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ABSTRACT 
 
The purpose of this paper is to evaluate the hypothesis that a systems biology approach 
can be developed such that a set of transcription factors, relevant to burn-induced 
inflammatory response can be identified and modulated to control the host response. We 
explore a novel method for identifying coherent and informative expression motifs and 
we subsequently determine conserved transcription factor binding sites for the sub-sets of 
co-expressed genes. The responses are rationalized in the context of burn induced 
inflammation and the putative transcription factors are rationalized in the context of 
intervention targets for controlling gene expression. 
 
INTRODUCTION 
 
Deep thermal injury over greater than 20 percent of the total body surface area is one of 
the most severe forms of trauma. Following the early acute phase response dealing with 
the initial injury and shock[1], there exists an equally serious secondary response which 
include changes in metabolism leading to hypermetabolism and catabolism, decreased 
function of the immune system, and sepsis[2]. Due to improvements in hospital care, 
more burn victims survive the acute response to the injury, and are faced with the 
secondary effects of thermal injury, which have proven to be more difficult to treat and 
control. In particular, prolonged sepsis and hypermetabolism following severe injury can 
result in MODS (Multiple Organ Dysfunction Syndrome), currently the most common 
cause of death in noncoronary intensive care units in the U.S.[3, 4]. A better 
understanding of the mechanisms by which the early responses to thermal injury 
predispose to the later hypermetabolic state would make it possible to define points of 
intervention by which such outcomes can be avoided. 
 
The response to burn injury and trauma results from a complex interplay between 
inflammation caused by the initial injury and hypermetabolism. The advent of DNA 
microarrays enables to systematically examine expression changes of a very large 
number of genes, which provides an opportunity to identify pathways which have not 
been previously known as important. Given the importance to better understand the 
progression of the response after injury, temporal expression profiling in which the 
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dynamics of mRNA expression are measured over time is more useful than simply the 
measurement of gene expression pre burn and post burn.  
 
Changes in energy expenditure, increased glucose and lipid turnover are hallmarks of the 
hypermetabolic state [5]. Given that the liver plays a key role in metabolic processes of 
energy production, gluconeogenesis and lipid synthesis and oxidation, it is likely that the 
liver is one of the primary organs driving the systemic response to severe thermal 
injury[6]. Furthermore, a better understanding of the liver response to thermal injury may 
provide mechanistic insights and suggest new ways in which the hypermetabolism 
associated with severe thermal injury could be mitigated or even prevented. 
 
To use temporal expression data from microarrays to formulate possible compensatory 
strategies the following steps must be accomplished: 
 

1. Selection and Classification of Relevant Genes 
2. Functional Characterization of extracted genes 
3. Generation of Hypothetical Regulatory Networks 
4. Associating between Functional Characterization and Regulatory Networks 

 
We will propose an integrative method that combines temporal gene expression profiling, 
sequence analysis, database mining and network construction in order to formulate the 
parameters for a future experiment to better understand the response of an organism to 
severe burn injury. It is our goal to place the bioinformatics approach into an iterative 
formalism where experimental data guides data analysis which in turn guides the course 
of future experiments.  
 
 
 
METHODS 
 
Prominent in engineering analysis is the concept of developing appropriate mathematical 
representations of the response of the system in order to identify critical components and 
optimal strategies [7, 8]. Biological systems, much like reaction engineering systems are 
characterized by input, output, control variables and an underlying dynamic model that 
propagates disturbances due to input variability across the system. These are manifested 
in the response of the output variables. The goal of an engineering analysis is to identify 
the control points that modulare the response. An additional complexity of biological 
systems is that, by and large, fundamental first principles models that describe these 
dynamic responses are not available. Therefore, data-based methods are needed to 
develop appropriate models and dependencies. This is a well accepted paradigm in 
chemical engineering that has generated significant success.  In order to enable the 
development of such descriptive models a number of critical questions need to be 
answered. Specifically: 

1. we need to identify the inherent dynamic of the system and the informative output 
variables that best characterize that response 

2. we need to identify the controls that modulate the observed responses, and finally 
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3. we need to determine the functional relationships that dictate how inputs 
propagate across the systems and how outputs are modulated by the controls.  

 
In the sections that follow we identify these steps and demonstrate how such models can 
be generated and analyzed to identify and propose intervention strategies that modulate 
the systemic response. 
 
 
Experimental Data 
 
In a previously published study, male Sprague-Dawley rats were subjected to a cutaneous 
3rd degree burn injury consisting of a full skin thickness scald burn of the dorsum, 
calculated to be ~20% of the rat’s total body surface area[9]. Liver samples were obtained 
at 5 time points (0, 1, 4, 8, and 24h post burn). RNA extracted from the extracted livers 
was isolated and subsequently hybridized to a U34A GeneChip that had 8,799 probes 
represented on each chip.  The control for this experiment was obtained at time 0, which 
was prior to the injury. It has been previously shown that time had no significant effect 
upon the response of rats to the sham treatment [10]. 
 
Selection and Classification of Relevant Genes 
 
One of the strengths of microarrays is the fact that they are able to measure the levels of 
gene expression of thousands of genes at once. Therefore, the researcher is able to 
measure the expression levels of genes whose role in a given biological phenomenon was 
previously unknown. However, this strength is problematic for researchers because it 
then becomes difficult to determine which gene expression levels are important to the 
organism’s response to an external stimulus. 
 
Most automated techniques such as dChip, MAS5, PMMM, ANOVA, t-tests, and RMA 
attempt to extract genes from microarrays based upon the notion that genes which show 
statistically significant changes in gene expression levels ought to be informative[11]. 
The primary drawback with these methods is that they look for genes whose differential 
expression is statistically significant rather than evaluating whether or not a given gene is 
relevant to the experiment at hand. The difference between a statistically significant gene 
and a gene which is relevant to the experiment is a subtle but important one. This 
difference arises due primarily to the dynamic nature of homeostasis. Even in an 
unperturbed state there is significant transcriptional activity taking place within the 
organism regulating events such as feeding, resting, or physical activity. Therefore, even 
in a control state in which the organism has not been experimentally perturbed, there 
ought to be gene expression profiles which change at a statistically significant level. 
However, what researchers should be interested in is the identification of gene expression 
profiles that are directly responding to the experimental perturbation and not just genes 
that show a statistically significant dynamic. 
 
