高振动激发态吡嗪碰撞传能的 QCT 计算研究*

周建华 马万勇 姜海辉 张纪明 王少坤1 顾月姝1

(山东轻工业学院化工系,济南 250100; 1山东大学化学与化工学院,济南 250100)

摘要 用准经典轨线(QCT)方法计算了高振动激发态吡嗪(C₄N₂H₄)与 N₂、O₂、NH₃、基态吡嗪之间的碰撞传能. C₄N₂H₄ 通过计算发现,高振动激发态 C₄N₂H₄ 与 N₂、O₂ 碰撞发生的主要是 V-V 传能,与 NH₃ 碰撞发生的主要 是 V-R 传能,与基态 C₄N₂H₄ 碰撞发生的主要是 V-V(R)传能.通过比较高振动激发态 C₄N₂H₄、C₆F₆、C₆H₆ 与其 基态分子的碰撞传能,发现此类碰撞传能中,若分子的对称性高,则 V-V 传能更容易实现.

关键词: 吡嗪, 高振动激发态, 碰撞传能, QCT 计算, 传能机理 中图分类号: O643

目前理论计算研究化学动力学问题是一个热 点,而准经典轨线法(QCT)是研究高振动激发态大 分子碰撞传能速率的常用方法^[14]. 吡嗪(C₄N₉H₄)的 光学性质已经研究得很透彻[510].已有几个小组做了 光激发后 C_N₀H₀碰撞能量转移的实验. McDonald 和 Rice^[10]研究了 C₄N₉H₄ 的第一电子激发态(单重 态)的低振动激发的碰撞能量转移. Mullin 和 Flynn 等[11-12]利用时间分辨调谐二极管激光,研究了基电 子态高振动激发态 C₄N₂H₄ 与 CO₂ 的碰撞传能. 经 过一次碰撞,他们观察到 C4N3H4 的振动能主要转 移到 CO₂ 的反对称伸缩振动模. Bevilacqua 和 Weisman^[7]通过测量从三重态到单重态的系间窜跃 来研究振动激发的三重态 C4N2H4 的失能过程. 他们 的研究结果显示,从分子起始能量 E 的临界值(约 2000~3000 cm⁻¹) 开始, 随着 E 值的增加, 平均每次 碰撞传能 ΔE 值,快速上升,有很强的能量依赖关系. 这种性质不同于其它基电子态大分子的碰撞传能. 后来 Miller 和 Barker¹³用时间分辨红外荧光(IRF)研 究了基电子态 $C_4N_2H_4$ (起始振动能 E'=32500 cm⁻¹) 与多种原子和分子的碰撞传能,发现在振动能较 低时, ΔE 值与起始振动能为近似线性的关系. 这 和基电子态的苯的传能相似. 对富能的 C4N2H4 的 碰撞传能实验研究已经很多,理论计算只报道过 与 Ar¹⁴⁴和与 CO¹⁵⁵的碰撞传能. 我们对基电子态高 振动激发态 $C_4N_2H_4$ 与 N_2 、 O_2 、 NH_3 、基态 $C_4N_2H_4$ 的碰 撞传能进行了 QCT 理论计算研究, 以期进一步搞

清传能机理和传能规律.

1 轨线计算

1.1 分子内势

N₂、O₂、NH₃的分子内势见文献[16-17]. 按文献 [1]的方法拟合,得C₄N₉H₄的分子内势为:

> CN-strech: r_e =0.1403, f_s =480; CH-strech: r_e =0.1115, f_s =505; CC-strech: r_e =0.1339, f_s =570; CCN-bend: θ_e =115.6, f_{θ} =1.40; CNC-bend: θ_e =128.8, f_{θ} =1.50; CCH-bend: θ_e =123.9, f_{θ} =0.60; NCH-bend: θ_e =120.5, f_{θ} =0.60; CCH-wag: f_{α} =0.40; torsion: V_0 =133.9

 $C_4N_2H_4$ 的平衡构型来自文献[18]. r_e 为平衡键长 (nm), θ_e 为平衡键角, f_s 为简谐伸缩力常数(nN·nm⁻¹), f_{θ} 为简谐弯曲力常数(nN·nm·rad⁻²), f_{α} 为简谐扭曲力常数(nN·nm·rad⁻²), V_0 为扭转势垒(kJ·mol⁻¹).

