十六烷基二苯醚二磺酸钠表面化学性质及胶团化作用

许虎君^{1,2} 吕春绪¹ 梁金龙²

('南京理工大学化工学院,南京 210094; '江南大学化工学院,江苏无锡 214036)

摘要 用滴体积法通过表面张力的测定,系统地研究了十六烷基二苯醚二磺酸钠(C₁₆-MADS)在不同温度(298.0~318.0 K)和不同 NaCl 浓度(0~0.50 mol·L⁻¹)下的表面活性.结果表明,温度升高使 C₁₆-MADS 溶液的临界胶束浓度(cmc)略有增大,表面极限吸附量(Γ_{s})降低. cmc随NaCl浓度的增大从1.45×10⁻⁴ mol·L⁻¹降至4.10×10⁻⁵ mol·L⁻¹,但最低表面张力(γ_{cm})基本不受影响.在298.0 K与303.0 K时,NaCl浓度的增大, Γ_{s} 增大;在308.0、313.0与318.0 K时,NaCl浓度的增大,出现了 Γ_{s} 从 2.27 μ mol·m⁻²降低至 1.41 μ mol·m⁻²的"反常"现象. 胶团形成自由能(ΔG_{m}^{0})随温度和 NaCl浓度增加负值增大(-63.98~76.20 kJ·mol⁻¹),胶团的形成主要是熵驱动过程.

关键词: 十六烷基二苯醚二磺酸钠, 表面张力, 临界胶团浓度 中图分类号: O648

十六烷基二苯醚二磺酸钠,简称 C₁₆-MADS

的特殊双联型阴离子表面活性剂.其具有独特的双 磺酸盐亲水基,亲水基之间由二苯醚刚性基团联接, 分子内产生超共轭效应.因而与传统的表面活性剂 相比,有许多优点:优良的水溶性和偶联性,高度分 散能力、抗硬水及漂白能力,在强酸、强碱及浓盐溶 液中稳定性好¹¹⁻²,已应用于高含量无机盐电解质体系 中.但目前无机盐对该产品的作用研究尚未见报道. 本文采用表面张力法考察了不同浓度 NaCl 溶液及 体系温度下, C₁₆-MADS 溶液表面化学性质及胶团 化热力学函数.

1 实 验

1.1 主要试剂与仪器

NaCl(AR,上海化学试剂公司,在500℃灼烧5h 后使用); C₁₆-MADS(自制,高压液相色谱测定及质谱 检定,含量99.8%); 超纯水(无锡新中亚微电子研究所, 电导率 7.8×10⁻⁷ S·cm⁻¹).

Agilent 1100 高压液相色谱仪; WATERS platform ZMD 4000 质谱仪; 自制滴体积法表面张力仪.

1.2 样品的处理

C₁₆-MADS 样品采用萃取分离法去除未反应的 有机杂质,无水乙醇溶解过滤法去除无机盐杂质,在 真空烘箱中烘干,经高效液相色谱测定及质谱检测. 配制一系列不同浓度的 C₁₆-MADS 水溶液,分别测 定其表面张力(γ),在 γ-lgc 曲线上无最低点,证明所 提纯的样品无杂质.

1.3 表面张力的测定

配制一定浓度系列的 C₁₆-MADS 溶液, 分别在 (298.0±0.1)、(303.0±0.1)、(308.0±0.1)、(313.0±0.1)、 (318.0±0.1) K温度下采用滴体积法测定其表面张力.

2 结果与讨论

2.1 NaCl浓度对C₁₆-MADS溶液表面张力的影响

测定了 NaCl 浓度在 0、0.05、0.10、0.20、0.50 mol·L⁻¹ 及体系温度在 298.0、303.0、308.0、313.0、318.0 K时 C₁₆-MADS 溶液的表面张力.图 1 给出了 C₁₆-MADS 在 298.0 K,不同 NaCl 浓度时的表面张力-浓度对数曲线.