Adjunct to this concern is the fact that the currently established filtering techniques are 
essentially answering the wrong question. All of these techniques were derived in 
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response to two state microarray experiments in which the primary question was, “Does 
the gene expression of a given gene change significantly between the two states.” 
However, with temporal expression microarray data the relevant question should be, “Is 
the shape of the temporal expression profile accurate.”  
 
SLINGSHOTS(SeLection of Informative Genes via Symbolic Hashing of Time Series) 
was developed specifically to isolate genes that could be hypothesized to be important to 
the underlying response of an organism. The fundamental hypothesis which underlies 
SLINGSHOTS is that in response to an external perturbation, there ought to be a 
coordinated set of genes whose expression profiles are highly correlated. In addition to 
this, this set of genes in aggregate ought to illustrate significant deviations from the 
baseline distribution of expression levels. By identifying these genes, one ought to be 
able to obtain the genes whose expression profiles are representative of the underlying 
changes. The prime innovation of this technique is that the selection criteria uses a global 
metric to assess the “informativeness” of the isolated genes by evaluating the set in 
aggregate rather than the local metrics used by other selection techniques which checks 
the informativeness of each genes individually. The details of the method were recently 
discussed in [12]. 
 
SLINGSHOTS is broken down into two related steps, a hashing step in which the genes 
are clustered into a large number of highly correlated clusters, and a selection step in 
which a set of these clusters is evaluated for their ability to represent the experimental 
perturbation. The behavior of SLINGSHOTS is defined by two primary parameters, α 
and w, of which α is the size of the alphabet used and w is the number of time points to 
average together for longer time series. In this evaluation, α was selected to be 4 and w 
was selected to be 1. Given that the clustering and selection are combined, the results of 
the selection are already clustered negating the need for a separate clustering step.  
 
The result of the hashing step is a large set of gene clusters of which all of the gene 
expressions show a correlation coefficient to the average profile above a certain 
threshold. Unlike in QT clustering where the threshold is set explicitly, SLINGSHOTS 
sets this cutoff through a combination of w and alpha. In this case, the minimum 
correlation coefficient for any of the given clusters is greater than .75. 
 
The identification of clusters that comprise up of the hypothetical primary response of the 
organism to thermal injury then allows for further analysis in terms of the functional role 
of the genes and the identification of the regulatory mechanisms which give rise to the 
observed expression profiles. The following steps will allow for the identification of 
possible mechanism with which to mediate the undesired responses associated with 
severe thermal injuries. 
 
Identification of Functional Ontologies 
 
The purpose behind the identification of functional ontologies is the determination of the 
underlying biological processes that are related to the phenomenon being investigated. 
This essentially allows for the interpretation of the biological significance of isolated 
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genes. This will be conducted by isolating the ontologies which are related to the selected 
genes via the database present at www.geneontology.org[13]. The primary assumption 
behind this analysis is that co-expressed genes ought to have related functionality [14]. 
Therefore, by looking at an aggregate set of clustered genes, it is expected that there 
should preference of certain biological process ontologies to be localized to a specific 
cluster.  
 
To determine which of the isolated processes are significant, it is important to determine 
which of the associated ontologies are enriched at a statistically significant level ( p < 
.05). Due to the fact that many genes can participate in different biological processes 
especially those associated with cellular signaling, it is important to determine which of 
these biological processes are consistent over all of the selected and clustered genes. This 
is done utilizing the hypergeometric distribution. The hypergeometric distribution 
however, is inaccurate if the total number of counts is less than five, a more accurate 
assessment of the count is given by the Fisher distribution[13, 15]. A secondary benefit of 
such analysis is that it allows for an ad hoc evaluation as to the correctness of selection 
and clustering. If the genes that were isolated and classified do not show any notable 
enrichment, then it would suggest that there was a flaw in the either the data or the 
methodology.  
 
Regulatory Network Construction 
 
The dynamic response of biological organisms is governed by a large interconnected 
network which ties the response of each gene to intercellular conditions or the expression 
levels of other genes. Part of the rationale behind conducting temporal gene expression 
experiments is that the measured dynamics can help in the construction of a 
transcriptional network which gives insights as to how an organism responds to external 
stimulus. We make the additional assumption that by grouping genes into co-expressed 
clusters, the network is simplified through the assumption that these co-expressed genes 
are regulated by the same mechanism. This prunes many of the connections thereby 
simplifying the overall network. This network can be further simplified by treating it as a 
bi-partite graph Figure 1, in which a set of inputs drives a set of output. It does not 
explicitly model the existence of feedback loops. However, feedback loops can be 
handled if an input gene is also present in the output. For example, if a transcription 
factor such as GATA6 were driving the system, it could also be present in the output. 
Therefore, despite the fact that a bi-partite graph is a simplification of the overall network 
interactions, it is possible to retrieve the original DAG (Directed Acyclic Graph) from a 
bipartite network[16]. The primary benefit of treating our gene regulatory network as a 
bi-partite graph, is that there are robust methods for estimating the connectivity strengths 
from gene expression data such as NCA (Network Component Analysis)[17, 18].  
 
Various methods exist for the construction of transcriptional networks from gene 
expression data. These techniques fall broadly under two primary categories of 
algorithms, those which seek to identify relationships between the expression level of 
different genes over multiple conditions[19, 20], and those which utilize outside 
information to generate regulatory network such as using the set of gene regulators which 

Page 5 of 28 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

have been previously identified, or analyzing the promoter region to look for possible 
links between genes and their regulators[21-23]. Given the form of our data which 
consists of a single condition and five time points, the construction of the network 
requires external data in the form of predicted transcription factor binding sites. Due to 
the relative dearth of data, it is imperative for us to localize our analysis to a small portion 
of the regulatory network, namely the genes and regulators that are directly responding to 
the input perturbation, and hence make the gene selection process discussed previously 
an integral part of the analysis. 
 