1.2 分子间势

对这些体系的分子间相互作用势,本文仍旧 采用原子-原子 L-J(12-6)势之和的形式:

$$V=4\varepsilon_{x-y}\left[\left(\sigma_{x-y}/r\right)^{12}-\left(\sigma_{x-y}/r\right)^{6}\right]$$
(1)

r为原子质心距离, ε_{x-y} 和 σ_{x-y} 是 x 原子和 y

2004-09-14 收到初稿, 2004-11-16 收到修改稿. 联系人:周建华(E-mail:zhoujh@sdili.edu.cn;Tel:0531-8616624). *山东省自然 科学基金(Q2002B03,Y2003B03)资助项目

- 原子之间 L-J 阱深和半径. 获得 σ 和 ε 参数的方法 见文献[1], 分子间 L-J 势的各个参数为:
- $$\begin{split} & C_4 N_2 H_4 + N_2 : \lambda_1 = 1.299, \ \lambda_2 = 0.6846, \ \sigma_{C(N)-N} = 0.36632, \\ & \varepsilon_{C(N)-N} / k_B = 21.907, \ \sigma_{H-N} = 0.34878, \ \varepsilon_{H-N} / k_B = 12.380, \\ & \sigma_{eff} = 0.4544, \ \varepsilon_{eff} / k_B = 189.08; \end{split}$$
- $C_4N_2H_4+O_2:\lambda_1=1.312, \lambda_2=0.7715, \sigma_{C(N)-0}=0.36998,$ $\varepsilon_{C(N)-0}/k_B=24.688, \sigma_{H-0}=0.35227, \varepsilon_{H-0}/k_B=13.952,$ $\sigma_{eff}=0.4597, \varepsilon_{eff}/k_B=211.91;$
- $$\begin{split} & \text{C}_{4}\text{N}_{2}\text{H}_{4}\text{+}\text{N}\text{H}_{3}\text{:}\lambda_{1}\text{=}1.087,\ \lambda_{2}\text{=}1.894,\ \sigma_{\text{C(N)-N}}\text{=}0.3065,\\ & \varepsilon_{\text{C(N)-N}}/k_{\text{B}}\text{=}60.608,\ \sigma_{\text{H-N}}\text{=}0.29186,\ \varepsilon_{\text{H-N}}/k_{\text{B}}\text{=}34.252,\\ & \sigma_{\text{C(N)-H}}\text{=}0.29186,\ \varepsilon_{\text{C(N)-H}}/k_{\text{B}}\text{=}34.252, \sigma_{\text{H-H}}\text{=}0.27719,\\ & \varepsilon_{\text{H-H}}/k_{\text{B}}\text{=}19.3567,\ \sigma_{\text{eff}}\text{=}0.41267,\ \varepsilon_{\text{eff}}/k_{\text{B}}\text{=}493.25; \end{split}$$
- $$\begin{split} & C_4 N_2 H_4 + C_4 N_2 H_4 : \lambda_1 = 1.326, \ \lambda_2 = 0.6139, \sigma_{C(N)-C(N)} = \\ & 0.3739, \ \varepsilon_{C(N)-C(N)} / k_B = 19.665, \ \sigma_{H-C(N)} = 0.3560, \\ & \varepsilon_{H-C(N)} / k_B = 11.102, \ \sigma_{H-H} = 0.3381, \ \varepsilon_{H-H} / k_B = 6.274, \\ & \sigma_{eff} = 0.5353, \ \varepsilon_{eff} / k_B = 435.98. \end{split}$$
- λ_1 和 λ_2 是拟合参数,无量纲; σ 单位:nm; ϵ/k_B 单位:K; k_B :Boltzmann 常数.

