
A New Proposal Against the Main of Generic Attacks

Xigen Yao
Wuxi Hengqi Electromechanical Device Co.Ltd.China

email : dihuo377@163.com

Abstract.This paper presents a efficient proposal for iterating hash function
to prevent the main of generic attacks such as Multicollisions Attack,Second
Preimage Attack and Herding Attack.Based on this proposal,it’s possible that a
secure hash function can be built with iterating compression functions .

The proposal mainly contains a method called ” Shifting Whole Message”,it
regroups the cascaded messages to be new blocks and makes the known results
of the pre-computed blocks noneffective .
keywords: hash function ,iterating ,shift ,regrouped block,pre-computed

1 Introduction:

Since 2004,some of the existing hash functions MD5,SHA0,SHA1 [1][2]are bro-
ken. The existing hash functions are built by a same structure called Merkle-
Damgaard Structure ,which use iterating compression functions.Many papers
have shown the weakness of the structure and many generic attacks are given[3][4][5].
It seems that iterating hash functions can hardly be secure anymore.

This paper presents a efficient proposal for iterating hash function to pre-
vent those generic attacks which includes Multicollisions Application to Cascaded
Constructions ,Second Preimage Attacks on Dithered Hash Functions and Herd-
ing Hash Functions and the Nostradamus Attack,of course, we need a stronger
compression function to avert the differential attacks on collision resistance .

The proposal is made up of two parallel compression functions, one acts in a
normal mode,and another acts in a particular mode which contains a method
called ”Shifting Whole Message”.

A normal pretreatment of a hash function is:after padding and appending
length,a message is formatted as 16m 64-bit(or 32-bit) words,and the message is
grouped to be m blocks ,each block contains 16 64-bit(or 32-bit)words. we add
a pretreatment called ”Shifting Whole Message”:

an original message :x0, x1, ..., xi, ..., x16m−1

Cut s words from the head ,and link them to the end,ie.,the whole message is
shifted to the left for s words.

Set a shift parameter s = 8m + 1 ,if m is a odd number;

1

and set s = 8m+7 if m is a even number. For example,we consider m is a odd
number.

The original message is:
x0, x1, ..., x8m, x8m+1..., x16m−1

The shifted message is:
x8m+1..., x16m−1, x0, x1, ..., x8m

This method is different from the previous ones[6], it makes the blocks re-
grouped and makes the new blocks staggered ,then,each block is different from
the original corresponding one . Once the message blocks are cascaded,each the
block will change into a new block, the previous known result of a block can’t
be used again,and we can avert the attacks which using known result by pre-
computing blocks.

The rest of this paper,we first explain the method ”Shifting Whole Message”
to prevent those attacks, then ,we give a more detailed proposal .

2 Shift Mode And The Generic Attacks

For a message x ,after padding and appending length ,it’s length is 16m × 64
bits or 16m× 32 bits,(the succedent we assume it 64bits) , for the hash function
H(x) of the M-D structure ,it’s compression function is f , the message is for-
matted as 16m 64-bit words :x0, x1, ..., xi, ..., x16m−1 , ie.,the message is made up
of m blocks and each the block contains 16 64-bit words,for H(x):

CVi = Chaining variable ,CV0 = IV (given Initial Value)
X[i] = the ith block
CVi = f(CVi−1, X[i])
H(x) = CVm

We can see,the fixed message-block X[i] is computed one by one ,the attack-
ers achieve by pre-computing the message-blocks,using known result of message-
blocks, matching and yielding the chaining variables. We now use the method
”Shifting Whole Message” and to see the generic attacks.

2.1 The Setting of Shifting Whole Message

For a m blocks message ,we set the shift parameter s = 8m + 1, if m is a odd
number; and set s = 8m + 7 if m is a even number.

For example, m = 1 ,i.e.,the message is a single block.The original message is:
x0, x1, ..., x8, x9...x15

The shift parameter s = 8m + 1 = 8× 1 + 1 = 9 (m is a odd number),we cut
9(s = 9)words (x0, x1, ..., x7, x8) from the head and link them to the end.

where ,”| ”denotes the cutting point:
the original message : x0, x1, ..., x8, |x9...x15

2

And the shifted message:|x9...x15, x0, x1, ..., x7, x8

For a two-block message,we assume it contains Block A and B:
Block A :x0, x1, ..., x7, x8, ..., x15

Block B :y0, y1, ..., y7, y8, ..., y15

Of curse ,if the single block A is shifted for pre-computing ,it is:

x9, ..., x15, x0, x1, ..., x7, x8,and we write this single block as
︷︸︸︷
A .