The network associated with temporal gene expression data is the gene regulatory 
network in which the primary links are the transcription factors whose activity mediates 
the production of the genes. Transcription factors are proteins that bind to the promoter 
region of a given gene and through that activity can either up or down-regulate the gene 
expression of that gene. Given that transcription factors themselves are genes, they are 
also regulated by other transcription factors and sometimes by a protein product further 
down in the signaling cascade which they initiate[24]. In yeast, many of the transcription 
factors have been experimentally identified. However, in more complex mammalian 
systems such as rat, there is a limited number of experimental information forcing the use 
of algorithms which predict transcription factor binding sites. These transcription factors 
binding site prediction algorithms fall under two general categories, algorithms such as 
AlignACE[21] which work by looking for over-expressed motifs (n-mers) within the 
promoter region of a cluster of genes, and those like CONSITE[25], which base their 
predictions off transcription factor position weight matrices which are obtained 
experimentally through procedures such as SELEX[26]. The latter method was chosen 
for this analysis due to the relative difficulty in associating the over-expressed motifs to 
transcription factors whereas the second method is based off of known transcription 
factors.  The specific tool used for the determination of possible transcription factor 
binding sites was CORG(COmparative Regulatory Genomic)[27], which is an online tool 
that is able to extract the promoter sequence from homologous genes between two 
organisms and obtain the associated transcription factor binding sites. The one piece of 
information which we utilized was simply whether or not a possible connection existed 
between a transcription factor an its associated binding site.  
 
RESULTS 

 
Out of the original 8799 probes, the algorithm has identified 281 probes corresponding to 
208 known genes located in four clusters Appendix 2 of which the z-score normalized 
expression profiles are given in Figure 2. The transcriptional state of these genes over the 
experimental time course is given in Figure 3, and what is clearly evident is that these 
genes illustrate a two-wave response to the initial burn injury. At Hour 1, a large disjoint 
in the transcriptional levels can be seen in where there is a large amount of activity with 
all of the genes either significantly up-regulated or down-regulated. At Hours 4 and 8, the 
expression profiles are fairly close to the pre-injury profile, suggesting a return to the 
initial homeostatic state. Then, at Hour 24, an even greater disjoint representing a major 
shift in the cellular transcriptional state is visible, which is associated with an abundant 
over-expression of the inflammation marker and acute phase protein A2M (Alpha 2 
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Macroglobulin). Elucidating the mechanism that gives rise to this more delayed response 
would have significant implications in the treatment of severe thermal injury.  
 
In the transformation from gene expression profile to hash value by SLINGSHOTS[28], 
the z-score normalization was used Therefore scale information is discounted when 
forming the clusters. Commonly used selection metrics such as n-fold changes or t-test 
require the preservation of scale information within the individual expression profiles. 
Since this information is eliminated during the transformation, the selection of incorrect 
genes was a concern. If for the most part, the selected genes are part of co-regulated 
processes and the clusters that were selected, there ought to be a distinct separation in the 
functional ontologies between the different clusters. The ontology localization is evident 
in Figure 4. It is clearly evident that the ontologies are indeed localized to the cluster, 
and despite the fact that Clusters 2 and 3 seem to differ by only one time point after 
normalization, they do encapsulate two different sets of functions. 
 
Taking the set of genes as a whole instead of as four clusters, we find that the most 
significant biological processes revolve around metabolism, inflammation, protein 
production, and signaling which is in agreement with the macroscopic observations of 
pathophysiology after severe thermal injury. The localization of functional ontologies to 
each cluster suggests to us that our clustering is indeed correct and the selection of 
significant ontologies related to metabolism, inflammation and protein catabolism and 
synthesis suggests that the selection process was likewise successful. However, while 
significant processes and their underlying dynamics have been identified, there still 
remains an open question as to what the best way to mediate the response of the system. 
 
The most prevalent transcription factors amongst all of the clusters are STAT5/STAT6 
associated with the JAK-STAT pathway, and TEF1 (Translation Elongation Factor). 
While there are genes which are part of the JAK-STAT pathway expressed in Cluster 4 
such as erythropoietin, the JAK-STAT transcription regulation pathway is not 
particularly informative due to its widespread use in cellular signaling. In fact, looking at 
a random selection of genes, the JAK-STAT pathway is found to also be highly 
prevalent. 
 
The only clusters with a consistent set of transcription factors binding sites that were not 
STAT5, STAT6, and TEF1 amongst the genes of that cluster (greater than 95% of 
identified genes containing a transcription factor binding site) were Clusters 2 and 4. It 
was somewhat surprising that we weren’t able to find a small set of transcription factors 
that regulated all of the clusters. However, it was noticed that the clusters that contained a 
significant set of genes that coded for transcription factors had a consistent set of 
activators, while the clusters of genes that did not contain transcription factors (Cluster 1 
and 3) were not regulated by transcription factors other than STAT5 and STAT6. The 
associated transcription factors are given in Table 1. 
 
The primary activators that we found were AP2 Alpha, GATA 6, and CIZ. AP2 Alpha 
was localized to Cluster 2, while GATA 6 and CIZ were co-localized to Cluster 4. While 
Cluster 1 and Cluster 3 did not have a set of consistent transcriptional regulators, they did 
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however, have a large fraction of genes that were regulated by the Octamer Binding 
Family (OCT) of transcription factors and genes that respond to myogenin (MYOD) both 
of which are transcription factors that were present in Cluster 2 and 4. This suggests that 
there are some elements of a signaling cascade within the transcriptional regulatory 
network. A gross overview of the transcriptional network is given in Figure 5.  
 

 
Discussion 
 
From the results of the clustering, we find that the two wave phenomenon can be 
rationalized by the expression dynamics of Cluster 1 and Cluster 4, in which Cluster 1 
remains constant up until Hour 24 in which there is a large increase in the level of gene 
expression. Cluster 4 is indicative of the early response showing significant up-regulation 
during this period, and a relaxation afterwards with significant overshoot. Clusters 2 and 
3 are similar in terms of their response except at Hour 1 with Cluster 1 remaining 
constant up until that time and Cluster 3 being down regulated at Hour 1. 
 
