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It is shown that Slater’s transition-state technique often used with Xa calculations generalizes
trivially to any local density functional. This technique is shown to yield excellent electron-removal

energies for several popular local density functionals.

More importantly we interpret density-

functional-theory eigenvalues as orbital electronegativities, demonstrating that they quantitatively
agree with Mulliken’s definition of electronegativity to better than 1% on average for atoms.

Eigenvalues of the local-density-functional and local-
spin-density-functional Hamiltonians are notoriously ill
described. Association of the eigenvalues with electron re-
moval energies via Koopman’s theorem ignores significant
orbital relaxation contributions to the energy.! The lack
of correspondence between these eigenvalues and physical
electron-removal energies has led some to describe them
as having no known physical meaning? while others have
sought schemes to alter density-functional theory (DFT)
(e.g., by self-interaction corrections®? or nonlocal-density
approximations)>* so as to create an effective potential
which yields eigenvalues equivalent to removal energies.
These techniques admittedly succeed in improving the
eigenvalues in their agreement with physical ionization
potentials. However, physical significance has been as-
cribed to bare local-density-functional eigenvalues as de-
fining an electronegativity scale consistent with
Mulliken’s definition of electronegativity.® Furthermore,
it is well known that ionization potentials can be calculat-
ed in density-functional theory using Slater’s transition-
state technique.®’

In this paper we first demonstrate the adequacy of the
Slater’s transition-state technique with numerical results
for the first ionization potentials of the atoms helium
through argon, comparing several local-spin-density func-
tionals. We have also compared these results with ioniza-
tion potentials calculated from total energy differences for
the same density functionals. Secondly, we calculate the
highest occupied, bare local-density-functional eigenvalues
for these same elements. We show these eigenvalues to
compare well with Mulliken’s electronegativities as calcu-
lated from experimental spectroscopic values of ionization
potentials (I) and electron affinity ( A) using the formula:

X=1(I+A4), (1

where X denotes Mulliken’s electronegativity.

By way of review, Slater’s transition-state scheme as-
sumes that the variation of total energy with respect to
occupation number is expandable in a Taylor series. It
therefore allows for the existence of fractional occupation
numbers, an assumption so commonplace that we will not
justify it further. For mathematical convenience the total
energy is expanded about a spin orbital with half occupan-
cy:
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The electron removal energy can now be calculated

I=E(1)—E(0)
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Taking advantage of the fact that in local-density theory
the derivative of total energy with respect to occupation
number is precisely the LD eigenvalue,®
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This is Slater’s well-known assertion that electron-removal
energies can be expressed up to third-order accuracy by
eigenvalues calculated at half occupancy. Arbitrary accu-
racy may be obtained through consideration of subsequent
terms of odd order given that the particular local-density
functional is of sufficient accuracy to allow such improve-
ment. We show that the bare half-occupied eigenvalues
yield local-spin-density approximation (LSDA) electron
removal energies to better than 1% accuracy in general.
Our calculations were performed using a modified
Herman-Skillman® (HS) program. The modifications to
the program include the generalization to a spin polarized
format to accommodate LSDA as well as LDA. The
choice of LDA or LSDA affects the form of the
exchange-correlation potential, the energy per particle,
and the total energies with all other calculational details
identical to the original (Herman-Skillman) programs.
Latter-tail corrections were not employed. In all cases the
calculations were for the spectroscopic neutral atom
ground state, or ion ground-state terms. Of course, as
previously described, the transition-state configuration
was halfway between the neutral and ionic ground states.
Table I summarizes our results for atomic first ioniza-
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TABLE I. LSDA electron removal energies in eV for the highest occupied states in He through argon using the KS, Xa, GL, and
JMW functionals. AE ., values compared with transition-state (TS) values.

Janak-Moruzzi-

Kohn-Sham?® Xa® Gunnarsson-Lundqvist Williams®

Expt.¢ E*-E° TS E*-E° TS E*-E° TS E*-E° TS
He 24.581 22.07 22.60 23.54 24.23 24.52 24.88 24.30 24.59
Li 5.390 5.03 5.12 5.58 5.72 5.69 5.80 5.62 5.75
Be 9.321 7.64 7.79 8.24 8.43 9.08 9.19 9.01 9.07
B 8.296 7.56 7.46 8.50 8.41 8.87 8.76 8.71 8.61
C 11.265 10.78 10.66 12.01 11.90 12.17 12.00 11.94 11.81
N 14.545 14.01 13.87 15.46 15.33 15.46 15.26 15.19 15.03
(0] 13.615 11.87 11.77 12.68 12.60 14.01 14.10 13.83 13.85
F 17.422 16.26 16.13 17.35 17.23 18.32 18.27 18.07 17.99
Ne 21.559 20.50 20.36 21.79 21.66 22.53 22.41 22.23 22.10
Na 5.138 4.87 4.93 5.17 5.25 5.58 5.63 5.51 5.59
Mg 7.645 6.49 6.58 6.81 6.92 7.79 7.85 7.73 7.76
Al 5.985 5.16 5.12 5.57 5.53 6.23 6.18 6.12 6.08
Si 8.149 7.44 7.39 8.00 7.95 8.60 8.52 8.45 8.39
P 10.55 9.69 9.63 10.37 10.32 10.93 10.83 10.74 10.69
S 10.357 8.82 8.79 9.29 9.26 10.60 10.67 10.47 10.49
Cl 13.01 11.71 11.66 12.35 12.29 13.45 13.44 13.26 13.23
Ar 15.755 14.49 14.43 15.26 15.20 16.22 16.18 16.00 15.95
Average error (%) 1.0 1.1 0.88 0.78
AETOT vs TS
Average error (%) 9.6 4.7 42 2.8
TS vs Expt.