The same ,if the single block B is shifted for pre-computing,it is:︷︸︸︷
B (y9, ..., y15, y0, y1, ..., y7, y8)

Their output are marked with subscript ”S”,e.g ,CVS1.
Pre-compute CVS1 and CVS2:

CVS1 = f(IV,
︷︸︸︷
A) = f(IV, (x9...x15, x0, x1, ..., x8))

CVS2 = f(CVS1,
︷︸︸︷
B) = f(CVS1, (y9, ..., y15, y0, y1, ..., y8))

Now, if the two single blocks are cascaded to be a two-block message,then the
shift parameter s = 8m + 7 = 8× 2 + 7 = 23 (m = 2,it is a even number).

We cut 23(s = 23)words from the head and link them to the end .
The original two-block message is:
(x0, x1, ..., x7, x8, x9...x15)(y0, y1, ..., y6|y7, ..., y15) (where | denotes the cutting

point)
And the shifted two-block message is:
(y7, ..., y15, x0, x1, ..., x6)(x7, ..., x15, y0, y1, ..., y6)
We can see that the two new blocks of the cascaded message are staggered.The

first new block contains elements of Block B ,and the second new block contains
elements of Block A,so the two new blocks are different from either of Block A
or Block B,we call the new blocks regrouped blocks.

Let
︷︸︸︷
BA denotes the first regrouped block (y7, y8, ..., y15, x0, x1, ..., x6).

(
︷︸︸︷
BA means the elements are from Block B and Block A.)︷︸︸︷

AB denotes the second regrouped block (x7, ..., x15, y0, y1, ..., y6),for these cas-
caded blocks,their output are marked with subscript”C”,e.g,CVC1.

CVC1 denotes the output of the first block.in shift mode:

CVC1 = f(IV,
︷︸︸︷
BA) = f(IV, (y7, ..., y15, x0, x1, ..., x6)).

CVC2 denotes the output of the second new block:

CVC2 = f(CVC1,
︷︸︸︷
AB)=f(CVC1, (x7...x15, y0, y1, ..., y6)),

in normal mode, pre-compute CV1 and CV2:
CV1 = f(IV,A) = f(IV, (x0, x1, ..., x15))
CV2 = f(CV1, B) = f(CV1, (y0, y1, ..., y15)
Obviously,CVC1 6= CV1 ;CVC1 6= CVS1and CVC2 6= CV2,CVC2 6= CVS2

3

So, pre-computing the two single shifted blocks f(IV,
︷︸︸︷
A) and f(CVS1,

︷︸︸︷
B)

or pre-computing the two original blocks f(IV,A) and f(CV1, B) are of no use
in this case.

Our proposal mainly contains the cascading of the two parallel compression
functions f1 and f2 :

f1 acts the original blocks , f2 acts the shifted blocks,and the chaining values
outputted are the modulo additions of theirs. f1 ,f2 can be similar compression
functions which output chaining-value with same length (and even f1 ,f2 they
can be a same function).

The followed is analysis of Multicollisions in shift mode.

2.2 Multicollisions In Shift Mode

For Multicollisions [3],We quote Multicollisions in Iterated Hash Functions
Application to Cascaded Constructions :In a normal iterating function with M-D
construction ,recall that a collision is a pair of different messages M and M

′
such

that H(M) = H(M
′
). Due to the birthday paradox, there is a generic attack

that find collisions after about 2n/2 evaluations of the hash function, where n is
the size in bits of the hash values.If there are t collisions of t pairs of different
messages,then ,there can construct multicollisions of 2t collisions. first is how 4-
collisions can be obtained,assume that two different blocks, A and A

′
that yield

a collision, i.e. f(IV,A) = f(IV,A
′
). Let z denotes this common value and find

two other blocks B and B
′

such that f(z,B) = f(z,B
′
). Put these two steps

together to obtain the following 4-collision:
f(f(IV,A), B) = f(f(IV,A), B

′
) = f(f(IV,A

′
), B) = f(f(IV,A

′
), B

′
)

And 2t-collision can obtain by analogy.

Now,in shift mode , we set the shift parameter s = 8m + 1, if m is a odd
number; and set s = 8m + 9 if m is a even number.

Obviously ,for each the precomputing of the single block ,m = 1,and the shift
parameter s = 8m + 1.ie., s = 8× 1 + 1 = 9

For example,we show the message made up of two blocks,we also assume the
previous two different single blocks A and A

′
that yield a collision,and B , B

′
yield

another collision at z. A(x0, x1, ..., x6, x7, ...x15) denotes the elements of block
A,by the same,there are B(y0, y1, ...y6, y7, ..., y15), A

′
(x

′
0, x

′
1, ..., x

′
6, x

′
7, ...x

′
15), and

B
′
(y

′
0, y

′
1, ...y

′
6, y

′
7, ..., y

′
15).