1.3 起始条件和计算细节

 $C_4N_2H_4$ 和各浴气分子的起始条件选择相应于 文献[13]中的激发过程:起始平动分布为 300 K 时 的 Boltzmann 分布.转动热分布 $T_{rot}=300$ K(平均转 动能 313 cm⁻¹).起始位相:激发态分子通过 Euler 角,质心随机转动.振动能为微正则系综,选取 $C_4N_2H_4$ 分子的起始振动能 E'=24000 cm⁻¹. E'是高 于零点能之上的能量.为了考察起始振动能对传能 的影响,选择 $E'=5000 \ 40700 \ cm^{-1}(与 C_4N_2H_4 碰撞)$ 和 34000 \ 40700 cm⁻¹(与 NH₃ 碰撞).碰撞参数 b 在 $0-b_m(b_m$ 为最大碰撞参数)之间随机取样.选取 $b_m=$ 0.9 nm(N₂、O₂), 1.0 nm(NH₃), 1.2 nm(C₄N₂H₄). 用 MERCURY¹⁹程序计算. 起始质心分离为 1.4 nm(N₂、 O₂)、1.5 nm(NH₃)、1.6 nm(C₄N₂H₄). 轨线分别结束于 1.5、1.6、1.7 nm. 积分步长 0.1 fs, 积分(1~1.5)×10⁵ 步, 计算轨线 2500 条.

2 结果和讨论

2.1 激发态 C₄N₂H₄ 和 N₂、O₂、NH₃ 的碰撞传能

表1和表2列出了高振动激发的C4N2H4与 N2、O2、NH3的碰撞传能各碰撞对的能量变化.

与 N_2 和 O_2 的碰撞: 计算结果表明,高振动激 发的 $C_4N_2H_4$ 的振动能主要传到 N_2 和 O_2 的振动自 由度上,这和 C_6F_6 与 N_2 、 O_2 碰撞的 QCT 计算^[17]一 样,即主要是分子间的 V-V 传能.

与 NH₃ 的碰撞:高振动激发的 C₄N₂H₄ 的-(ΔE_{vib}) QCT 计算值与起始振动能 E'大致成线性关系. 计 算结果表明, C₄N₂H₄ 的振动能主要传到 NH₃ 的转 动自由度上, 即 V-R 传能. 无论从计算值还是从 实验值都可以看出, C₄N₂H₄ 与 NH₃ 的碰撞传能很 有效,高于与双原子分子的碰撞. 这可能有两方面 的原因,一方面, NH₃ 的转动惯量很小,在相同的 转动温度下,有较快的转动速度,从而大大加强了 C₄N₂H₄ 振动能的失去;另一方面,NH₃ 为极性分 子,与 C₄N₂H₄ 的相互作用势阱远深于其它分子 (例如 C₄N₂H₄ 与 NH₃ 的阱深为 493.24 K,与 O₂ 的 阱深为 211.92 K). 很深的势阱表示两分子之间的 吸引力较强,较强的吸引力导致较长的相互作用 时间 t_c ,按照 Biased Random Walk(BRW)模型^[20] 可以知道,传能大小与作用时间有线性关系. 这两

表 1	激发态 $C_4N_2H_4$	与 №2、02 碰	撞各分子	·的能量变化	(<i>E</i> ′=24000	cm ^{−1})
-----	-----------------	-----------	------	--------	--------------------	---------------------------