临界胶团浓度(cmc)和临界胶团浓度下的表面 张力(γ_{cm})是衡量表面活性剂表面活性的重要参数^[3]. 对于传统离子型表面活性剂,在其溶液中加入与表 面活性剂反离子相同的无机盐时,表面活性得到提 高, cmc 及 γ_{cm} 均降低.这主要是无机盐的加入,部 分破坏了水化膜,压缩了离子基团周围的扩散双电

²⁰⁰⁵⁻⁰⁴⁻⁰⁷ 收到初稿, 2005-05-20 收到修改稿. 联系人: 许虎君(E-mail: xu6209@163.com; Tel: 0510-5866096; Fax: 0510-5884512)

层,屏蔽了电荷之间的斥力,使得表面层及胶团中表面活性剂分子排列更为紧密,胶团容易形成¹³.随着NaCl的加入,C₁₆-MADS溶液的 cmc 明显下降,但由于 C₁₆-MADS 的两个亲水基之间是由二苯醚刚性基团联接,缺乏柔性弯曲,所以 y_{exc} 基本未变化.

2.2 十六烷基二苯醚二磺酸钠溶液的表面化学性质 根据 Gibbs 吸附公式, 在反离子过量情况下^[3-4] -dγ=Γ_s RTdlnc_s (1) 则表面活性剂在溶液表面的极限吸附量(Г.。)为

 $\Gamma_{x} = -d\gamma/(RTdlnc_{s}) = -d\gamma/(2.303RTdlgc_{s})$ (2) 由 γ -lgc 曲线的斜率可求得极限吸附量(Γ_{x}).

在溶液表面饱和吸附层中表面活性剂分子所占极限平均面积(Amm)为

 $A_{\min} = 1/N_A \cdot \Gamma_{\infty} \tag{3}$

其中 Γ_s 为表面活性剂在溶液表面的吸附量, R_N_A 分别为气体常数和 Avogadro 常数, T为绝对温标, c_s 为溶液中表面活性剂离子的浓度. 各体系的表面化 学性质计算如表 1.

由表1可知在一定的 NaCl 浓度下,随着体系 温度的上升, Clo-MADS 溶液的 cmc 逐渐增大.温度 升高削弱亲水基的水合作用,有利于胶团形成;但 温度升高亦引起疏水基周围水的结构破坏又不利于 胶团形成,通常情况下温度对疏水基相互作用的影 响在较高温度时起主要作用,所以 Clo-MADS 溶液 的cmc随温度上升呈增大趋势.同样,在一定的NaCl 浓度下,随着体系温度的上升, Clo-MADS 溶液表面 极限吸附量减少,平均分子面积增大,其主要原因除 了极性基团之间的电性排斥外,分子热运动也会随 温度上升而增强,促使其表面极限吸附量有所下降;

表 1 C_{16} -MADS 溶液的表面化学性质

$c_{\text{NaCl}}/\text{mol} \cdot \text{L}^{-1}$	<i>T</i> /K	cmc/mmol·L ⁻¹	$\gamma_{\rm cmc}/{ m mN}\cdot{ m m}^{-1}$	$\Gamma_{\infty}/\mu mol \cdot m^{-2}$	A_{\min}/nm^2	cmc/C_{20}^{*}	pC_{20}
0.00	298.0	0.451	46.7	2.21	0.75	1.430	3.500
	303.0	0.470	46.3	2.21	0.75	1.542	3.516
	308.0	0.498	45.5	2.18	0.76	1.720	3.542
	313.0	0.542	45.4	2.18	0.76	1.893	3.553
	318.0	0.604	45.4	2.18	0.76	2.115	3.571
0.05	298.0	0.145	46.8	2.27	0.73	2.255	4.192
	303.0	0.150	46.5	2.27	0.73	2.489	4.220
	308.0	0.158	45.0	2.27	0.73	3.021	4.281
	313.0	0.161	45.0	2.24	0.74	3.132	4.289
	318.0	0.166	45.0	2.24	0.74	3.262	4.293
0.10	298.0	0.089	46.3	2.27	0.73	2.566	4.460
	303.0	0.094	45.8	2.27	0.73	2.742	4.465
	308.0	0.100	45.1	2.16	0.77	3.002	4.477
	313.0	0.103	44.9	2.12	0.78	3.176	4.489
	318.0	0.105	44.8	2.10	0.79	3.297	4.497
0.20	298.0	0.062	45.9	2.55	0.66	2.617	4.625
	303.0	0.065	45.8	2.31	0.72	2.890	4.648
	308.0	0.069	45.5	2.08	0.80	3.391	4.691
	313.0	0.073	45.3	1.94	0.86	3.684	4.703
	318.0	0.076	45.2	1.83	0.91	4.061	4.728
0.50	298.0	0.041	45.8	2.58	0.64	2.637	4.808
	303.0	0.044	45.4	2.37	0.70	3.247	4.868
	308.0	0.048	44.8	1.94	0.86	4.250	4.947
	313.0	0.050	45.0	1.60	1.04	5.272	5.023
	318.0	0.053	45.0	1.41	1.12	6.557	5.092