Characteristic of the genes that show activity early on such as Cluster 3 and 4, we find 
that there is a significant over-representation of genes that code for transcription factors, 
regulate metabolism, and protein production within these clusters Appendix 2. We 
hypothesize that the initial thermal injury causes the change in the expression levels of 
Clusters 3 and 4, which affect the dynamics of Cluster 1 and 2, either directly through the 
production of transcription factors or indirectly by altering the levels of circulating 
metabolites  through changes in metabolism of macromolecules such as proteins, 
carbohydrates and fatty acids.  
 
Coupled with the transcriptional driving forces found within these genes, are associated 
metabolic processes associated with catecholamines which are important in the 
hypermetabolic response seen after thermal injury[5, 29].  Although the hypermetabolic 
response is known to occur 3 days or more after injury, the presence of these metabolic 
genes in Appendix 2 suggests that there is a significant metabolic component early on in 
the response of the burn injury. It is currently unclear as to whether these early changes in 
liver metabolism and corresponding changes in levels of metabolites in the circulation 
play a role in the subsequent more systemic and chronic changes in metabolism and the 
inflammatory response, events that lie outside of the experimental time frame analyzed 
herein. There is evidence that the sustained inflammation leads to inhibition of 
transporters leading to abnormal levels of circulating metabolites such as lipids and 
glucose[30, 31], which may affect the other organs in the organism.  
 
As part of the early response to thermal injury, a large portion of the genes appears to be 
either metabolic in nature or involved in transcriptional signaling. Cluster 4, which has an 
immediate response at Hour 1, contains genes that are responsible for the metabolism of 
fatty acids. This is paired with the activity in Cluster 2 in which a major component of its 
activity is a corresponding down-regulation in fatty acid transport. It has been noted in 
previous work that gene expression levels often do not correlate well with the levels of 
their corresponding metabolites in circulation[9]. This opposing dynamics of the fatty 
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acid transporters and the fatty acid enzymes suggests that the levels of fatty acids are 
controlled by competing transport and metabolic processes. Coupled with the changes in 
metabolism are a series of transcriptional changes. What we find is that within these early 
response clusters, there are changes in expression of murinoglobulin 1, and complement 
component 5. These regulate key inflammatory and acute phase responses and work to 
dampen the long term inflammatory response of the genes found in Clusters 1 and 2[32, 
33]. 
 
The longer term responses shown by Clusters 1 and 2 seem to revolve around a 
transcriptional signaling component and a protein catabolism component. Given the 
localization of protein catabolism along with inflammation in Cluster 1, we believe that 
the increased protein turnover rate may be one of the primary driving forces leading to 
the hypermetabolic state. So, while there are undoubtedly changes in the energetics of an 
organism after thermal injury, we believe that long-term changes in energetics manifest 
themselves primarily in the levels of protein turnover rate. Given the severe fall in ATP 
levels[9] post burn, we believe the organism is making up for a significant shortfall in 
available energy through the catabolism of protein. This counter-productive process may 
be one of the significant barriers to recovery from thermal injury. 
 
While there is a significant metabolic component to the burn response, there is also a 
significant role played by transcriptional signaling pathways. The regulatory network 
which we were able to infer from a combination of gene expression data and promoter 
region analysis has suggested 3 possible initiators of the burn response GATA 6, AP2 
Alpha, and CIZ. We believe that the identification of these initiatory transcription factors 
are not wholly unreasonable. These three transcription factors have been cited in 
functions related to inflammation[34-36]. Unlike other factors such as the ubiquitous 
JAK-STAT pathway, these transcription factors offer the best hope of altering individual 
burn injury-induced responses independently.  
 
While Clusters 2 and 4 have a possible set of regulators with which their responses can be 
perturbed, Clusters 1 and 3 do not have a readily apparent set of regulators. It is possible 
that the co-expression of the genes within Clusters 1 and 3 is due primarily to the co-
expression of their regulators, meaning that the genes in Clusters 1 and 3 may be co-
expressed not because they have precisely the same regulators, but because the activity of 
their individual regulators is similar. Looking at Clusters 2 and 4, we find a set of 
regulators which may not bind to the same recognition sequence but may have very 
similar responses, of which the most notable ones are MYOG and the POU family of 
transcription factors which are known to be important regulators in liver. MYOG is 
present in more than 35% of the genes found in Clusters 1,2,3. This is notable given the 
relative long length of the MYOG recognition sequence which is 29 base pairs long. 
Finding it in such a large number of promoter regions is highly statistically significant 
given the fact that the expected hit rate of MYOG is 1 out of 5.21x1012 bases. What is 
even more notable is that MYOG is found in many of the genes which are responsible for 
metabolism, including catecholamine metabolism. The transcription factor family POU 
seems to be more biased towards the genes which code for calcium and potassium ion 
channels. Given that the transcription factor MYOG is highly significant in terms of the 
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number of matches, and the fact that it appears to regulate genes related to metabolism 
rather than the genes associated with inflammation, we hypothesize that by altering the 
activity of MYOG, we may be able to affect the severity of the hypermetabolism while 
having a minimal impact upon the inflammatory respose. 
 
CONCLUSIONS 
 
The role of bioinformatics is not to look for answers independently of experimentation, 
but rather to look for the basis of new experiments. By integrating the experimental gene 
expression data with genomic data and the results of SELEX experiments, we were able 
construct a rough network which gave hints as to possible points of intervention. Seeking 
to prevent the induction of the system into hypermetabolism, we have identified the 
myogenin transcription factor as perhaps one of the critical signals which drives the 
system from its acute response to burn injury to the longer term systemic hypermetabolic 
state.  
 