This is a message cascaded by two blocks ,which m = 2(m is an even num-
ber),so the shift parameter s = 8m + 7.ie., s = 8× 2 + 7 = 23.

The original message AB is:| denotes the cutting point):
(x0, x1, ..., x7, x8, ...x15)(y0, y1, ..., y6, |y7..., y15)
We cut the first 23(s = 8×2+7 = 23) words of x0, x1, ..., x7, x8, ...x15, y0, y1, ...y6

and link them to the end

4

the shifted message is:
(y7, ..., y15, x0, x1, ..., x6)(x7, ...x15, y0, y1, ...y6)

We show the blocks in three situations ,the first is each the original block,the
second is the each single block shifted for precomputing ,and the third is each of
the two cascading blocks which are regrouped by shift .For A,B:

Block1 Block2
original : A(x0, x1, ..., x6, x7, ..., x15) B(y0, y1, ..., y6, y7, ..., y15)

single :
︷︸︸︷
A (x9, ..., x15, x0, x1, ..., x8)

︷︸︸︷
B (y9, ..., y15, y0, y1, ..., y8)

cascaded:
︷︸︸︷
BA (y7, ..., y15, x0, x1, ..., x6)

︷︸︸︷
AB (x7, ..., x15, y0, y1, ..., y6)

By analogy ,we link A
′
,B

Block1 Block2
original : A

′
(x

′
0, x

′
1, ..., x

′
6, x

′
7, ..., x

′
15) B(y0, y1, ..., y6, y7, ..., y15)

single :
︷︸︸︷
A

′
(x

′
9, ..., x

′
15, x

′
0, x

′
1, ..., x

′
8)

︷︸︸︷
B (y9, ..., y15, y0, y1, ..., y8)

cascaded:
︷︸︸︷
BA

′
(y7, ..., y15, x

′
0, x

′
1, ..., x

′
6)

︷︸︸︷
A

′
B(x

′
7, ..., x

′
15, y0, y1, ..., y6)

We assume the two different single blocks,
︷︸︸︷
A and

︷︸︸︷
A

′
that yield a collision

by precomputing ,(Of course,this is in shift mode,we can also assume it in normal
mode, that two original blocks A and A

′
yield a collision by precomputing.the

followed we’ll only consider precomputing in shift mode.)

f(IV,
︷︸︸︷
A) = f(IV,

︷︸︸︷
A

′
) = z

i.e., f(IV, (x9, ..., x15, x0, x1, ..., x8)) = f(IV, (x
′
9, ..., x

′
15, x

′
0, x

′
1, ..., x

′
8)) = z

For cascaded message A−B,the first regrouped block is:︷︸︸︷
BA (y7, ..., y15, x0, x1, ..., x6)
For cascaded message A

′ −B,the first regrouped block is:︷︸︸︷
BA

′
(y7, ..., y15, x

′
0, x

′
1, ..., x

′
6)

Obviously,
︷︸︸︷
BA 6=

︷︸︸︷
BA

′
;Synchronously,

︷︸︸︷
BA 6=

︷︸︸︷
A ;

︷︸︸︷
BA

′ 6=
︷︸︸︷
A

′
, we can’t get

f(IV,
︷︸︸︷
BA) = f(IV,

︷︸︸︷
BA

′
) = z by assuming f(IV,

︷︸︸︷
A) = f(IV,

︷︸︸︷
A

′
) = z.

The first regrouped blocks are also different from the two known original blocks
A or A

′
.

Therefore,the first step that f(IV,
︷︸︸︷
BA) = f(IV,

︷︸︸︷
BA

′
) = z is false, and we

can’t use the result of known collision that f(IV,
︷︸︸︷
A) = f(IV,

︷︸︸︷
A

′
) = z.

Since they don’t meet the same output of chaining value z ,Synchronously in
the shift mode of cascading, their second new blocks:︷︸︸︷

AB (x7, ...x15, y0, y1, ...y6) and
︷︸︸︷
A

′
B(x

′
7, ...x

′
15, y0, y1, ...y6) are also different.so,the

5

second step , we can’t get that f(z,
︷︸︸︷
AB) = f(z,

︷︸︸︷
A

′
B).

Therefore,we can’t get:f(IV,A−B) = f(IV,A
′ −B)

If assume that the two original blocks A and A
′
yield a collision by precom-

puting in normal mode,we can get the same result.

By analogy,we also can’t get the 4-collision :
f(IV,A−B) = f(IV,A−B

′
) = f(IV,A

′ −B) = f(IV,A
′ −B

′
)

By the same way,in shift mode,that the Multicollisions Application to Cas-
caded Constructions, and 2t-collision can obtain are false.