]	Table 1 1	Engergy transfer	of excited C ₄ N ₂ H ₄	colliding with O ₂ at	$E'=24000 \text{ cm}^{-1}$	
			$-\Delta E_{tot}/cm^{-1}$	$-\Delta E_{\rm rot}/{ m cm}^{-1}$	$-\Delta E_{\rm vib}/{\rm cm}^{-1}$	$-(\Delta E_{\rm vib})_{\rm e}^{\rm a}/{\rm cm}^{-1}$	
	$C_4N_2H_4$		92±19	-40	132±17	60±1	
	$+N_2$		-110±9	-16	-94±7		
	$C_4N_2H_4$		85±16	-40	125±15	74±2	
	$+O_2$		-121±8	-16	105 ± 7		
a: fro	om Ref.[13]	; $-(\Delta E_{\rm vib})_{\rm e}$:	experimental resul	ts			

表 2 激发态 $C_4N_2H_4$ 与 NH_3 碰撞各分子的能量变化

	Table 2	Engergy transfer of	excited $C_4N_2H_4$	colliding with NH ₃	
	E'/cm^{-1}	$-\Delta E_{tot}/cm^{-1}$	$-\Delta E_{ m vib}/ m cm^{-1}$	$-\Delta E_{\rm rot}/\rm cm^{-1}$	$-(\Delta E_{\rm vib})_{\rm e}^{\rm a}/{\rm cm}^{-1}$
$C_4N_2H_4$	24000	495±66	700±67	-205	461±10
NH_3		-339 ± 59	81±48	-420	
$C_4N_2H_4$	34000	799 ± 97	1006±99	-207	
NH_3		-591±81	-149 ± 59	-442	
$C_4N_2H_4$	40700	1000 ± 93	1211±104	-211	
NH_3		-729 ± 81	-188±61	-541	

a:from Ref.[13]; $-(\Delta E_{vib})_e$: experimental results

Table 3	Energy transfer of excited	$C_4N_2H_4$ collision	with ground state	$C_4N_2H_4$
	E'/cm^{-1}	$-\Delta E_{tot}/cm^{-1}$	$-\Delta E_{\rm vib}/{\rm cm}^{-1}$	$-\Delta E_{\rm rot}/{\rm cm}^{-1}$
Excited C ₄ N ₂ H ₄	5000	143±38	250±39	-107
	24000	472 ± 51	614 ± 57	-142
	40700	768±96	896±94	-128
Ground state C ₄ N ₂ H ₄	5000	-105 ± 37	6±37	-111
	24000	-434 ± 54	-321 ± 47	-113
	40700	-770±80	-616±73	-154

表 3 激发态 $C_4N_2H_4$ 与基态 $C_4N_2H_4$ 碰撞各分子的能量变化

表 4	同种分子之间碰撞传能的比较

Table 4 Comparison of the colliding energy transfers between excited C₄N₂H₄, C₆F₆, C₆H₆

		E'/cm^{-1}	$-\Delta E_{\rm vib}/\rm cm^{-1}$	$-(\Delta E_{\rm vib})/{\rm cm}^{-1}$
$C_4N_2H_4+C_4N_2H_4$	Excited C ₄ N ₂ H ₄	24000	614	657ª
		40700	896	
	Ground state	24000	-321	
	$C_4N_2H_4$	40700	-616	
$C_6F_6+C_6F_6$	Excited C ₆ F ₆	24000	314	736 ^d
	Ground state C ₆ F ₆	24000	-196	
$C_{6}H_{6}+C_{6}H_{6}$	Excited C ₆ H ₆	24000	680 ^b	931°
		40700	1076 ^b	
	Ground state C ₆ H ₆	40700	-946 ^b	

a: from Ref.[13]; b: from Ref.[2]; c: from Ref.[22]; d: from Ref.[21]; $-(\Delta E_{vb})_e$: experimental results

方面的结合导致了 C4N2H4 非常有效地失去能量.

2.2 激发态 C₄N₂H₄ 和基态 C₄N₂H₄ 的碰撞传能

表 3 列出了激发态 C₄N₂H₄ 和基态 C₄N₂H₄ 碰 撞传能的能量变化. 表 4 为同种分子之间碰撞传能 的比较.