Identifying a regulatory layer and the core nodes of that layer provides a mechanism to 
elucidate intervention points to attenuate the inflammatory process. Intervention utilizing 
these TF proteins could theoretically take one of three forms: 1) inhibition of TF 
production using knockout or silencing techniques; 2) blocking TF activity through 
competitive inhibition; 3) blocking TF activity through suicide inhibition. Promising 
approaches for silencing focus on the use of siRNA techniques [37]. In this approach 
double-stranded RNA (dsRNA) is digested by the dsRNA-specific RNase III enzyme 
dicer into small interfering RNAs (siRNAs). The siRNAs then assemble with a 
multiprotein nuclease complex, RNA-induced silencing complex [38], which unwinds the 
dsRNAs and degrades target mRNAs homologous to the single stranded siRNA in a 
sequence-specific manner. The result of this process is the degradation of mRNA needed 
as a template for protein production, thereby inhibiting the production process, and 
depleting pools of proteins needed for specific enzymatic reactions. One specific example 
of siRNA utilized for intervention in inflammatory response is the application of siRNA 
techniques to inhibition the production of  STAT-3 in order to elucidate key signaling 
molecules in the inflammatory response pathway [39]. Therefore, a key advantage of the 
methodology discussed in this work is the systematic identification of several putative 
regulatory proteins of the inflammatory response, thus enabling the rational selection of 
multiple targets and design of combination therapies for the modulation of the 
inflammatory response. 
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Figure 1: A bi-partite representation of a transcriptional network and its associated DAG. There is no loss 
in generality in terms of the possible networks that can be represented. The representation as a bi-partite 
network however allows for efficient quantification of the network through various algorithms such as 
NCA and PLS. 
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Figure 2: The expression profiles of the selected genes. Clusters 3 and 4 have an early phase response, 
while Cluster 1 and 2 primarily have a late term response 
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Figure 3: The transcriptional state of the selected genes. At t = 1 and t = 24, we have evidence of a 2 wave 
effect in which significant transcriptional processes are being altered. The response at t=1 is evidence of the 
short term compensatory mechanism, while the response at t = 24 represents a, potentially irreversible, state 
change into the chronic inflammation and hypermetabolic state. 
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Figure 4: The enrichment of ontologies associated with the clustered and selected genes. The diagonally 
dominant nature of the graph suggests that our clustering has indeed separated out genes with related 
functionalities despite superficial similarities in their overall shape. 
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Figure 5: A gross schematic of the predicted response mechanisms. The notable thing is that MYOG which 
is up-regulated early is a regulator in a significant number of genes in Cluster 1 and 2, and may drive the 
secondary response. 
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Cluster  Associated Transcription Factors 
1 STAT5, STAT6, TEF1 
2 AP2-Alpha 
3 STAT5, STAT6 
4 TEF1, STAT5, STAT6, CIZ, CDXA, 

GATA6, AP2-Alpha 
Table 1: Associated transcription factors. Those highlighted in orange are transcription factors that 
are highly conserved, but not found 
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APPENDIX 1 
 
1. Normalization of the gene expression profile to N(0,1) via the z-score transform. 
 
2. If the sequences are longer than 10 time points, piecewise averaging is conducted, 

i.e. averaging together sets of n time points to reduce the exponential expansion of 
the search space. In the case of our data, the 17 time points are interpolated to 18 
time points, and the time series are broken down into sets of 2 to be piecewise 
averaged 

 
3. These piecewise averaged points are then converted into symbols through the use 

of Gaussian breakpoints. Gaussian breakpoints are divisions in the Gaussian 
distribution such that the cumulative probability of each section are equivalent. 
These can be obtained through the use of CDF tables found in statistics text books 
or by solving the following equation for b: 

 
1 1 ;

1 2 2
1,.., ; number of breakpoints; b = breakpoint value

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟− ⎝ ⎠⎣ ⎦
= =

i berf
k
i k k

 

 
The overall process of assigning a letter to each piecewise averaged point is illustrated in 
below: 
 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10 12 14 16 18 20

time (arbitrary units)

N
or

m
al

iz
ed

/A
ve

ra
ge

d 
E

xp
re

ss
io

n

0

2000

4000

6000

8000

10000

12000

14000

16000

R
aw

 E
xp

re
ss

io
n

Normalized Piecewise Averaged Raw

"c"

"a"

"b"

Page 20 of 28 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

 
4. After the symbolic transformation, the series of symbols is converted into a single 

integer via the formula: 
 

1

1

( , , ) 1 [ ( ) 1]
w

j
j

j

hash c w a ord c a −

=

= + − ×∑  

 
Where c is the letter assigned to each piecewise averaged point, a is the size of the 
alphabet(3), and w is the total length of the expression profile divided by the number of 
points per piecewise average (2).  The parameters of the alphabet were selected to so that 
the population distribution of motifs is non-exponential, to reflect the non-random 
distribution of expression profiles present in the data. w was chosen to preserve as much 
of the high frequency component of the signal as possible. 
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APPENDIX 2 
 

Informative genes, class membership and ontology annotation.  

 
 

Gene ID Gene Cluster Function 
AI030286 brain derived neurotrophic factor 1 Apoptosis 
AA859878 ret proto-oncogene 1 Cell Cycle Regulation 
AI234604 heat shock protein 8 1 Cell Cycle Regulation 

U60416 myosin 5B 1 
Cytoskeleton 
Organization 

AI171243 replication protein A3 (predicted) 1 DNA Repair 
Z50084 Ameloblastin 1 ECM Organization 
AA874941 Adipose differentiation-related protein 1 Fatty Acid Transport 
AA819776 heat shock 90kDa protein 1, alpha-like 3 (predicted) 1 Heat Shock 
M23566 alpha-2-macroglobulin 1 Inflammation 
AA900582 alpha-2-macroglobulin 1 Inflammation 
X13983 alpha-2-macroglobulin 1 Inflammation 
M22670 alpha-2-macroglobulin 1 Inflammation 
M22670 alpha-2-macroglobulin 1 Inflammation 
M83209 parotid secretory protein 1 L-serine biosynthesis 
D10233 renin binding protein 1 Metabolism 
L12407 dopamine beta hydroxylase 1 Metabolism 
L26043 perilipin 1 Metabolism 

U24071 unc-13 homolog B (C. elegans) 1 
Neurotransmitter 
secretion 

D64061 eukaryotic translation initiation factor 5B 1 Protein Biosynthesis 
AA892680 peptidylprolyl isomerase (cyclophilin)-like 3 1 Protein Biosynthesis 

D50696 
peptidase (prosome, macropain) 26S subunit, ATPase 
1 1 Protein Catabolism 

U50194 tripeptidyl peptidase II 1 Protein Catabolism 
D10699 ubiquitin carboxy-terminal hydrolase L1 1 Protein Catabolism 
D45247 proteasome (prosome, macropain) subunit, beta type 5 1 Protein Catabolism 
D21799 proteasome (prosome, macropain) subunit, beta type 2 1 Protein Catabolism 