We will farther expound in the below.

2.3 Herding Attacks AND Shift Mode

An attacker who can find many collisions on the hash function by brute force
can first provide the hash of a message. The attacker first does a large pre-
computation, and then commits to a hash value h. Later, upon being challenged
with a prefix P , the attacker constructs a suffix S such that hash (P ‖ S) = h.
Kelsey and Kohno ,Their paper introduced the ”diamond structure”[5], which
is reminiscent of a complete binary tree. It is a 2ι multi-collision in which each
message in the multi-collision has a different initial chaining value, and which is
constructed in the pre-computation step of the attack. The herding attack on an
n-bit hash function requires approximately 22n/3+1 work[4].

According to the previous result ,we can see that pre-computation of a block
cann’t be used in a cascaded message in shift mode. Now ,we consider it again
by ”Shifting Whole Message”.

For simplicity,assume the original blocks are P (x0, x1, ..., x15) and S(y0, y1, ..., y15)

The single shifted message
︷︸︸︷
P is:

︷︸︸︷
P (x9, ..., x15, x0, x1, ..., x8)

The single shifted message
︷︸︸︷
S is:

︷︸︸︷
S (y9, ..., y15, y0, y1, ..., y8)

Assume that by pre-computing and matching ,we get f(IV,
︷︸︸︷
P) = z1 and

f(z1,
︷︸︸︷
S) = h ,then we’ll see whether we can get that: f(IV, P ‖ S) = h.

f(IV,
︷︸︸︷
P) = f(IV, (x9, ..., x15, x0, x1, ..., x8)) = z1;

f(z1,
︷︸︸︷
S) = f(z1, (y9, ..., y15, y0, y1, ..., y8)) = h

Now,P and S are cascaded to be a new message ”P ‖ S”,we write it as
”P − S”or”PS”.

The shift parameter s of the cascaded message PS :s = 8m + 7 = 8× 2 + 7 =
23,which m = 2.

the original message is:(x0, x1, ..., x6, x7, ..., x15)(y0, y1, ..., y6, |y7, ..., y15)
And the shifted message of PS is:

6

(y7, ..., y15, x0, x1, ..., x6), (x7, ..., x15, y0, y1, ..., y6)︷︸︸︷
SP denotes the first regrouped block :

︷︸︸︷
SP (y7, ..., y15, x0, x1, ..., x6)︷︸︸︷

PS denotes the second regrouped block:
︷︸︸︷
PS (x7, ..., x15, y0, y1, ..., y6)

Obviously,
︷︸︸︷
SP is quite different from the single shifted block

︷︸︸︷
P , so , the

first steep,f(IV,
︷︸︸︷
SP) 6= f(IV,

︷︸︸︷
P) = z1; synchronously , for the second blocks︷︸︸︷

PS 6=
︷︸︸︷
S .

Even though f(z1,
︷︸︸︷
S) = h, We can’t get f(z1,

︷︸︸︷
PS) = h , ie.,we can’t get

f(IV, PS) = h.

If the pre-computing is in normal mode , that we get f(IV, P) = z1, f(z1, S) =
h,By analogy,we’ll have the same result.It means ,that to build a binary tree of
multi-collision by pre-computing the original blocks or the single-shifted blocks
is useless.

In fact, our proposal mainly contains the cascading of two parallel compres-
sion functions f1 and f2; f1 acts the original blocks in normal mode, f2 acts
the regrouped blocks in shift mode,the chaining values outputted are the modulo
additions of theirs.

The message in shift mode is a shift version of the original message(by shifting
it to left for (8m + 1)or(8m + 7) words) , and we can also regard the origi-
nal message as a shift version of the shifted message(by shifting it to right for
(8m− 1)or(8m− 7) words),ie.,they are the shift versions each other.

Consider a m-block messageB:
If m is an odd number,then Block Bm+1

2
is the center one, where is just the

cutting point.
B(B1, B2, ..., Bm+1

2
, Bm+3

2
, ..., Bm)

The shifted message is:︷︸︸︷
B (

︷ ︸︸ ︷
Bm+1

2
Bm+3

2
, ...,

︷ ︸︸ ︷
Bm−1Bm,

︷ ︸︸ ︷
BmB1, ...,

︷ ︸︸ ︷
Bm−1

2
Bm+1

2
)Formula(1)

If m is an even number,where blockBm
2

+1is the cutting point.
B(B1, B2, ..., Bm

2
+1, Bm

2
+2, ..., Bm)︷︸︸︷

B (
︷ ︸︸ ︷
Bm

2
+1Bm

2
+2, ...,

︷ ︸︸ ︷
Bm−1Bm,

︷ ︸︸ ︷
BmB1, ...,

︷ ︸︸ ︷
Bm

2
Bm

2
+1)Formula(2)

The shifted message has moved about 8m words.ie.,each the block is shifted
for about 8m words from it’s corresponding one.