对于高振动激发态的 C4N₉H₄ 与基态 C4N₉H₄ 的 碰撞传能, 激发态 $C_4N_2H_4$ 的振动能变化 (ΔE_{vit})的 QCT 计算值与实验值符合得较好. 激发态 C4N2H4 的 ΔE_{vb} 与起始振动能 E' 近似成线性关系, ΔE_{rot} 随 E'的改变很小. 计算结果表明, 在 E'=40700 cm⁻¹ 时,激发态 C4N2H4 每次碰撞平均振动能失去 896 cm⁻¹,转动能增加128 cm⁻¹;基态 C₄N₂H₄振动能增 加 616 cm⁻¹,转动能增加 154 cm⁻¹.两分子的平动 能几乎不变. 激发态 C₄N₉H₄ 把振动能主要传到了基 态 C₄N₉H₄ 的振动自由度上,并有部分的 V-R 传能, V-R 传能所占比例(约 31%)大于 C₆H₆ 与 C₆H₆ 的 V-R 传能所占比例(约 7%).这可能是因为 C₄N₉H₄ 分子的对称性 (D_{2h}) 不高,发生对称性匹配的碰撞 几率就小,因此发生 V-V 传能的几率减小, V-R 传能几率上升.而 $C_{6}H_{6}$ 的对称性高(D_{6h}),发生 V-V 传能的几率大. 当 E' =5000 cm⁻¹ 时, 激发态 C4N2H4 每次碰撞平均振动能失去 250 cm⁻¹, 转动 能增加 107 cm⁻¹; 基态 C₄N₂H₄ 振动能几乎不变, 转动能增加111 cm⁻¹; 两分子的平动能变化不大.

传能机理发生了变化,激发态 C₄N₂H₄ 把振动能传 到了自身和基态 C₄N₂H₄ 的转动自由度上, V-V 传 能几乎不发生,只有分子内和分子间的 V-R 传能. 通过比较高振动激发态的 C₄N₂H₄、C₆F₆、C₆H₆ 与其 基态分子的碰撞传能可以发现,对称性高的同种 大分子之间更容易发生 V-V 传能.

3 结论

(1)高振动激发态的 C₄N₂H₄ 与 N₂、O₂ 碰撞发 生的主要是 V-V 传能; (2)高振动激发态的 C₄N₂H₄ 与 NH₃ 碰撞发生的主要是 V-R 传能; (3)高振动激 发态的 C₄N₂H₄ 与基态的 C₄N₂H₄ 碰撞发生的主要是 V-V(R)传能. 对于此类碰撞,分子对称性越高, V-V 传能越容易实现.

References

- Lenzer, T.; Luther, K.; Troe, J.; Gilbert, R.G.; Lim, K.F. J. Chem. Phys., 1995, 103: 626
- 2 Lenzer, T.; Luther, K. J. Chem. Phys., 1996, 104(9): 3391
- 3 Deng, W. Q.; Han, K. L.; Zhan, J. P.; He, G. Z.; Jackson, W. M. Chem. Phys. Lett., 1998, 287: 747
- 4 Han, K. L.; He, G. Z.; Lou, N. Q. J. Chem. Phys., 1996, 105: 8699
- 5 Kommandeur, J.; Majewski, W. A.; Meerts, W. L.; Pratt, D. W. Ann. Rev. Phys. Chem., 1987, 38: 433
- 6 Knee, J.; Johnson, P. J. Phys. Chem., 1985, 89: 948

