自吸旋涡泵变转速性能与内部流场试验

沙 毅1 李金磊2 刘祥松2 侯丽艳2 程 峰1

(1.浙江科技学院机械与汽车工程学院,杭州 310023; 2.江苏大学能源与动力工程学院,镇江 212013)

【摘要】 研制 25WZ1-12 型自吸旋涡泵试验样机,通过型式及变转速外特性试验,得出旋涡泵 $q_v = H \setminus q_v = \eta$ 性能曲线变化规律,验证 $q_v = H \setminus q_v = P$ 曲线换算满足相似理论比例定律, $q_v = NPSH$ 曲线换算不满足汽蚀相似定 律;用 5 孔管束探针对流道流场进行测量,得到流场静压 $p_s \setminus$ 当量径向速度 v_{re} 和当量圆周速度 v_{ue} 随泵转速变化分 布状况;通过对试验数据的分析,解释了外特性参数与内部流动参数之间的联系和变化规律,指出旋涡泵的汽蚀类 型及发生部位,为旋涡泵优化设计和建立内部流动模型提供参考依据。

关键词:旋涡泵 流场 相似理论 变转速 汽蚀余量 中图分类号: TH314 文献标识码: A

Self-priming Vortex Pump Variable Speed Performance and Internal Flow Test

Sha Yi¹ Li Jinlei² Liu Xiangsong² Hou Liyan² Cheng Feng¹

(1. School of Mechanical & Automotive Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China 2. School of Power and Energy Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

The 25WZ1 – 12 vortex self-priming pump test prototype was developed. Through the experiment of type and the external characteristics of the variable rotational speed, performance curves, such as $q_v - H$ and $q_v - \eta$, were obtained. The curve conversion for $q_v - H$ meets the proportion law of similar theory, but the $q_v - NPSH$ curve conversion does not satisfy the cavitation affinity law for the vortex pump. The flow channel field was measured with 5-hole probe, to gain the distribution of flow static pressure p_s , equivalent v_{re} radial velocity and equivalent circumferential velocity v_{ue} at the various pump rotational speed. By analyze the test data, the relation between the external characteristic and the internal flow was discussed, also the type and location for the cavitations of the vortex pump was presented.

Key words Vortex pump, Flow field, Similar theory, Variable speed, NPSH

引言

自吸旋涡泵以其小流量、高扬程,具有良好自吸 性能等特点而获得广泛使用。旋涡泵属叶片泵范 畴,但其工作原理与离心泵等不甚相同,内部流动也 更复杂。目前国内外对旋涡泵的研究不少,但对内 部流动规律,如内部压力场、速度场的变化规律研究 不足,试验研究更为鲜见。本文对旋涡泵变转速调 节下性能的变化规律,及探针测定泵体流道流动参 数变化规律进行探索性研究,为旋涡泵设计改进和 工程应用提供参考依据。

1 试验模型泵与试验装置

1.1 试验模型泵研制

兼顾试验台容量,参考相关文献[1~2]和以往 研究成果^[2~6],研制试验用25WZ1-12小型自吸旋 涡泵样机,动力配套0.55kW,电动机与泵同轴直联 成为整体。其设计参数、水力参数和结构如表1、

收稿日期: 2008-11-13 修回日期: 2009-02-24

作者简介:沙毅,研究员,主要从事流体机械的理论和设计研究,E-mail: shayi01@sina.com

图1和图2所示。

1.2 试验装置及测试方法

模型泵变转速试验和探针流场测量均在江苏大 学能源与动力工程学院中心实验室小型泵开式实验 台上完成。电动机空载性能按 GB/T 12785—2002 进行;泵型式试验按 GB/T 3216—2005 进行。采用 变频器改变电动机转速;电测法测定泵轴功率;调节 进口闸阀增加泵入口吸损法进行汽蚀试验。

1.3 探针布置及试验方法

针对旋涡泵流道狭窄,呈圆环状的特点,采用微型五孔管束形探针探测流场,探针轴线位于流道中 心法线上,设置 A、B、C 3 个测量位置,分别用探针 进行压力测量(图 1)。探针连接及探针结构如图 3 所示。

	表1 加	庭 闲	与结构参数	
Tab. 1	Vortex pu	mp design a	and structure	paramete

	设i	计参数		水力参数							
q_v	Н	п	17	D_2	b	У	С	а	E	h	Ζ
$/m^3 \cdot h^{-1}$	/m	$/r \cdot min^{-1}$	n_s	/mm	/mm	/mm	/mm	/mm	/mm	/mm	/个
1	12	2 850	26.89	69	7.5	8	3.7	5	15	10.5	36