If P and S are all multi-block massages,we’ll get the same result.(see appendix)

7

There’s another question:What about pre-computing the regrouped blocks(not
the single shifted blocks and the original blocks)?

It seems that the pre-computed results can be useful if the regrouped blocks
have been pre-computed . If a ”diamond structure”is made up of the regrouped
blocks,can the pre-computing results be used again?

If pre-compute the regrouped blocks, The original message will act as the
shift version of the shifted message,and the original blocks act as the shifted
ones,therefore ,just like the previous analysis ,that idea which pre-computing the
regrouped blocks can’t be realized.

Then,what about pre-computing the regrouped blocks and the original blocks
together?

We’ll explain by giving an example :
A two-block message AB,
Block A Block B
It’corresponding shifted blocks are :︷︸︸︷
BA

︷︸︸︷
AB

Pre-compute them by binding(e.g.,binding a pair of blocks, A and
︷︸︸︷
BA).

CV1 = f1(IV,A) + f2(IV,
︷︸︸︷
BA).

Assume the two-block message AB(which it’mAB = 2) is cascaded with an
other message Cx(which it’s mc blocks) , there become a new message CxAB
with m(m = mAB + mc)blocks.then,there always m > mAB ,the positions of the
shifted blocks have to move again,the pre-computed result of the binding blocks,

a pair of A and
︷︸︸︷
BA is no use.

In fact, the blocks themself have been changed also ,there is no block
︷︸︸︷
BA

anymore.
E.g.,let Cx be a sing block,ie.,mc = 1.Cx is the first block,the original message is
CxAB,ie.,Block Cx,Block B and BlockA:

Cx A B
the corresponding shifted blocks are(m = 3,it’s an odd number,where Block A is
the cutting point.) :︷︸︸︷

AB ,
︷︸︸︷
BCx,

︷︸︸︷
CxA.

Now,the corresponding block of A is
︷︸︸︷
BCx, this pair of blocks Block A and

︷︸︸︷
BCx

are different from the previous binding blocks,A and
︷︸︸︷
BA .

CV
′
1 = f1(IV,A) + f2(IV,

︷︸︸︷
BCx),obviously,CV

′
1 6= CV1

And then,there produced the new regrouped blocks :
︷︸︸︷
BCx and

︷︸︸︷
CxA ,which are

different from the regrouped blocks of AB.
So we can’t use the known result of Pre-computing a pair of binding blocks.

8

Synchronously ,if two single blocks are cascaded to be a two-block message, each
block contains 16words(64bit-word),there are 64×16×2 = 2048 bits,ie.,there are
about 22048 kinds two-block messages.

Obviously,there are about(21024)3 kinds of 3-block message,and(21024)4for 4-
block message,.... therefore,that can be hardly realized to build a so called ”dia-
mond structure”for herding attack.

2.4 Second Preimage Attacks In Shift Mode

For Second Preimage Attacks on Dithered Hash Functions of Andreeva et al[4],
their basic technique relies on the diamond from the herding attack[6],if the dia-
mond structure of herding is too hard to build,the attack is defeated.

The second preimage attack of Dean means[7]is ,to insert a block (or blocks)at
so called a fixed point ith block,then make a preassigned output CVi equal to the
input CVi.

Let’s see Second Preimage Attacks again by”shifting whole message”.
There are three types messages (and the corresponding blocks), first is the

original message,second is the single shifted message for precomputing ,third is
the regrouped message after cascading.

We assume two messagesAx and By. Ax contains m1 blocks and By contains
m2(For simplicity,let’s set m2 = 3)blocks. m1 > m2, and both of them are odd
numbers,

We will insert By into Ax at the point (the ith block of Ax).Might as well set
1 ≤ i < m1+m2

2 − 3.

The single original message Ax is:
Ax(A1, ..., Ai−1, ..., Am1+1

2

, ..., Am1)

(block Am1+1
2

is the cutting point for the single message Ax.)