2Reference 7.
YReference 9.
‘Reference 11.
9Reference 12.

tion potentials calculated for several widely used density
functions. The Kohn-Sham?® (KS) (exchange only), X-
alpha (Xa),’ Gunnarsson-LundqvistlO (GL), and Janak-
Moruzzi-Williams!! (JMW) LSDA’s have all been em-
ployed to calculate atomic total energies, ion total energies
and transition state ionization potentials. We compare the
transition-state results for ionization potentials with those
determined by subtracting the LSDA ion total energy
from the ground-state neutral-atom value. A measure of
the error involved with truncating Slater’s transition-state
procedure at the first term (the eigenvalue at half occu-
pancy) is the relative differences between these two ener-
gies. This comparison reveals errors on the order of 1%
with slight improvement moving from KS—Xa—GL—
JMW. The JMW LSDA has an average deviation of
0.8% between transition state and total energy ionization
potentials. This relative error also shows a general im-
proving trend with increasing atomic number.

Also included in Table I for comparison are experimen-
tal values for these atomic ionization potentials. It is ob-
vious from the above discussion that both the total energy
and transition-state-derived removal energies should be of
similar accuracy when compared with experiment and
indeed this is the case. The deviation of ionization poten-
tials so derived, when compared with experiments,12 is
then an inherent measure of the accuracy of the particular
LSDA. Our calculations show, as expected, that addition

of correlation yields dramatic improvement in the electron
removal energies as compared with the exchange-only
Kohn-Sham potential. Further gradual improvement in
the ionization potentials is evident in moving from Xa to
GL to JMW, this presumably is related to the improve-
ments in the correlation energy’s density dependence in
the same order. The JMW LSDA yields a very creditable
2.8% average deviation from experiment, for the first 18
elements of the Periodic Table. These results rival those
of self-interaction corrected values' and, greatly improve
the so-called post hoc corrections.'?

Table II shows the extension of transition state calcula-
tions to deep-lying 1s core states. The error in these
values compared with experiment are in all cases better
than those of the ionization potentials from the highest
occupied state. The data in Table II illustrate that the rel-
ative importance of the exchange-correlation potential is
greatest for the highest occupied levels. Therefore, the
first ionization potentials offer the most stringent test for
the LSDA. Before leaving the subject of the transition
state it should be noted that a rich literature exists
describing the utility of this technique in molecular calcu-
lations (e.g., Ref. 15) especially with the Xa potential.'®

The transition-state technique is easily extended to exci-
tations by displacing one half electron from the ground-
state level to the excited-state level, the difference in their
eigenvalues yielding the excitation energy. For example,
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TABLE II. Ka electron removal energies in eV for LSDA approximations.

Gunnarsson- Janak-Moruzzi-

Expt. (Ref. 14) Kohn-Sham Xa Lundqvist Williams
He 24.59 22.60 24.23 24.88 24.59
Li 64.39 61.64 64.34 64.34 63.98
Be 119.3 120.56 123.97 123.39 122.98
B 194 198.81 200.72 199.89 199.48
C 291.14 295.30 294.55 294.12
N 403.77 408.00 407.54 407.10
(o} 538.11 542.70 541.72 541.27
F 690.71 695.50 694.26 693.80
Ne 870.1 861.76 866.65 865.29 864.81
Na 1079.1 1069.02 1074.71 1072.68 1072.16
Mg 1311.2 1299.71 1305.99 1303.47 1302.93
Al 1567.0 1555.01 1561.90 1558.82 1558.27
Si 1846 1833.18 1840.60 1837.09 1836.53
P 2154 2134.45 2467.80 2463.52 2462.15
S 2477 2459.45 2467.80 2463.52 2462.15
Cl 2830 2807.59 2816.35 2811.70 2811.12
Ar 3203 3178.83 3187.97 3183.00 3182.40

the technique has recently been used with great success to
calculate Auger excitation energies to iron.!” Recently,
Williams and Lang'® have illustrated how the technique
can be of use in examining core-level excitation energies in
extended metallic systems.

We now review the more fundamental question of the
interpretation of LSDA and LDA eigenvalues. Equation
(4) describes the fact that the eigenvalues are precisely
first derivatives of total energy with respect to occupation
number. Stated succinctly in thermodynamic terms, the
eigenvalues are Lagrange parameters associated with the
minimization of total energy and as such, the eigenvalue
represents the chemical potential of the orbital. As chem-
ical potentials they offer a convenient and powerful elec-
tronegativity scale. This interpretation of orbital elec-

tronegativities as derivatives of total energies with respect
to occupation agrees qualitatively with Pauling’s'® defini-
tion of electronegativity as the power of an atom to at-
tract electrons to itself.