D90265 
proteasome (prosome, macropain) subunit, alpha type 
1 1 Protein Catabolism 

AF054270 prolactin induced protein 1 Protein Processing 
X93352 ribosomal protein L10A 1 Protein Synthesis 
AA891713 ribosomal protein L13A 1 Protein Synthesis 
M17419 ribosomal protein L5 1 Protein Synthesis 
AI170685 DnaJ (Hsp40) homolog, subfamily A, member 2 1 Protein Synthesis 
AI103238 regulatory subunit B (PR 52), beta isoform 1 Reproduction 
AB011068 deiodinase, iodothyronine, type II 1 Response to Cold 
X68400 protein kinase C, eta 1 Signaling 
D45412 protein tyrosine phosphatase, receptor type, O 1 Signaling 
M17526 guanine nucleotide binding protein, alpha o 1 Signaling 
AF064706 G protein-coupled receptor 6 1 Signaling 
U66274 neuropeptide Y receptor Y5 1 Signaling 
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D15069 adrenomedullin 1 Signaling 
Z35654 mcf.2 transforming sequence-like 1 Signaling 
AA859752 noggin 1 Skeletal Development 
AF053101 paired box gene 4 1 Transcription 
AI639353 pleiotropic regulator 1  homolog (Arabidopsis) 1 Transcription 
AF062594 nucleosome assembly protein 1-like 1 1 Transcription 
AA866472 Nucleosome assembly protein 1-like 1 1 Transcription 

M99221 
calcium channel, voltage-dependent, L type, alpha 1D 
subunit 1 Transport 

X78997 cadherin 17 1 Transport 
AF019043 dynamin 1-like 1 Transport 
X81448 Similar to cytokeratin 1 No Identified Ontologies
AI104388 aurora-A kinase interacting protein 1 No Identified Ontologies
AA891829 WD40 protein Ciao1 (predicted) 1 No Identified Ontologies
X99338 stromal cell derived factor receptor 1 1 No Identified Ontologies
X77815 variable coding sequence A2 1 No Identified Ontologies
AI072634 --- 1 No Identified Ontologies
AA859804 --- 1 No Identified Ontologies
AA892310 --- 1 No Identified Ontologies
AA800017 Similar to hypothetical protein BC011833 (predicted) 1 No Identified Ontologies
AA893307 Nuclear cap binding protein subunit 2 (predicted) 1 No Identified Ontologies
H31648 Transcribed locus 1 No Identified Ontologies
AA874849 --- 1 No Identified Ontologies
AA892369 --- 1 No Identified Ontologies
AA894054 CDNA clone IMAGE:7326015 1 No Identified Ontologies
AA956941 --- 1 No Identified Ontologies
AA892818 Transcribed locus 1 No Identified Ontologies
M13949 --- 1 No Identified Ontologies
AA800275 Transcribed locus 1 No Identified Ontologies
AA799865 Transcribed locus 1 No Identified Ontologies
AI639039 --- 1 No Identified Ontologies
AA875554 Transcribed locus 1 No Identified Ontologies
H33467 Transcribed locus 1 No Identified Ontologies
H31753 Transcribed locus 1 No Identified Ontologies
AI230789 --- 1 No Identified Ontologies
AI639464 --- 1 No Identified Ontologies
AI639289 --- 1 No Identified Ontologies
AI639459 --- 1 No Identified Ontologies
AI639033 --- 1 No Identified Ontologies
AA800948 similar to Tubulin alpha-4 chain (Alpha-tubulin 4) 1 No Identified Ontologies
L03386 Olf-1/EBF associated Zn finger protein Roaz 1 No Identified Ontologies
U66707 densin-180 1 No Identified Ontologies
AF053987 putative pheromone receptor V2R1 1 No Identified Ontologies
AF079873 zinc finger protein 162 2 Apoptosis 
AI070295 --- 2 Apoptosis 
AA945608 serum amyloid P-component 2 Cell Adhesion 

AA859869 
proteasome (prosome, macropain) 26S subunit, non-
ATPase, 1 2 Cell Cycle Regulation 

X67805 synaptonemal complex protein 1 2 Cytokinesis 
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AF017757 axin2 2 Development 
AA893280 adipose differentiation-related protein 2 Fatty Acid Transport 
AA858520 follistatin 2 Gametogenesis 

AB014722 
squamous cell carcinoma antigen recognized by T-cells 
1 2 Immune Response 

J05446 glycogen synthase 2 2 Metabolism 
AA891286 thioredoxin reductase 1 2 Metabolism 
M27440 apolipoprotein B 2 Metabolism 

S78217 
protein phosphatase 1, catalytic subunit, gamma 
isoform 2 Metabolism 

S78218 protein phosphatase 1, catalytic subunit, beta isoform 2 Metabolism 
J02810 glutathione S-transferase, mu 1 2 Metabolism 
U91847 mitogen activated protein kinase 14 2 Metabolism 
AA859920 Nucleosome assembly protein 1-like 1 2 Nucleosome Assembly 
U95052 Eukaryotic translation initiation factor 4 gamma, 2 2 Protein Biosynthesis 

AA875205 
eukaryotic translation initiation factor 3, subunit 9 (eta) 
(predicted) 2 Protein Biosynthesis 

U13176 ubiquitin-conjugating enzyme E2D 2 2 Protein Catabolism 
L38615 glutathione synthetase 2 Protein Catabolism 
U48592 interleukin 1 receptor accessory protein 2 Signaling 
M23591 protein phosphatase 2a, catalytic subunit, beta isoform 2 Signaling 
X16044 protein phosphatase 2a, catalytic subunit, beta isoform 2 Signaling 
X89704 olfactory receptor 1283 2 Signaling 
AF055291 signal transducer and activator of transcription 4 2 Signaling 
AF037199 RE1-silencing transcription factor 2 Transcription 
AB017044 forkhead box A3 2 Transcription 
AB017044 forkhead box A3 2 Transcription 
AI177751 transcription elongation factor B (SIII), polypeptide 1 2 Transcription 
AI104524 heterogeneous nuclear ribonucleoprotein A/B 2 Transcription 
X66022 neuronal d4 domain family member 2 Transcription 
AJ001641 POU domain, class 3, transcription factor 3 2 Transcription 
M18416 early growth response 1 2 Transcription 
D17711 heterogeneous nuclear ribonucleoprotein K 2 Transcription 
S59893 Sjogren syndrome antigen B 2 Transcription 
AF044910 survival of motor neuron 1, telomeric 2 Transcription 
X62145 ribosomal protein L8 2 Transcription 

