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Abstract. In this paper, we show that the security models for key-dependent-message
encryption proposed by Backes et al. [1] and Camenisch et al. [3] are equivalent for certain
classes of function families.

1 Introduction

Standard security definitions for public-key encryption, including ciphertext indistinguishability
[5] and non-malleability [4], work on the assumption that an attacker is attempting to determine
information about a message that is computationally independent of the private key (in the sense
that the messages are computed as polynomial-time functions of the public-key alone). However,
there are practical situations in which a public-key encryption scheme may be used to encrypt
data which depends directly upon the private key of the encryption scheme. For example, a disk
encryption scheme may encrypt a hard-drive which contains the private key of the encryption
scheme which is being used to encrypt the hard-drive.

There has been some recent research on the subject of key-dependent message encryption. Most
notably, a breakthrough paper by Boneh et al. [2] proved the security of an ElGamal-based scheme
in an KDM-CPA security model in which the challenge message can be a function of the private
key. This was achieved by storing the private key in a suitable encoding, rather than by altering
the fundamental mechanics of the encryption scheme. Camenisch et al. [3] extended the Boneh et
al. approach to the KDM-CCA2 security model through the use of Naor-Yung-style techniques [7].
Another approach was taken by Backes et al. [1] which provided a more detailed and applicable
security model, and proved the security of the OAEP padding scheme in the random oracle model.

The security model of Backes et al. significantly extends the simple security model used by
Boneh et al. and Camenisch et al. by proposing a “grey-box” computation model — in contrast
to the black-box computation model proposed for groups by Maurer [6] or the white-box compu-
tational model essentially proposed by Paillier and Vergnaud [8]. This model allows the attacker
to force a user to perform arbitrary computations using any combination of public keys, private
keys, or arbitrary values chosen by the attacker. These values are stored in a data structure which
is initially not accessible by the attacker, but to which the attacker can request access to data ele-
ments of his choice. The data structure therefore has hidden and open elements, and some elements
which are technically “hidden” may be known to the attacker as they have been computed in a
predictable manner from known inputs. The authors therefore propose a decision system which
allows the attacker to determine if a data element is known or not.

The difference between the Camenisch et al. (CCS) model [3] and the Backes et al. (BDU) model
[1] is essentially the difference between a confidential message delivery system and a confidential
computational system. The CCS model represents the semantic security of a message that is sent
using an encryption scheme, whereas the BDU model represents the semantic security of a system
which may perform calculations on an internal memory structure. In other words, the BDU model
encapsulates the statement that no attacker can deduce any information about the internal memory
structure of a system except that which may be trivially deduced by revealing that information. In
a traditional (non-key-dependent-message) encryption scheme, these two security notions coincide;
however, more care is required in a key-dependent message system.



In this paper we demonstrate that the CCS and BDU security models are equivalent as long
the attacker can request the encryption of a set of functions of the secret keys which satisfies
certain properties, most notably that this set of functions include the encryption and decryption
algorithms.

2 Key-Dependent Message Encryption

2.1 Preliminaries

A public-key encryption scheme is a triple of PPT algorithms (G, E ,D). The key generation algo-
rithm G takes as input a security parameter 1k and returns a public/private key pair (pk , sk). The
public key defines a message space M and a ciphertext space C. The encryption algorithm E takes
as input a public key pk and a message m ∈ M, and returns a ciphertext C ∈ C. The decryption
algorithm D takes as input a private key sk and a ciphertext C ∈ C, and outputs a message
m ∈M or an error symbol. Since our application will involve computational systems, rather than
communication systems, we have to define the “error symbol” output more formally, as it may be
subject to calculations. We assume that we embed the semantic meaning of a message m into the
message space M⊆ {0, 1}∗ and define ⊥⊆ {0, 1}∗ to be a distinct subset of “error outputs”. This
divorces the link between the semantic meaning of the message and the input to the encryption
algorithm. For example, we could send a message m by encrypting the string 1‖m ∈M and define
the error set as ⊥= {0n : n ∈ N}.

For technical reasons we require that the encryption scheme is “length regular” in the sense
that (a) the length of the private key is defined by k, (b) the length of the output of the encryption
algorithm is defined by the length of the message and the public-key pk , and (c) the length of
the output of the decryption algorithm is defined by the length of the ciphertext and the public
key. This latter condition should hold even if the output of the decryption algorithm is ⊥. This
formulation slightly alters the correctness requirement, we now require that is is possible to extract
m from D(sk , C) if C

$← E(pk ,m) and (pk , sk) $← G(1k).