Table 1 Surface chemical properties of C₁₆-MADS in aqueous solution

 $*C_{20}$: the surfactant molar concentration required to reduce the surface tension of the water by 20 mN·m⁻¹;p C_{20} =-lg C_{20} ;

cmc/C20: ratio measures the tendency of the surfactant to adsorb at the interface relative to its micellization tendency

其次, C_{le}-MADS 离子中的氧原子在水溶液中有与 H+结合而产生质子化的趋势,降低了 C₁₆-MADS 的 电负性,但温度升高,这种质子化趋势减弱,C₁₆-MADS 的电负性增强,因而亲水头基间的静电斥力 增强,亦导致表面极限吸附量下降.在298.0K与 303.0 K 时 NaCl 浓度的增加对 C₁₆-MADS 有两方面 的作用,一方面改变溶液的离子强度,因而改变表 面活性离子的活度. 表面吸附作为一种平衡性质, 必然随吸附物活度改变而改变;另一方面,由于增 加反离子的浓度而有利于反离子与表面活性离子 结合,削弱了它们在吸附层中的静电排斥,使吸附 分子排列更紧密,导致表面极限吸附量增加.在 308.0、313.0 与 318.0 K 的较高温度时, 虽然 Cue-MADS 溶液具有 298.0 K 与 303.0 K 时相同的作用, 但 NaCl 浓度的增加却使 C16-MADS 的表面极限吸 附量出现了下降的"反常"的现象.其原因除了分子 热运动增强及 C16-MADS 离子的质子化趋势减弱导 致其表面极限吸附量下降外,温度/NaCl复合作用 也是一个主要因素.根据Bjerrum理论⁶,当NaCl浓度 增大时,温度升高,溶液中离子水化作用减弱,正负 离子之间的距离缩短,且在电负性上,CI-要大于 Cur MADS 离子头基, 所以 Na+与 Cl-相互间的静电吸引 能可以超过热运动能,在溶液中形成一个比较稳定 的离子缔合体,即离子对,这样相对减少了 C₁₆-MADS 离子头基的反离子数量,促使原来电负性大 于传统阴离子表面活性剂的 C₁₆-MADS 离子头基的 电负性及电性斥力均增强,导致表面极限吸附量下 降.这也与在实际应用中,该表面活性剂的洗涤能力 随洗涤温度升高而降低¹⁰的状态相吻合.

2.3 十六烷基二苯醚二磺酸钠溶液的胶团化热力 学函数的计算

对于 2-1 型离子表面活性剂, 当存在大量外加 无机盐电解质时, 其胶团形成自由能 (ΔG_{m}^{0})、焓变 (ΔH_{m}^{0})和熵变(ΔS_{m}^{0})可采用热力学函数计算公式^[7:3]:

$$\Delta G_{\rm m}^{\rm 0} = 3RT \ln {\rm cmc} + 2RT \ln 2 \tag{4}$$

$$\Delta H_{\rm m}^{\rm 0} = -3RT^2 (\frac{\partial \rm lncmc}{\partial T})_p \tag{5}$$

$$\Delta S_{\rm m}^{\rm o} = (\Delta H_{\rm m}^{\rm o} - \Delta G_{\rm m}^{\rm o})/T \tag{6}$$

表2的C₁₆-MADS水溶液胶团形成的热力学函 数值表明,在所有实验温度下, ΔG_m° 均为负值,说明 此过程可以自发进行. ΔH_m° 称为胶团生成热,它是胶 团形成过程中的重要热力学参数¹⁹, ΔH⁰_m < 0 说明胶 团形成过程为放热过程,这是由于形成胶团时单个 C16-MADS 分子先失去平动能量及由于碳氢链间色 散力的相互作用所放的热超过"冰山结构"破坏所需 的热.其值较负表示 C_{lo}-MADS 分子在溶液中形成 胶团的自发趋势较强. 在 $c_{NeC}=0.50$ mol·L⁻¹ 时 C₁₆-MADS溶液的 ΔH_m^0 较低,所以其cmc较小. 熵变(ΔS_m^0) 反映了形成胶束前后无序性的变化, ΔS_m° 均为正值, 意味着 C₁₆-MADS 分子加入到胶团中这一过程易于 进行,伴随着正熵变使分子趋向无序状态,那么 Cu-MADS 分子聚集成胶团是如何导致无序数增加呢? 在水溶液中,水分子会在 C16-MADS 分子周围形成 有序区域,即所谓"冰山结构",当Cu-MADS分子形

