear to be well supported by experimental evidence, there are 
still issues that need to be worked out such as the large amount 
of error between replicates with a few of the reporters. It may be 
that this lack of repeatability suggests a more complex mecha-
nism as previously proposed. However this is still an issue that 
needs to be addressed.   

One of the exciting things with the LCA which has not been 
directly addressed at this point is the possibility of whether the 
LCA would be able to predict the overall behavior of the system 
to a composite stimulus. In the original LCA experiment, there 
were conditions that represented the composite inputs of multi-
ple factors such as IL-6, IL-1, TNF-α, and Interferon Gamma. 
While it has not been done, it would be beneficial to test 
whether quantifying the identified network under the cases with 
a single stimulus would allow for the prediction of gene activa-
tion under a composite stimulus. If this were possible, then it 
would allow researcher to use the LCA to rapidly decipher the 
mechanism by which cells respond to external stimulus. 
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