2.2 Function Families

We will prove the security of an encryption scheme with respect to a function family F . Despite
the fact that we will refer to the elements of the sets as “functions” we actually assume that the
elements are PPT algorithms. It is the set of functions f for which the attacker can obtain the
encryption of f(sk1, . . . , sk `). We have to make some assumptions about the function family in
order to prove any security results. We will also assume that the functions are “length regular” in
the sense that if f ∈ F then |f(a1, . . . , an)| is defined by f and (|a1|, . . . , |an|).

Two function families have been considered in the previous works: Backes et al. consider the
set of all (length-regular) polynomial-time circuits [1] and Boneh et al. consider a set consisting of
group element multiplications (which is length-regular). If we do consider the set of all polynomial-
circuits, then F contains the circuits D(sk j , ·) for all possible values of j and yet we do not assume
that the attacker can compute these functions. The method by which functions within the family
are specified is clearly as important as the function family itself: if a circuit can only be specified
by describing that circuit in terms of gates then security may be proven, but if it is possible
to specify a function as “the polynomial-time circuit that inverts E(pk i, ·)” then any encryption
scheme is trivially insecure in the BDU model. In general, we will assume that the function family
F implicitly includes a “sensible” method of describing it members.

Since the Backes et al. model allows for composition of functions, it is sensible to assume
that the function family is closed under composition. We define a function family F to be BDU
compliant if:

– The constant functions can be efficiently found in F .
– The identity functions fj(x1, . . . , x`) = xj can be efficiently found in F .



– F is closed with respect to fixed inputs, i.e. if f ∈ F takes n inputs, then for all 1 ≤ α ≤ n
and β ∈ {0, 1}∗ the function

fα,β(a1, . . . , an−1) = f(a1, . . . , aα−1, β, aα, . . . , an−1)

can be efficiently found F (given knowledge of f and β).
– F is closed with respect to fixed randomness, i.e. if f ∈ F makes use of a random tape R then

the function fR with the random tape R “hard-wired” into f can be efficiently found in F .
– F is closed with respect to composition, i.e. if f1, f2 ∈ F , where f1 takes n1 + 1-inputs and f2

takes n2 inputs, then for all 1 ≤ α ≤ n the function

fα(a1, . . . , an1 , b1, . . . , bn2) = f1(a1, . . . , aα−1, f2(b1, . . . , bn2), aα, . . . , an1)

can be efficient found in F (given knowledge of f1 and f2).

2.3 The Boneh et al. Security Model

The security model proposed by Boneh et al. is very simple and elegant [2]. The version we present
here is a slight variant of the version given by Camenisch et al. [3]. A scheme is proven secure
relative to a class of PPT algorithms F . The security notion involves a PPT attacker A playing
the following game against a challenger: (1) the challenger generates a bit b

$← {0, 1} and a series
of ` key-pairs ((pk1, sk1), . . . , (pk `, sk `))

$← G`(1k); (2) the attacker outputs b′ $← A(pk1, . . . , pk `).
During its execution, the attacker A can access two oracles:

– An encrypt oracle that takes as input a public key index j and two function specifications
(f0, i1,0, . . . , in0,0) and (f1, i1,1, . . . , in1,1) where f0, f1 ∈ F , fb takes nb inputs and

|f0(sk i1,0 , . . . , sk in0,0)| = |f1(sk i1,1 , . . . , sk in1,1)| .
The oracle computes m ← fb(sk i1,b

, . . . , sk inb,b
) and returns E(pk j ,m).

– A decrypt oracle takes as input a ciphertext C ∈ C and an index j, and returns D(sk j , C).
The attacker is forbidden from submitting a ciphertext C for decryption under private key sk j

if C was returned by the encryption oracle for some message encrypted under pk j .

The attacker’s advantage is defined to be:

Adv CCS

A (k) = |Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]|
= 2 · |Pr[b′ = b]− 1/2| .

An encryption scheme is KDM-CCS-CCA2 secure if every PPT attackerA has negligible advantage
in winning the above game. The authors note that this security model is only interesting if F
contains at least all constant functions and the identity function.

2.4 The Backes et al. Security Model

Backes et al. [1] consider a more complex security model in which encryption (and other operations)
are performed in a distinct memory structure to which that attacker does not have direct read
or write access. This structure is essentially identical to the abstract computation model given by
Maurer [6] and which is implicitly used by Paillier and Vergnaud [8] in their results about the
feasibility of proving the security of discrete-logarithm-based signature schemes.