To elucidate this concept in a quantitative fashion we
review the arguments set forth [by one of the authors
(KHDJ)] in Ref. 5. The definition of electronegativity as in
Eq. (4) is analogous to that of Hinze et al.?° as a generali-
zation of Mulliken’s electronegativity [Eq. (2)]. Again we
can call upon Slater’s Taylor-series expansion of the total
energy (this time about n; =0) to calculate the ionization
potential. The electron affinity is calculated in a similar
fashion (the electron affinity is defined as the difference in
total energy of the negative ion subtracted from the neu-
tral atom ground state). This leads to the important rela-

TABLE III. Experimentally determined Mulliken electronegativities (in eV) compared with IMW

LSDA eigenvalues (or HL LDA eigenvalues).

Expt. ionization Expt. electron X= IMW Error

potential® affinity® %(1 + A) eigenvalue (%)
B 8.296 0.28 4.238 4.247 0.2
C 11.264 1.263 6.264 6.354 1.4
(o} 13.614 1.46 7.537 7.461 1.0
F 17.420 3.40 10.410 10.511 1.0
Al 5.984 0.44 3.212 3.162 1.6
Si 8.149 1.39 4.769 4.802 0.7
S 10.357 2.077 6.217 6.227 0.2
Cl 13.01 3.62 8.315 8.345 0.5
Li 5.390 0.618 3.004 2.9564 1.6
N 14.540 (0 7.270 7.329¢ 0.8
Na 5.138 0.548 2.843 2.8984 1.9
P 10.55 0.746 5.648 5.698¢ 0.9

2Reference 12.

YReferences 21 and 22.

‘Reference 22.

9Hedin-Lundgqvist eigenvalue (Ref. 23).
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tionship for the electronegativity X; of the ith state:

1 3E
Xiz%(li‘FAi):Ei lo+—=7

(5)
24 an,-3 0

Thus, to third-order terms in total energy the expression
for Mulliken’s electronegativity is satisfied by the LSDA
(LDA) eigenvalue.

In Table III we compare highest occupied atomic eigen-
values of the JMW density function with experimentally
derived values of Mulliken’s electronegativity (i.e., from
the sums of experimental ionization potentials'>?° and
electron affinities).?'>> For those elements that do not
have filled or half-filled subshells (B, C, O, F, Al, Si, S,
Cl) the comparison is with LSDA eigenvalues. The sub-
stantial agreement between these values and experiment is
taken as confirmation of this interpretation of the eigen-
values. For half-filled or filled subshells the analysis is a
little more complicated in that the Pauli exclusion princi-
ple does not allow for additional electrons in these states.
Therefore, experimentally derived electron affinities corre-
spond to the lowest unoccupied orbitals. In the case of
half-filled shells, for the sake of comparison it is possible
to relax the exclusion principle by comparing experimen-
tal electronegativity values with spin-restricted (LDA)
eigenvalues (where now the ionization potentials and elec-
tron affinity describe the same state since spin is no longer
a quantum number). The JMW LSDA reduces to the
Hedin-Lundqvist?® (HL) LDA in its non-spin-polarized
form. The calculated electronegativities for Li, N, Na,
and P compare favorably with highest occupied HL eigen-
values.

Figure 1 illustrates the variation of the total energy of a
sulfur atom as a function of the deviation of the 3p orbi-
tal occupancy from the 3p* ground state as calculated us-
ing the JMW potential. This figure illustrates several
poignant features relevant to the previous discussion. It
shows the total energy to be a relatively smoothly varying
function of occupation number. The chord connecting
E(—1) with E(41) obviously has slope +(I + 4) by def-
inition of I and 4. This chord is parallel to a line tangent
to E(n;) at n;=0. Therefore X=+(I +A). Further, the

E-E(O)
(eV)
10
R e . L8
I
+1
- N
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~

FIG. 1. Total energy versus occupational number for sulfur
using the IMW LSDA. X =3E /dn;=+(I + A).

value of the slope is shown to be in good agreement with
the calculated ground-state 3p eigenvalue.

We conclude that density-functional eigenvalues do
have simple and important physical significance. While
these eigenvalues do not correspond to electron removal
energies, Slater’s transition state offers a simple, widely
applicable means for determining electron removal ener-
gies from local-density calculations. Further the transi-
tion state is easily generalized to the calculation of elec-
tron affinities and electron excitation energies. Though
discussed here only for atoms, the electronegativity scale
described by DFT eigenvalues is of wide importance in
such areas as molecular bonding, charge transfer, covalen-
cy, etc. Much of the controversy over LDA eigenvalues
can be put to rest through the fundamental distinction be-
tween eigenvalues (electronegativities) and removal ener-
gies (ionization potentials) in local DFT.
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