图 2 旋涡泵水力结构参数

Fig. 2 Vortex pump structure of the hydraulic parameters

Fig. 1 Self-priming vortex pump structure

2 泵型式试验

2.1 泵性能试验

表 2 为泵在额定转速 n = 2850 r/min 下外特性 试验数据(η_{gr} 为泵和电动机机组效率)。

2.2 泵汽蚀性能试验

表 3 为泵汽蚀试验数据(带 * 为临界汽蚀余量 *NPSH*_c 值)。旋涡泵在叶片泵范畴内抗汽蚀性能不好。

2.3 型式试验曲线及分析

图 4 为泵型式试验曲线。通过分析可以看出, 由于旋涡泵设计理论不完善,泵最佳工况 $q_v =$ 1.629 m³/h, H = 6.497 m, $\eta = 8.2\%$, 偏离设计工 况,泵效率偏低,特别是自吸旋涡泵,该泵效率偏低 主要有几方面原因:安装过程中,由于加工精度未达 到技术图纸要求,出现叶轮卡滞现象,最后成型时叶 轮两端轴向间隙 $\delta_1 \ge 1$ mm,隔舌径向间隙 $\delta_2 \ge$ 1 mm,间隙过大对泵效率影响较大,本试验也验证

Tab. 2	Pump	perform	ance test	data (n	= 28 50 r	·/min
序号	q_{2}	Z #	п	P_{sh}	η_P	
	$/m^3 \cdot h^{-1}$	/m	$/r \cdot min^{-1}$	/W	/%	%
1	2.609	1.:69	2 851	254.84	4.4	.0
2	2.388	2.40	2 852	281.10	5.9	.8
3	2.201	3 5	2 850	293.78	7.2	.4
4	2.010		2 851	315.72	Z	.7
5	1.805	6	2 850	330.66	8.2	.0
6	1.629	6.497	2 849	353.78	8.2	.0
7	1.422	7.:71	2 851	369.23	7.9	.9
8	1.184	8.909	2 852	391.12	7.4	.6
9	1 009	10.028	2 852	410.95	6.7	.3
10 T	0.829	11.079	2 851	434.33	5.8	.9
11	0.603	12.531	2 850	459.81	4.5	.2
12	0.416	13.716	2 849	489.92	3.2	.6
13	0.220	15.175	2 850	522.95	1.7	.9
14	0	16.587	2 849	551.33	0	

了这一情况;再者 设计不合理,也是

表 2

泵性

1于经验不足,本泵汽水分工 成泵效率偏低的原因、本旋

表 3 汽蚀试验数据(*n* = 2 850 r/min) Tab.3 Cavitation test data (*n* = 2 850 r/min)

序号	$0.6/m^{3} \cdot h^{-1}$		$0.9/m^{3} \cdot h^{-1}$		$1.2/m^{3} \cdot h^{-1}$		$1.5/m^{3} \cdot h^{-1}$		$1.8/m^3 \cdot h^{-1}$	
	H/m	NPSH/m	H∕m	NPSH/m	H∕m	NPSH/m	H∕m	NPSH/m	H∕m	NPSH/m
1	10.754	3.437	8.665	3.801	7.187	4.167	5.708	4.639	4.740	5.620
2	11.473	3.682	9.323	3.962	7.714	4.362	6.218	4.755	4.992	5.847
3	11.743	* 3.872	9.786	4.209	8.053	4.627	6.626	4.946	5.250	5.930
4	12.167	4.529	9.916	* 4.337	8.119	* 4.864	6.972	* 5.337	5.308	*6.202
5	12.008	4.935	10.041	5.279	8.462	5.253	7.085	6.118	5.308	6.512
6	12.314	5.513	10.226	5.832	8.359	5.748	6.966	6.541	5.454	6.746
7	12.284	5.591	10.113	6.244	8.471	6.554	7.085	6.934	5.403	7.205
8	11.978	6.291	10.194	6.757	8.481	7.257	7.136	7.596	5.578	7.573
9	12.212	7.178	10.296	7.471	8.410	7.838	7.136	8.004	5.352	7.867
10	12.211	7.763	10.041	8.032	8.440	8.418	6.952	8.494	5.556	8.275
11	12.487	8.228	10.214	8.368	8.389	8.979	7.136	8.819	5.556	8.784
12	12.316	9.115	10.459	9.142	8.379	9.296	7.227	9.136	5.464	9.182
13	12.385	9.451	10.449	9.459	8.512	9.469	7.187	9.380	5.586	9.365