表 2 C₁₆-MADS 溶液的胶团化热力学函数

Table 2	Thermodynamic	parameters	of micelli	ization of	C ₁₆ -MADS
1 4010 2	1 normou y nume	parameters	or inteen	izution of	C_{10} m D_{0}

$c_{\text{NaCl}}/\text{mol}\cdot\text{L}^{-1}$	<i>T</i> /K	$\Delta G^{\scriptscriptstyle 0}_{\scriptscriptstyle m m}/{ m kJ}$ · mol ⁻¹	$\Delta H^{\scriptscriptstyle 0}_{\scriptscriptstyle \mathrm{m}}/\mathrm{kJ}\!\cdot\!\mathrm{mol}^{\scriptscriptstyle -1}$	$\Delta S^{\scriptscriptstyle 0}_{\scriptscriptstyle \mathrm{m}}/\mathrm{kJ}\!\cdot\mathrm{mol}^{\scriptscriptstyle -1}\!\cdot\mathrm{K}^{\scriptscriptstyle -1}$	$T \cdot \Delta S_{\mathrm{m}}^{\mathrm{o}} / \mathrm{kJ} \cdot \mathrm{mol}^{-1}$
0.05	298.0	-63.98	-14.95	0.1645	-49.03
	303.0	-64.79	-15.46	0.1628	-49.33
	308.0	-65.47	-15.97	0.1607	-49.50
	313.0	-66.39	-16.75	0.1586	-49.64
	318.0	-67.20	-17.43	0.1565	-49.77
0.10	208.0	-67.60	-18.27	0 1655	_40.33
0.10	290.0	-68.32	-10.27	0.1055	-49.33
	308.0	-68.00	-10.39	0.1610	-49.43
	313.0	-60.99	-19.50	0.1590	-49.01
	318.0	-70.14	-20.11	0.1550	-49.10
	510.0	-70.14	-20.51	0.1507	-49.05
0.20	298.0	-70.30	-20.82	0.1660	-49.48
	303.0	-71.11	-21.53	0.1636	-49.58
	308.0	-71.83	-22.14	0.1613	-49.69
	313.0	-72.56	-22.76	0.1592	-49.80
	318.0	-73.30	-23.21	0.1575	-50.10
0.50	298.0	-73.40	-23.81	0 1664	-49 59
0.50	303.0	-74.06	-24.36	0.1640	-49.70
	308.0	-74.60	-24.50	0.1610	-49.10
	313.0	-75.52	-24.74	0.1596	-49.00
	318.0	-76.20	-25.05	0.1590	-50.20
	510.0	-10.20	-23.91	0.1301	-50.29

成胶团后,其分子周围"冰山结构"被瓦解,体系无序数增加,使 ΔS_n^{α} 值为正值.从表2中还可以看出,伴随着温度的升高, ΔS_n^{α} 减小,这是由于当温度增高时,溶液中 C₁₆-MADS 分子聚集成胶团的倾向减弱,促使正熵变的值越来越小.同时, ΔS_n^{α} 对 ΔG_n^{α} 的贡献— $T \cdot \Delta S_n^{\alpha}$ 为较大的负值,而 ΔH_n^{α} 的数值的绝对值比相应的— $T \cdot \Delta S_n^{\alpha}$ 的绝对值要小一些,因此 C₁₆-MADS 溶液胶团的形成过程主要是熵驱动过程.

3 结 论

(1)在一定的 NaCl 浓度下,随着体系温度的升高, C₁₆-MADS 溶液的 cmc 略有增大,表面极限吸附 量降低; cmc 随 NaCl 浓度的增大而明显降低,但最 低表面张力(γ_{cmc})基本不受影响.

(2)随着 NaCl 浓度的增大,在 298.0 K 与 303.0 K 时, C₁₆-MADS 溶液的表面极限吸附量增大; 而在 308.0、313.0 与 318.0 K 的较高温度时, C₁₆-MADS 溶液表面极限吸附量呈下降的"反常"的现象.