For precomputing ,The single shifted message of Ax is(According to Formula(1)):︷︸︸︷
Ax (

︷ ︸︸ ︷
Am1+1

2

Am1+3
2

, ...,
︷ ︸︸ ︷
Am1−1Am1 ,

︷ ︸︸ ︷
Am1A1, ...,

︷ ︸︸ ︷
A 2i−m1−1

2

A 2i−m1+1
2

, ...,
︷ ︸︸ ︷
Am1−1

2

Am1+1
2

)

The first i blocks of
︷︸︸︷
Ax :

(
︷ ︸︸ ︷
Am1+1

2

Am1+3
2

, ...,
︷ ︸︸ ︷
Am1−1Am1 ,

︷ ︸︸ ︷
Am1A1, ...,

︷ ︸︸ ︷
A 2i−m1−1

2

A 2i−m1+1
2

)

The single original message By is:
By(B1, B2, B3)
For precomputing,the single shifted message of By is(According to Formula(1)):︷︸︸︷
By (

︷ ︸︸ ︷
B2B3,

︷ ︸︸ ︷
B3B1,

︷ ︸︸ ︷
B1B2)

9

Precomputation of the single shifted message:

Compute the first i blocks of
︷︸︸︷
Ax :

f(IV, (
︷ ︸︸ ︷
Am1+1

2

Am1+3
2

, ...,
︷ ︸︸ ︷
Am1−1Am1 ,

︷ ︸︸ ︷
Am1A1, ...,

︷ ︸︸ ︷
A 2i−m1−1

2

A 2i−m1+1
2

) = CVi

Assume that: f(CVi,
︷︸︸︷
By) = CVi ie., f(CVi, (

︷ ︸︸ ︷
B2B3,

︷ ︸︸ ︷
B3B1,

︷ ︸︸ ︷
B1B2)) = CVi

Cascading:
Insert By into Ax at the point Ai,then ,there become a cascaded massage.
Ax −By denotes the original cascaded message. such that:
Ax −By(A1, ..., Ai, B1, B2, B3, Ai+1, ..., Am1+1

2

, Am1+3
2

, Am1+5
2

, ..., Am1)
The original message Ax −By contains m blocks,which
m = m1 + m2 = m1 + 3,and m is an even number.

Formula(2):
︷︸︸︷
B (

︷ ︸︸ ︷
Bm

2
+1Bm

2
+2, ...,

︷ ︸︸ ︷
Bm−1Bm,

︷ ︸︸ ︷
BmB1, ...,

︷ ︸︸ ︷
Bm

2
Bm

2
+1)

For messageAx −By, Block Am
2

+1 is the cutting point.
(Am

2
+1 = Am1+m2

2
+1

= Am1+3
2

+1
= Am1+5

2

)

We get the regrouped massage
︷ ︸︸ ︷
Ax −By:

(
︷ ︸︸ ︷
Am1+5

2

Am1+7
2

, ...
︷ ︸︸ ︷
Am1−1Am1 ,

︷ ︸︸ ︷
Am1A1, ...,

︷ ︸︸ ︷
Ai−1Ai,

︷ ︸︸ ︷
AiB1,

︷ ︸︸ ︷
B1B2,

︷ ︸︸ ︷
B3Ai+1, ...,

︷ ︸︸ ︷
Am1+3

2

Am1+5
2

)

(Of course ,we can write the first i regrouped blocks :

(
︷ ︸︸ ︷
Am1+5

2

Am1+7
2

, ...
︷ ︸︸ ︷
Am1−1Am1 ,

︷ ︸︸ ︷
Am1A1, ...,

︷ ︸︸ ︷
A 2i−m1+3

2

A 2i−m1+5
2

)

There are t1 blocks from
︷ ︸︸ ︷
Am1+5

2

Am1+7
2

to
︷ ︸︸ ︷
Am1−1Am1

(t1 = m1 − m1+7
2 + 1 = m1−5

2);

and there are t2 blocks from
︷ ︸︸ ︷
Am1A1 to

︷ ︸︸ ︷
A 2i−m1+3

2

A 2i−m1+5
2

,

(t2 = 2i−m1+5
2 − 1 + 1 = i− m1−5

2)
so,t1 + t2 = i

and the followed 3 regrouped blocks are:

(
︷ ︸︸ ︷
A 2i−m1+5

2

A 2i−m1+7
2

,
︷ ︸︸ ︷
A 2i−m1+7

2

A 2i−m1+9
2

,
︷ ︸︸ ︷
A 2i−m1+9

2

A 2i−m1+11
2

)

Compare the first i regrouped blocks with the first i single shifted blocks,they
are different.

Obviously ,Compute the first i regrouped blocks and the the first i single shifted

10

blocks, their output are not equal,i.e,the output of the ith cascaded block isn’t
equal to CVi.

That means, for the followed regrouped blocks ,the input is not CVi, syn-

chronously, the 3 regrouped blocks
︷ ︸︸ ︷
AiB1,

︷ ︸︸ ︷
B1B2,and

︷ ︸︸ ︷
Bm2Ai+1 are different from︷︸︸︷

By ,so,there can’t compute that f(CVi,
︷︸︸︷
By) = CVi.