The attacker interacts with a memory array to which it does not have direct read or write access.
We refer to the contents of the i-th memory location as M [i]. The array is initially populated
with ` data items, defined by the security problem/model under consideration, in the memory
locations 1, 2, . . . , `. The attacker has the ability to perform computations from the class Fc on
the contents of these memory locations, via a request of the form eval(f, i1, . . . , in) where f ∈ Fc

and f : ({0, 1}∗)n → {0, 1}∗. The value f(M [i1], . . . ,M [in]) is computed and the value stored in



the next free memory location. The attacker also has the ability to gain information about the
contents of the memory array via a class of functions Fr. If the attacker makes a request of the form
ret(f, i1, . . . , in) where f ∈ Fr and f : ({0, 1}∗)n → {0, 1}∗, then the value f(M [i1], . . . , M [in]) is
computed and returned to the attacker.

This security model is used by Maurer [6] to prove results about the generic hardness of certain
group-based computational problems and by Paillier and Vergnaud [8] to prove results about the
difficulty in proving the security of discrete-logarithm-based signature schemes. Maurer’s black-box
group model can be recovered by insisting that all memory items are elements of a group G, that
the set of computation functions Fc contains only maps from group elements to group elements,
and that the set of reveal functions Fr contains only predicates on group elements. Paillier and
Vergnaud’s white-box model can be recovered by insisting that all memory items are elements of
a group G, that the set of computation functions Fc contain only functions which output group
elements, and that the set of reveal functions Fr is the set {reveal}, where the reveal function is
defined as reveal(M [i]) = M [i]. In such a situation, we will change the notation ret(reveal, i)
to reveal(i).

The Backes et al. security model for key-dependent message encryption (KDM-BDU-CCA2)
is based on the Maurer model of computation. The basic form of the security game between a
PPT attacker A and a challenger is as follows: (1) the challenger generates a bit b and ` key-pairs
((pk1, sk1), . . . , (pk `, sk `))

$← G`(1k); (2) the attacker generates a bit b′ $← A(pk1, . . . , pk `). During
its execution, the attacker has access to an abstract memory array which has been preloaded with
the private keys sk1, . . . , sk ` in the memory location 1 to `. The attacker can interact with the
memory array via the following commands:

– An encrypt oracle, which takes as input indices i and j, and places E(pk j ,M [i]) into the next
available memory location.

– A decrypt oracle, which takes as input indices i and j, and places D(sk j ,M [i]) into the next
available memory location.

– A challenge oracle, which takes as input two indices i0, i1 such that |M [i0]| = |M [i1]|, and
places M [ib] into the next available memory location.

– An eval oracle, which takes as input a polynomial-sized circuit f which takes n arguments, and
n indices (i1, . . . , in), and places f(M [i1], . . . , M [in]) into the next available memory location.

– A reveal oracle, which takes as input an index i, and returns M [i] to the attacker.

We use the convention that the run-time of A includes the time taken for the challenger to compute
functions f used in eval queries. Hence, if we say that A is polynomial-time, then we mean that
there exists a polynomial which bounds the run-time of A and all the functions f which A causes
to be evaluated by the eval oracle. Note that it is always possible to compute |M [i]| without
knowing M [i] using the fact that we can predict the length of the output of E and f for all f ∈ F .

For notational convenience, we abbreviate the statement “the attacker makes a query to oracle
on indices (i1, . . . , in) and stores the result in memory location o” to “the attacker makes a
o ← oracle(i1, . . . , in) query”. The challenger determines the knowledge that the attacker has of
the memory array as the smallest subset knowset ⊆ N which respects the following rules (noting
that if j ∈ knowset for 1 ≤ j ≤ ` then the attacker knows sk j)1:

– If the attacker made a reveal(i) query, then i ∈ knowset .
– Suppose the attacker made a o ← encrypt(i, j) query. If {j, o} ⊆ knowset then i ∈ knowset .
– Suppose the attacker made a o ← decrypt(i, j) query. If o ∈ knowset then i ∈ knowset .
– Suppose the attacker made o1 ← encrypt(i1, j) and o2 ← decrypt(i2, j) queries. If M [o1] =

M [i2] and o2 ∈ knowset then i1 ∈ knowset .
– Suppose the attacker made an o ← eval(f, i1, . . . , in) query. If o ∈ knowset , then {i1, . . . , in} ⊆

knowset .