- 7 Bevilacqua, T. J.; Weisman, R. B. J. Chem. Phys., 1993, 98: 6316
- 8 Sneh, O.; Dünn-Kittenplon, D.; Cheshnovsky, O. J. Chem. Phys., 1989, 91: 7331
- 9 Chesko, J. D.; Stranges, D.; Suits, A. G.; Lee, Y.T. J. Chem. Phys., 1995, 103: 6290
- 10 McDonald, D. B.; Rice, S. A. J. Chem. Phys., 1981, 74: 4709
- Mullin, A. S.; Michaels, C. A.; Flynn G. W. J. Chem. Phys., 1995, 102: 6032
- Michaels, C. A.; Mullin, A. S.; Flynn, G. W. J. Chem. Phys., 1995, 102: 6682
- 13 Miller, L. A.; Barker, J. R. J. Chem. Phys. , 1996, 105(4): 1383
- 14 Yoder, L. M.; Barker, J. R. J. Phys. Chem. A, 2000, 104: 10184
- 15 Higgins, C.; Ju Q.; Seiser, N.; Flynn, G.W.; Chapman, S. J. Phys. Chem. A, 2001, 105: 2858
- 16 Zhou, J. H.; Wang, S. K.; Yu, Z. J.; Jiang, H. H.; Gu, Y. S. Chin.

Chem. Lett., 2003, 14(12): 1317

- 17 Zhou, J. H.; Ma, W.Y.; Qiu, H.Y.; Xu, G.Y. Chem. J. Chinese Universities, 2002, 23(Supplement): 164 [周建华, 马万勇, 邱化 玉, 徐桂云. 高等学校化学学报(Gaodeng Xuexiao Huaxue Xuebao), 2002, 23(增刊): 164
- Bormans, B. J. M.; Dewith, G.; Mijlhoff, F. C. J. Mol. Struct., 1977, 42: 121
- 19 Hase, W. L. *QCPE*, **1983, 3:** 453
- 20 Lim, K. F.; Gilbert, R. G. J. Chem. Phys., 1990, 92: 1819
- Damm, M.; Hippler, H.; Olschewski, H. A.; Troe, J.; Willner, J. Z. Phys. Chem. N. F., **1990**, **166**: 129
- 22 Yerram, M. L.; Brenner, J. D.; King, K. D.; Barker, J. R. J. Phys. Chem., **1990**, **94**: 6341
- 23 Bernshtein, V.; Lim, K. F.; Oref, I. J. Phys. Chem., 1995, 99: 4531

QCT Calculation Study of Collisional Energy Transfer of Highly Vibrationally Excited Pyrazine*

ZHOU, Jian-Hua MA, Wan-Yong JIANG, Hai-Hui ZHANG, Ji-Ming WANG, Shao-Kun¹ GU, Yue-Shu¹ (Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250100; ¹ School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100)

Abstract Quasiclassical trajectory calculations (QCT) of the energy transfer between highly vibrationally excited pyrazine ($C_4N_2H_4$) and N_2 , O_2 , NH_3 , and ground state $C_4N_2H_4$ were performed respectively. The calculations show when colliding with N_2 and O_2 the vibrational energy of $C_4N_2H_4$ transferred mainly to the vibrational contributions of N_2 and O_2 , and they are V-V energy transfers. Colliding with NH_3 , the vibrational energy of $C_4N_2H_4$ transferred mainly to the rotational contributions of NH_3 , and it is V-R energy transfer. Colliding with ground state $C_4N_2H_4$ the energy transferred mainly to the vibrational and rotational contributions, and it is V-V (R) energy transfer. Comparing with the collision energy transfers between highly vibrationally excited $C_4N_2H_4$, C_6F_6 , C_6H_6 and their own ground state molecules, we found that V-V energy transfer is easier if the molecule has higher symmetry.

Keyword: Pyrazine, Highly vibrationally excited state, Collisional energy transfer, QCT calculation, Energy transfer mechanism

Received: September 14, 2004; Revised: November 16, 2004. Correspondent: ZHOU, Jian-Hua (E-mail: zhoujh@sdili.edu.cn; Tel: 0531-8616624). * The Project Supported by NSF of Shandong Province(Q2002B03, Y2003B03)