If set m2 and i be other values,we can get the same result. There always be
m > m1 and m > m2,and simply it’s shift parameter s > s1 and s > s2.So,once
the message By is inserted into Ax,the pre-computed blocks of Ax or By have
to shift again,ie.,each the position of the blocks has been changed.thefore ,there
isn’t a point so called” fixed point”,and there’s no input CVi for By.

On the other way,the pre-computed blocks of By have also been changed.

There’ll always be the new regrouped blocks
︷ ︸︸ ︷
AiB1 and

︷ ︸︸ ︷
Bm2Ai+1 for corre-

sponding blocks of By.
In the cascaded message, the chining value input CVi, the positions of blocks

and even each the blocks of Ax are all changed, we can’t get a chaining value

CVi at the point ith block,and there’s no
︷︸︸︷
By can be computed such that

f(CVi,
︷︸︸︷
By) = CVi, so,the attack is invalid.

2.5 Some Conditions

What about that the regrouped blocks are as same as the original blocks ?
We give an example messageA,m = 1,ie.,that a single original block
A (x0, x1, ..., x6, x7, ..., x15) is same as it’s regrouped block︷︸︸︷
A (x9, x10, ..., x15, x0, ..., x8) .This means, their corresponding elements are

equal:
x0 = x9, x1 = x10, ..., x6 = x15, x7 = x0, ..., x15 = x8

From these 16 equations ,we can get:
x0 = x1 = x2 =, ...,= x15

It means that the message is an especial one,each of the 16 words is the same
and fixed one.

By similar,we can get the similar results for a multi-blocks-message.
Even though there’s this especial situation,this doesn’t make different result

from the previous analysis if they are cascaded.

The followed is a detailed proposal.

11

3 A Detailed Proposal

First,for pretreatment ,we get two messages.
For a message x,after padding and appending length,it’s length is 16m × 64

bits, the message is formatted as 16m 64-bit words :x0, x1, ..., xi, ..., x16m−1, ie.,the
message is made up of m blocks(B1, B2, ..., Bm) and each the block contains 16
64-bit words.we set a shift parameter s = 8m + 1, if m is a odd number; and set
s = 8m + 7 if m is a even number.

1 The original message is: x0, x1, ..., x8m, x8m+1..., x8m+6, x8m+7, ..., x16m−1

2 the shifted message is:
x8m+1..., x16m−1, x0, x1, ..., x8m(m is an odd number);
x8m+7..., x16m−1, x0, x1, ..., x8m+6(if m is an even number)

The original message can be written as :B1, B2, ...Bi, ..., Bm

And the shift message can be written as:BS1, BS2, ...BSi, ..., BSm.

Second,set two parallel compression functions f1 and f2 ,which are similar com-
pression functions outputting chaining-value with same length:

f1 outputs k(assume k ≥ 8) 64-bit values of CVOi and f2 outputs k 64-bit val-
ues of CVSi. f1 acts the original blocks , f2 acts the regrouped blocks,for message
x,the hash functionH(x), such that

for 1 ≤ i ≤ m,
CV0 = IV
CVi = CVOi + CVSi where ”+” is 264 modulo addition.
CVOi = f1(CVi−1, Bi) ; CVSi = f2(CVi−1, BSi)
H(x) = CVm

Where CVOi is the ith output of the original block Bi;
CVSi is the ith output of the regrouped block BSi.

This is a simple proposal,and we can get a stronger vision.
Based on the previous proposal,we add a step so called ”Second Hash”.

Make the last regrouped block BSm a extra-block Bxta:
Add the chaining-value CVOm andCVSm into the message of block BSm.
BSm is written as:BSm(u0, u1, ..., u15) ;
the output of f1 is written as:CVOm(VO1, VO2, ..., VOk);
the output of f2 is written as:CVSm(VS1, VS2, ..., VSk) ,
then get 16 variables from the each first 8 variables of CVOm and CVSm, such

that:
(VO1, VO2, ..., VO8, VS1, VS2, ..., VS8) and compute:
u0 = u0 + VO1, u1 = u1 + VO2, ..., u7 = u7 + VO8;

12

u8 = u8 + VS1, u9 = u9 + VS2, ..., u15 = u15 + VS8

Compute the extra block Bxta by f1 and f2:
CVO = f1(CVm, Bxta)
CVS = f2(IV,Bxta)
H(x) = CVO + CVS

We may select a new strong-avalanche hash function to work as the two parallel
compression functions f1 and f2,and to resist the differential attacks on collision
resistance.

4 summary

That the main weakness of a iterating hash function is it can be modular-
ized.The attackers make use of this and develop various attacks.