泵汽蚀比转数 C=105.9,临界汽蚀余量随着流量的 增大而增大。旋涡泵工作原理特殊,扬程曲线随流 量增加而陡降,而目前采用与离心泵等相同的国家 标准评判旋涡泵汽蚀性能,这一点是否合理值得商 榷和探讨。

3 泵变转速性能试验

旋涡泵原则上不允许切割叶轮,叶轮叶片一般 固定不动,故旋涡泵目前一般通过改变转速调节运 行工况。本文分别测定转速2200、2400、2600、 2800、3000 r/min 泵性能及汽蚀特性,绘制成曲线 如图5所示;并绘制由额定转速经相似定律和汽蚀 相似定律换算后的曲线(图5中虚线表示),两者进 行对比分析。

3.1 流量-扬程(q_v-H)曲线

图 5 为泵变转速 $q_v - H$ 曲线,经对比分析,旋 涡泵 $q_v - H$ 曲线与相似定律换算曲线较吻合。但 换算值比实际值略大,转速差越大偏差越大。可以 肯定旋涡泵满足相似理论比例定律(其中 $q_v - P$ 曲 线图省略)。

3.2 流量-临界汽蚀余量 $(q_v - NPSH_c)$ 曲线

图 6 为泵变转速 q_v - NPSH_c 曲线。转速越高, NPSH_c 值越小,泵抗汽蚀性能越好。但汽蚀相似定 律换算值与实测值误差较大,故旋涡泵变转速临界 汽蚀余量不符合汽蚀相似定律。

3.3 流量-效率(*q_v* - η)曲线

图 7 为变转速 $q_v - \eta$ 曲线。转速增大,泵效率 曲线向大流量偏移。高效率区域变宽,泵效率峰值 也有所增加。旋涡泵适用高速运转。

4 额定转速泵流道流场测试

4.1 流场分析及测量方法

旋涡泵泵体流道内部呈三维流动。本文通过简 化忽略轴向运动,针对平面二维速度结合探针测量 进行分析研究。平面速度分为径向速度 v_r 和圆周 速度 v_u ,在叶轮出口,由于离心惯性力作用,流体相 对运动沿径向以速度 v_{r2} 进入流道,同时流体又与 叶轮一起旋转作牵连运动,形成圆周速度 v_{u2} 。 v_{r2} 和 v_{u2} 合成形成平面绝对速度 v_2 ,与圆周切线方向 成 a_2 角进入泵体流道, a_2 = arctan(v_{r2}/v_{u2})。故流 道内平面绝对速度也是径向速度和圆周速度的合 成^[7~8],绝对速度与圆周切线成 α 角,不同的位置, 其速度和 α 角均不同。

本文探针布置和测量方法,只能测取流道外径 处和边壁附近流动参数。外径处静压采用探针微退 缩出流道测量,探针孔细小,此处流体基本静止,测 位A、B、C所测5个静压头基本齐平,故静压值精 确度较高。探针在 A、B、C 测位分别伸入流道内 1.7 mm,孔 5 正对来流,平面绝对速度以 α 角冲击 在探针锥面上,根据动量定律,液流分成两股流束, 一股转换成径向当量流速 v_n,总水头在孔 5 测出; 另一股流速沿圆锥面向下运动,在锥尖孔1处形成 一圆周切线方向水封帘,此时孔1相当于文吐里管 喉部位置,孔1压力降低。此处流动为圆周当量流 速 v_w,是圆周速度的主体。孔5总压与静压存在一 差值,该差值本文设定为当量径向速度 vz:孔1与 静压的差值,本文设定为当量圆周速度 vue。因存在 冲击水力损失,流道内真实情况为三维流动, v_{re}和 v_{ue} 与真实的径向速度 v_r 和 v_u 有误差,存在两个修 正系数 K_r和K_u,但本文的研究还未能确定 K_r和 K" 计算方法和变化规律,有待于今后进一步探索研 究。理论上 vr 和 vu 计算式为

$$\begin{cases} v_r = K_r v_{re} \\ v_u = K_u v_{ue} \end{cases}$$
(1)

当量速度计算式为

$$\begin{cases} v_{re} = \sqrt{\frac{2(p_5 - p_s)}{\rho}} \\ v_{ue} = \sqrt{\frac{2(p_s - p_1)}{\rho}} \end{cases}$$
(2)