(3)计算了 C₁₆-MADS 溶液胶团形成过程的热力 学函数,表明 C₁₆-MADS 溶液的胶团形成可自发进 行,且主要是熵驱动过程.

References

- 1 Loughne, T. J.; Quencer, L. B. SCCS, 1992, 68(1): 24
- 2 Milton, J. R.; Zhu, Z. H.; Hua, X. Y. JAOCS, 1992, 69(1): 30
- Zhao, G. X.; Zhu, B. Y. Principles of surfactant action. Beijing: China Light Industry Press, 2003: 226-284 [赵国玺,朱涉瑶. 表面活性剂作用原理. 北京: 中国轻工业出版社, 2003: 226-284]
- Yan, Y.; Huang, J. B.; Li, Z. C.; Zhao, X. L.; Ma, J. M. Acta Chimica Sinica, 2002, 60(7): 1147 [阎 云, 黄建滨, 李子臣, 赵小莉, 马季铭. 化学学报(Huaxue Xuebao), 2002, 60(7): 1147]
- 5 Liu, Y. P. Physical chemistry. Beijing: China People Education
 Press, 1979: 132-133 [刘云浦. 物理化学. 北京: 人民教育出版 社, 1979: 132-133]
- 6 Li, G. Z.; Sui, H.; Zhu, W. Z. China Surfactant Detergent Cosmetics, 1991, 1: 24 [李干佐, 隋 华, 朱卫忠. 日用化学工业(Riyong Huaxue Gongye), 1991, 1: 24]
- 7 Zheng, Y. Y.; Zhao, J. X.; Zheng, O.; You, Y.; Qiu, Y. Acta Chimica Sinica, 2001, 59(5): 690 [郑玉婴, 赵剑曦, 郑 欧, 游 毅, 邱 羽. 化学学报(Huaxue Xuebao), 2001, 59(5): 690]
- Li, X. G.; Zhao, G. X. Acta Phys. -Chim. Sin., 1995, 11(5): 450
 [李学刚, 赵国玺. 物理化学学报(Wuli Huaxue Xuebao), 1995, 11
 (5): 450]
- 9 Milton, J. R.; Zhu, Z. H.; Gao, T. Journal of Colloid and Interface Science, 1993, 157: 254

Surfactivity and Micellization of Disodium Hexadecyl Diphenyl Ether Disulfonate in Aqueous Solution

XU, Hu-Jun^{1,2} LÜ, Chun-Xu¹ LIANG, Jin-Long²

(¹School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094; ²School of Chemical Engineering, Southern Yangtze University, Wuxi 214036)

Abstract By using drop-volume method, the surface tension of disodium hexadecyl diphenyl ether disulfonate (C₁₆-MADS) was measured in different NaCl concentrations (0~0.50 mol·L⁻¹ NaCl) at different temperatures (298.0~ 318.0 K). The results show that with the increase of temperature, the critical micelle concentration (cmc) of C₁₆-MADS slightly increases, but the maximum surface excess concentration at the air/water interface (Γ_{∞}) decreases. The cmc of C₁₆-MADS decreases from 1.45×10^{-4} mol·L⁻¹ down to 4.10×10^{-5} mol·L⁻¹ as the concentration of NaCl increases from 0 to 0.50 mol·L⁻¹, but the corresponding surface tension at the concentration (γ_{cmc}) shows no variation. As the increase of NaCl concentration, Γ_{∞} of C₁₆-MADS increases as the increase of temperature in the range of 298.0~303.0 K, but abnormally decreases from 2.27 µmol·m⁻² down to 1.41 µmol·m⁻² in the range of 308.0~318.0 K. The micellization free energies (ΔG_m^0) are in the range $-63.98 \sim -76.20$ kJ·mol⁻¹ in the studied ranges of temperature and NaCl concentration. The process of micellization of C₁₆-MADS in aqueous solution is mainly driven by the entropy.

Keywords: Disodium hexadecyl diphenyl ether disulfonate, Surface tension, Critical micelle concentration

Received: April 7, 2005; Revised: May 20, 2005. Correspondent: XU, Hu-Jun(E-mail: xu6209@163. com; Tel: 0510-5866096: Fax: 0510-5884512)