Our purpose is how to break the modularization.Based on the two parallel
modes which called ”original”and ”shift”,we built the proposal,and the ”Sec-
ond Hash”is helpful. It seems that the iterating hash functions should be reval-
ued,even though that the candidates of SH3 are advanced,the task of building a
real secure hash function isn’t finished.

5 References

[1]Xiaoyun Wang and Hongbo Yu How to Break MD5 and Other Hash Functions EURO-
CRYPT 2005, LNCS 3494, pp. 19C35, 2005

[2]Wang,X. ,Yin,Y. ,and Yu,H.Finding Collisions in the Full SHA-1, ,Proceedings–Crypto’05,
2005 ,Published–Spring-Verlag

[3] Antoine Joux Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions,In Proceedings of CRYPTO, LNCS 3152, pp. 306-316, Springer, 2004

[4] John Kelsey, Bruce Schneier Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work In Proceedings of EUROCRYPT, LNCS 3494, pp. 474-490, Springer, 2005

[5]John Kelsey, Tadayoshi Kohno Herding Hash Functions and the Nostradamus Attack In
Proceedings of EUROCRYPT, LNCS 4004, pp. 183-200, Springer, 2006

[6]Ronald L. Rivest Abelian square-free dithering for iterated hash functions2005

[7]Richard D. Dean Formal Aspects of Mobile Code Security1999

6 Appendix

The herding attack of multi-block massages P and S In Shift Mode

13

P and S are both multi-block massages. P contains m1(Assume m1 is an odd
number) blocks,such that

P (P1, P2, ..., Pm1+1
2

, ..., Pm1).

And S contains m2(Assume m2 is an odd number also,and m1 > m2) blocks,
S(S1, S2, ..., Sm2+1

2

, ..., Sm2).

Then ,for pre-computing,the single shifted message are(m1,m2 are odd num-
bers,according to Formula(1)):︷︸︸︷

P (
︷ ︸︸ ︷
Pm1+1

2

Pm1+3
2

, ...,
︷ ︸︸ ︷
Pm1−1Pm,

︷ ︸︸ ︷
Pm1P1, ...,

︷ ︸︸ ︷
Pm1−1

2

Pm1+1
2

)︷︸︸︷
S (

︷ ︸︸ ︷
Sm2+1

2

Sm2+3
2

, ...,
︷ ︸︸ ︷
Sm2−1Sm2 ,

︷ ︸︸ ︷
Sm2S1, ...,

︷ ︸︸ ︷
Sm2−1

2

Sm2+1
2

)

Assume that:f(IV,
︷︸︸︷
P) = z1,f(z1,

︷︸︸︷
S) = h.

We’ll see ,whether” f(IV, PS) = h ” can be gotten.

P ,S are cascaded to be a m-block massagePS
PS(P1, P2, ..., Pm

2
+1, ..., Pm1 , S1, S2, ..., Sm2).

m = m1 + m2,m is an even number,according to Formula(2),Pm
2

+1 is the cut-
ting point,the shifted message of PS is:

(
︷ ︸︸ ︷
Pm

2
+1Pm

2
+2, ...,

︷ ︸︸ ︷
Pm1−1Pm1 ,

︷ ︸︸ ︷
Pm1S1, ...,

︷ ︸︸ ︷
Sm2−1Sm2 ,

︷ ︸︸ ︷
Sm2P1,

︷ ︸︸ ︷
P2P3, ...,

︷ ︸︸ ︷
Pm1−m2

2

Pm1−m2
2

+1
,︷ ︸︸ ︷

Pm1−m2
2

+1
Pm1−m2

2
+2

, ...,
︷ ︸︸ ︷
Pm

2
Pm

2
+1)

Let P
′
denotes the message group of the first m1 shifted blocks, P

′
:

(
︷ ︸︸ ︷
Pm

2
+1Pm

2
+2, ...,

︷ ︸︸ ︷
Pm1−1Pm1 ,

︷ ︸︸ ︷
Pm1S1, ...,

︷ ︸︸ ︷
Sm2−1Sm2 ,

︷ ︸︸ ︷
Sm2P1,

︷ ︸︸ ︷
P2P3, ...,

︷ ︸︸ ︷
Pm1−m2

2

Pm1−m2
2

+1
)

Obviously it’s different from
︷︸︸︷
P ,so,we can’t get f(IV, P

′
) = z1.

Let S
′
denotes the message group of the left m2 blocks,S

′
:

(
︷ ︸︸ ︷
Pm1−m2

2
+1

Pm1−m2
2

+2
, ...,

︷ ︸︸ ︷
Pm

2
Pm

2
+1)

It’s also different from
︷︸︸︷
S .we can’t get f(z1, S

′
) = h

Therefore,we can’t get f(IV, PS) = h.

14