4.2 流道流场测量及数据分析

在泵额定转速下,叶轮出口圆周速度 $v_{u2} =$ 10.297 m/s。表4和图8为泵性能和流场测量参数 及变化曲线。在各测位,流量增大,静压值减小,从 而可以解释旋涡泵 NPSH_c 随 q_v 增加而增大的原 因。测位 A 大流量时,静压是负值,5个测压管除 p_5 外均呈负压,由此可以断定旋涡泵汽蚀首先发生 在泵流道的进口处。在纵向旋涡的涡核半径上,大量气泡堵塞流道会造成扬程等性能下降,但不会对 叶轮和流道壁造成破坏性侵蚀。从测位 A 到 C 静压值以一定梯度增加,这是叶轮叶片对流体作功,流体能量增加的结果。在各测位,流量减小,当量径向 速度均较小,但降幅不大。当量圆周速度在 A 测 位,流量减小其数值增大;在 B 测位,先略微增大后 又略微减小。在 C 测位反而略有减小,这是旋涡泵 q_v - H和 q_v - P 曲线随 q_v 增加而陡降的主要原因。

Fig. 8 p_s , v_{re} , v_{ue} parameters curve at location of A, B, C

5 变转速泵流道流场测试

5.1 泵流道流场测量

图 9 为变转速 A 测位静压 p_s 、当量径向速度 v_{re} 和当量圆周速度 v_{ue} 测量参数曲线;图 10 为 B 测 位 p_s 、 v_{re} 和 v_{ue} 测量参数曲线;图 11 为 C 测位 p_s 、 v_{re} 和 v_{ue} 测量参数曲线。

5.2 流场测量数据分析

通过对上述流场测量数据及曲线对比分析可以 看出:静压值 p_s 在 3 个测位随转速增加而以一定梯 度增大,其变化趋势及规律基本上与变转速外特性 q_v - H 曲线相吻合。在 3 个测位,转速越大, p_s 值 越大,抗汽蚀性能越好,这与变转速外特性 q_v -NPSH_c 曲线变化规律一致;当量径向速度 v_{re} 在 3 个测位随转速增加呈 S 形递增趋势, 个别值略有偏 差。当量圆周速度 v_{re} 在 3 个测位随着转速增加,以 泵性能和流场测量参数

表 4

一定梯度增大, v_r 和 v_w 的变化规律和泵外特性 q_v -H和 q_v -P变化规律也基本相吻合。从A测位到C 测位静压 ps 增幅明显加大,泵转速越高,泵叶轮对 流体作功量加大,能量交换量也加大。

Tab.4 Pump performance and flow field parameters													
测位 测序	测应	流量	转速	扬程	轴功率		5孔	探针测压值	Ĩ∕Pa		p_s	v_{re}	v_{ue}
	侧户	$/m^3 \cdot h^{-1}$	$/r \cdot min^{-1}$	/m	/W	p_1	p_2	<i>p</i> ₃	p_4	<i>p</i> ₅	/Pa	$/\mathrm{m}\cdot\mathrm{s}^{-1}$	$/m \cdot s^{-1}$
A	1	2.665	2 850	1.321	257.6	- 33 388	- 24 653	- 24 954	- 22 816	8 736	- 12 817	6.57	6.41
	2	2.002	2 850	4.476	311.2	- 30 852	- 20 290	- 17 618	- 16 480	16 199	- 3 412	6.26	7.41
	3	1.495	2 851	7.178	360.7	- 25 498	- 14 935	-9727	-6 627	22 116	7 181	5.47	8.08
	4	1.005	2 850	10.029	415.6	$-20\ 008$	- 10 145	-2119	3 2 3 6	30 424	17 034	5.18	8.61
	5	0.498	2 852	13.225	479.5	-9717	-5 500	5 918	10 698	43 659	28 160	5.57	8.70
	6	0	2 849	16.610	549.5	- 696	1 545	14 090	18 297	51 812	38 909	5.08	8.90
	1	2.663	2 852	1.330	257.7	- 16 616	- 22 544	- 5 072	- 20 707	42 104	10 135	8.00	7.31
	2	2.096	2 851	4.002	302.8	-8444	- 14 518	4 645	- 11 836	52 103	23 797	7.52	8.03
	3	1.578	2 847	6.719	352.1	428	-1 273	13 245	- 6 899	61 674	35 059	7.30	8.32
В	4	1.016	2 849	9.962	414.2	14 090	8 736	26 761	7 045	72 519	49 285	6.82	8.39
	5	0.502	2 852	13.199	479.0	27 053	21 699	40 006	18 453	83 353	61 956	6.54	8.36
	6	0	2 852	16.610	549.5	40 579	37 344	54 096	30 560	90 534	74 627	5.64	8.25
	1	2.725	2 852	1.057	253.3	-6054	- 11 126	3 663	- 7 181	51 434	27 179	6.96	8.15
	2	2.204	2 850	3.469	293.5	7 609	991	18 881	8 872	61 578	38 305	6.82	7.84
C	3	1.410	2 850	7.656	369.7	33 107	26 625	42 960	34 777	78 195	60 129	6.01	7.35
С	4	1.005	2 850	10.029	415.5	47 187	40 287	55 495	48 440	88 058	72 373	5.60	7.10
	5	0.5	2 852	13.212	479.2	66 067	58 323	71 265	66 037	98 766	85 607	5.13	6.25