AF083341 
potassium large conductance calcium-activated 
channel 2 Transport 

J05510 inositol 1,4,5-triphosphate receptor 1 2 Transport 

AA799276 
ATPase, Ca++ transporting, cardiac muscle, slow 
twitch 2 2 Transport 

J03969 nucleophosmin 1 2 Transport 
U12402 ADP-ribosylation factor-like 1 2 Transport 
AA875099 nuclear pore associated protein 2 Transport 
H31747 --- 2 Transport 

H32977 
actin related protein 2/3 complex, subunit 5-like 
(predicted) 2 No Identified Ontologies

D88035 
beta-1,3-glucuronyltransferase 1 
(glucuronosyltransferase P) 2 No Identified Ontologies

AF016702 Glycoprotein hormones, alpha subunit 2 No Identified Ontologies
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AF090692 cystatin 8 2 No Identified Ontologies
AFFX-TrpnX-M --- 2 No Identified Ontologies
AI178828 --- 2 No Identified Ontologies
AB013454 Similar to Ac2-210 2 No Identified Ontologies
AA893603 Solute carrier family 35, member E1 (predicted) 2 No Identified Ontologies

AA891842 
Tumor necrosis factor receptor superfamily, member 21 
(predicted) 2 No Identified Ontologies

AI639257 --- 2 No Identified Ontologies
AI639476 --- 2 No Identified Ontologies
AI639474 --- 2 No Identified Ontologies

AA892010 
Similar to Hypothetical protein CGI-128 homolog 
(predicted) 2 No Identified Ontologies

AA893422 Transcribed locus 2 No Identified Ontologies
AI071399 --- 2 No Identified Ontologies
AI639486 --- 2 No Identified Ontologies
AA893180 Transcribed locus 2 No Identified Ontologies
AA900850 --- 2 No Identified Ontologies
AI639120 similar to RIKEN cDNA 1700088E04; 2 No Identified Ontologies
S68589 protein kinase N3 (predicted) 2 No Identified Ontologies
AA891838 similar to ribosomal protein P0-like protein 2 No Identified Ontologies
D10854 aldo-keto reductase family 1, member A1 3 Aldehyde Catabolism 
Z75029 Heat shock 70kD protein 1A 3 Apoptosis 
X53428 glycogen synthase kinase 3 beta 3 Cell Cycle 
X59859 decorin 3 ECM Organization 
AF054618 cortactin isoform B 3 Endocytosis 
S45392 heat shock 90kDa protein 1, beta 3 Heat Shock 
M81225 farnesyltransferase, CAAX box, alpha 3 Metabolism 
AA799466 adenylate kinase 2 3 Metabolism 

D86215 
NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex  5 3 Metabolism 

J02752 acyl-Coenzyme A oxidase 1, palmitoyl 3 Metabolism 
J05470 carnitine palmitoyltransferase 2 3 Metabolism 
U17901 phospholipase A2, activating protein 3 Metabolism 
AA946040 cytochrome c oxidase, subunit VIb (predicted) 3 Metabolism 

AF059530 
heterogeneous nuclear ribonucleoprotein 
methyltransferase-like 3 3 Methylation 

M37568 homeo box C8 3 Neuron Differentiation 
AA875069 H3 histone, family 3B 3 Nucleosome Assembly 
X62166 ribosomal protein L3 3 Protein Biosynthesis 
AA875327 eukaryotic translation initiation factor 4H 3 Protein Biosynthesis 
AA859719 --- 3 Protein Biosynthesis 
X62146 ribosomal protein L11 (predicted) 3 Protein Biosynthesis 
X62146 ribosomal protein L11 (predicted) 3 Protein Biosynthesis 
AA892367 ribosomal protein L3 3 Protein Biosythesis 

D10755 
proteasome (prosome, macropain) subunit, alpha type 
6 3 Protein Catabolism 

X51536 ribosomal protein S3 3 Protein Synthesis 
AA800054 ribosomal protein L19 3 Protein Synthesis 
X51536 ribosomal protein S3 3 Protein Synthesis 
AI178750 eukaryotic translation elongation factor 2 3 Protein Synthesis 
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X58465 ribosomal protein S5 3 Protein Synthesis 
X53378 ribosomal protein L13 3 Protein Synthesis 
X78327 ribosomal protein L13 3 Protein Synthesis 
M89646 Ribosomal protein S24 3 Protein Synthesis 
AI176546 heat shock protein 1, alpha 3 Protein Synthesis 
AA944397 heat shock protein 1, alpha 3 Protein Synthesis 
AA800211 pyridoxine 5'-phosphate oxidase 3 Pyridoxine Biosynthesis
AF036335 NonO/p54nrb homolog 3 RNA splicing 
AF036335 NonO/p54nrb homolog 3 RNA splicing 
U87960 protein tyrosine phosphatase, receptor type, F 3 Signaling 

U10303 
endothelial differentiation sphingolipid G-protein-
coupled receptor 1 3 Signaling 

U14409 melatonin receptor 1A 3 Signaling 
U50949 olfactory receptor 1641 3 Signaling 
AB007688 homer homolog 1 (Drosophila) 3 Signaling 
M36317 thyrotropin releasing hormone 3 Signaling 
X01454 thyroid stimulating hormone, beta subunit 3 Signaling 

S63167 
hydroxysteroid dehydrogenase-1, delta<5>-3-beta 
(predicted) 3 

Steroid Hormone 
Biosynthesis 

AI009098 hypoxia up-regulated 1 3 Stress 
M96630 SEC61, alpha subunit (S. cerevisiae) 3 Transport 

M30312 
potassium voltage-gated channel, shaker-related 
subfamily, member 3 3 Transport 