2 8 5 2

16.610

549.5

9

84 2 38

6

50

 p_s/kPa

0

75 648

86 754

81 808

108 483

4.67

5.17

97 579

Fig. 9 Location A variable speed parameters p_s , v_{re} , v_{ue} curve

(a) *ps* 参数曲线 (b) *vre*参数曲线 (c) *vue*参数曲线

Fig. 10 Location B variable speed parameters p_s , v_{re} , v_{ue} curve (a) p_s 参数曲线 (b) v_{re} 参数曲线 (c) v_{ue} 参数曲线

(a) *p*_s 参数曲线 (b) *v_{re}*参数曲线 (c) *v_{ue}*参数曲线

6 结束语

由于篇幅所限,本文未对试验结果进行理论计

算和细化分解研究。计算机数值模拟结合流场测量,可能是认识旋涡泵内部流动规律的有效途径,以待今后进一步探索研究。

参考文献

- 1 关醒凡. 现代泵技术手册[M]. 北京:宇航出版社,1995.
- 2 沙毅. 旋涡泵叶片数实验研究与设计[J]. 流体机械,1995,23(10): 9~11.
 Sha Yi. Experimental study and design on blade number of vortex pumps[J]. Fluid Machinery, 1995, 23(10):9~11.
 (in Chinese)
- 3 沙毅. 自吸旋涡泵的设计研究[J]. 水泵技术, 2000(6): 3~5.

Sha Yi. Development and design of self-priming vortex pumps[J]. Pump Technology, 2000(6):3~5. (in Chinese)

- 4 沙毅. 泵与风机[M]. 合肥: 中国科学技术大学出版社, 2005.
- 5 朱祖超, 王乐勤, 黄敦回, 等. 小流量旋涡泵的理论设计与试验研究[J]. 工程热物理学报, 2001, 22(4): 450~452 Zhu Zuchao, Wang Leqin, Huang Dunhui, et al. Theoretical design and experimental study of small-flow high-head vortex pumps[J]. Journal of Engineering Thermophysics, 2001, 22(4): 450~452. (in Chinese)
- 6 张明成,于卫东,李廷占,等. 旋涡泵中叶轮与泵体间动压场的应用研究[J]. 润滑与密封, 2004(5): 25~26. Zhang Mingcheng, Yu Weidong, Li Tingzhan, et al. Application study on hybrid effect between impeller and pump wall of vortex pump[J]. Lubrication Engineering, 2004(5): 25~26. (in Chinese)
- 7 金玉珍,谢鹏,胡旭东.小流量高扬程离心旋涡泵气液混输扬程的分析[J].浙江理工大学学报,2007,24(4):420~423.

Jin Yuzhen, Xie Peng, Hu Xudong. The head analysis on gas-liquid two-phase mixture flow of small-flow high-head centrifugal-vortex pump[J]. Journal of Zhejiang Sci-Tech University, 2007, 24(4): 420~423. (in Chinese)

- 8 Zhu Zuchao, Xie Peng, Ou Guofu, et al. Design and experimental analyses of small-flow high-head centrifugal-vortex pump for gas-liquid two-phase mixture[J]. Chinese Journal of Chemical Engineering, 2008, 16(4): 528~534.
- 9 王春林,司艳雷,赵佰通,等.旋流自吸泵内部湍流场大涡模拟[J].农业机械学报,2009,40(9):68~72,97.
 Wang Chunlin, Si Yanlei, Zhao Baitong, et al. Large eddy simulation on interior flow field of rotational flow self-priming pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009,40(9):68~72,97. (in Chinese)
- 10 张剑慈,朱祖超,崔宝玲. 开式叶轮高速离心泵叶形对泵内流场的影响分析[J]. 农业机械学报,2007,38(10):41~44.

Zhang Jianci, Zhu Zuchao, Cui Baoling. Infection of pump flow field caused by impeller type of open-impeller high-speed centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(10):41~44. (in Chinese)