AI230914 farnesyltransferase, CAAX box, beta 3 Wound healing 
U82591 chromosome 6 open reading frame 108 3 No Identified Ontologies
AF051155 G protein beta subunit-like 3 No Identified Ontologies
X52815 --- 3 No Identified Ontologies
AA891742 Similar to cDNA sequence BC019806 (predicted) 3 No Identified Ontologies
AA892863 --- 3 No Identified Ontologies
AI104513 --- 3 No Identified Ontologies
S76758 --- 3 No Identified Ontologies
AI012942 --- 3 No Identified Ontologies
AF027188 Similar to RIKEN cDNA 4933424N09 (predicted) 3 No Identified Ontologies
AI639409 --- 3 No Identified Ontologies
AI233591 --- 3 No Identified Ontologies
AA859835 Transcribed locus 3 No Identified Ontologies
AF053097 --- 3 No Identified Ontologies
AF034753 Similar to hypothetical protein FLJ22490 (predicted) 3 No Identified Ontologies
U47311 --- 3 No Identified Ontologies
H33253 Similar to tubulin-specific chaperone d 3 No Identified Ontologies
AI113046 --- 3 No Identified Ontologies
AA900850 --- 3 No Identified Ontologies
AA875265 --- 3 No Identified Ontologies
D17349 similar to cytochrome P450 2B15 3 No Identified Ontologies
AI007820 heat shock 90kDa protein 1, beta 3 No Identified Ontologies
H31907 embryo-related protein 3 No Identified Ontologies
H33725 associated molecule with the SH3 domain of STAM 4 Apoptosis 
AA800206 actinin alpha 2 (predicted) 4 Apoptosis 
AB010436 cadherin 8 4 Cell Adhesion 
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X95990 complement component 5, receptor 1 4 Chemotaxis 
M33605 perforin 1 (pore forming protein) 4 Cytolysis 
D90219 natriuretic peptide precursor type C 4 DNA Metabolism 
X84210 nuclear factor I/A 4 DNA Replication 
AA892798 uterine sensitization-associated gene 1 protein 4 Embryo Implantation 
M22360 Murinoglobulin 1 homolog (mouse) 4 Inflammation 
M22993 Murinoglobulin 1 homolog (mouse) 4 Inflammation 
M94548 cytochrome P450, family 4, subfamily F, polypeptide 2 4 Metabolism 
AF008554 implantation-associated protein 4 Metabolism 
D00688 monoamine oxidase A 4 Metabolism 
D00729 Dodecenoyl-coenzyme A delta isomerase 4 Metabolism 
AF036761 stearoyl-Coenzyme A desaturase 2 4 Metabolism 

M83196 microtubule-associated protein 1 A 4 
Microtubule 
depolymerization 

M91652 glutamine synthetase 1 4 Nitrogen Fixation 
AF061726 calpain 3 4 Protein Catabolism 
L34262 palmitoyl-protein thioesterase 4 Protein Production 
X13905 similar to Ras-related protein Rab-1B 4 Protein Transport 

AF073891 
potassium voltage-gated channel, subfamily H (eag-
related), member 5 4 Signaling 

U57500 protein tyrosine phosphatase, receptor type, A 4 Signaling 
L19112 fibroblast growth factor receptor 2 4 Signaling 

L35921 
guanine nucleotide binding protein (G protein), gamma 
8 subunit 4 Signaling 

D10763 erythropoietin 4 Stress 
AB015432 tumor-associated protein 1 4 Tansport 
M24393 myogenin 4 Transciprtion 
L13206 forkhead box D4 4 Transcirption 
U01146 nuclear receptor subfamily 4, group A, member 2 4 Transcription 
AI145177 early growth response 4 4 Transcription 
AF059273 glucocorticoid modulatory element binding protein 2 4 Transcription 
AJ006519 amiloride-sensitive cation channel 2, neuronal 4 Transport 
AF104399 Cbp/p300-interacting transactivator  4 Transport 
J02844 carnitine O-octanoyltransferase 4 Transport 
D12573 hippocalcin 4 Transport 
U02096 fatty acid binding protein 7, brain 4 Transport 

U09211 
solute carrier family 18 (vesicular acetylcholine), 
member 3 4 Transport 

AI102031 bridging integrator 1 4 Transport 
X63744 solute carrier family 1  4 Transport 
AF090692 cystatin 8 4 No Identified Ontologies
D26492 dynein, axonemal, heavy polypeptide 1 4 No Identified Ontologies
AI639159 solute carrier family 23 4 No Identified Ontologies
X01115 seminal vesicle secretion 5 4 No Identified Ontologies
AA875001 tripartite motif protein 8 (predicted) 4 No Identified Ontologies

U77626 
WW domain binding protein 4 (formin binding protein 
21) 4 No Identified Ontologies

AI639076 --- 4 No Identified Ontologies
AA892394 CUG triplet repeat, RNA binding protein 1 (predicted) 4 No Identified Ontologies
AI639179 --- 4 No Identified Ontologies
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AI231445 --- 4 No Identified Ontologies
AA866264 --- 4 No Identified Ontologies
AI638972 --- 4 No Identified Ontologies
AA892228 CUG triplet repeat, RNA binding protein 1 (predicted) 4 No Identified Ontologies
AA866293 Transcribed locus 4 No Identified Ontologies
AA875089 --- 4 No Identified Ontologies
AI639500 --- 4 No Identified Ontologies
AI009658 --- 4 No Identified Ontologies
H31550 Transcribed locus 4 No Identified Ontologies
AI137538 --- 4 No Identified Ontologies
AA859992 --- 4 No Identified Ontologies
AI639012 similar to cDNA sequence BC019776 4 No Identified Ontologies
AA800803 similar to RIKEN cDNA 6720485C15 4 No Identified Ontologies
AI169372 RAS-like family 11 member A 4 No Identified Ontologies

S65091 
similar to protein phosphatase 1, regulatory (inhibitory) 
subunit 1C;  4 No Identified Ontologies

AA858621 CaM-kinase II inhibitor alpha 4 No Identified Ontologies
AI171848 apical early endosomal glycoprotein 4 No Identified Ontologies
 

Page 28 of 28 