1 The original definition included a rule that stated that if o ← challenge(i0, i1) and o ∈ knowset then
i0, i1 ∈ knowset . However, this is unnecessary as we exclude attackers for which o ∈ knowset .



The attacker’s advantage is defined to be

Adv BDU

A (k) = |Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]|
= 2 · |Pr[b′ = b]− 1/2| .

An encryption scheme is KDM-BDU-CCA2 secure if every PPT attacker A (subject to the restric-
tion that every o ← challenge(i0, i1) query has o /∈ knowset) has negligible advantage in winning
the above game.

3 Relation Between Security Notions

We relate the CCS and BDU notions of security via the following two theorems:

Theorem 1. Let F be a function family for which all constant functions can be efficiently found.
If there exists an attacker against the KDM-CCS-CCA2 security of an encryption scheme (G, E ,D)
which runs in time t and has advantage ε, then there exists an attacker against the KDM-BDU-
CCA2 security which runs in time approximately t and has advantage ε.

Proof Suppose there exists an attacker A against the KDM-CCS-CCA2 security of an encryption
scheme (G, E ,D). We construct an attackerA′(pk1, . . . , pk `) against the KDM-BDU-CCA2 security
of (G, E ,D) as follows:

1. Initialise a counter ctr ← ` + 1. This tracks the next available memory element.
2. Run b′ $← A(pk1, pk `).

– IfAmakes an encrypt query for public key index j, and function specifications (f0, i1,0, . . . , in0,0)
and (f1, i1,1, . . . , in1,1), then A′ makes:
• A ctr ← eval(f0, (i1,0, . . . , in0,0)) query and increments ctr .
• A ctr ← eval(f1, (i1,1, . . . , in1,1)) query and increments ctr .
• A ctr ← challenge(ctr − 1, ctr − 2) query and increments ctr .
• A ctr ← encrypt(ctr − 1, j) query and increments ctr .
• A reveal(ctr − 1) query and returns the resulting ciphertext A.

– If A makes a decrypt query on a ciphertext C and public key index j, then A′ makes:
• A ctr ← eval(fC) query and increments ctr , where fC is the constant function which

always returns C.
• A ctr ← decrypt(ctr − 1, j) query and increments ctr .
• A reveal(ctr − 1) query and returns the resulting message to A.

3. Output b′.

It is easy to see that A′ implements the oracles to which A has access and so A′ outputs 1 if and
only if A outputs 1 and A′ is a legal attacker in the BDU model. In order to prove this, we must
demonstrate that the address of the output of the challenge oracle is never in knowset . This is
easy to see as (a) the attacker never reveals any private keys sk j and (b) that the attacker may
not query the decryption oracle on any ciphertext returned by the encryption oracle. ut

The second case is more complex.

Theorem 2. Suppose F is a BDU-compliant function family containing E and D. If there exists
an attacker against the KDM-BDU-CCA security which runs in time t and has advantage ε, then
there exists an attacker against the KDM-CCS-CCA security which runs in time approximately t
and has advantage at least ε/2`.

Proof Suppose there exists an attacker A against the KDM-BDU-CPA security of an encryption
scheme (G, E ,D). We assume that for all f ∈ F it is possible to determine the maximal possible
size of randomness that f takes as input and that this value is polynomially bounded. This always
holds since the run-time of A includes the time taken to run evaluate the functions f that A causes



to be invoked and is polynomially-bounded. We will write f(x; R) to denote that the function f
is being run on the input x using the randomness R.

We construct an attacker A′(pk1, . . . , pk `) against the KDM-CCS-CPA security of (G, E ,D)
that uses a simulated enhanced memory array, in which each element in the array will store
up to two items and each item is either a value or a function in (sk1, . . . , sk `). If the memory
array contains two values at location i then these are referred to as M [i, 0] and M [i, 1] (with the
conventional that M [i, 0] = M [i, 1] if the memory location only stores one value). The memory
elements M [i, b] will hold (representations of) the data values that would be computed if the bit
used by the challenge oracle was b. The algorithm runs as follows:

1. Pick a random subset J ⊆ {1, 2, . . . , `} and set J̄ = {1, . . . , `} \ J . The set J is the guess A′
as to which secret key values A will explicitly or implicity reveal.

2. For each j ∈ J , compute (pk j , sk j)
$← G(1k) and set M [j, 0] = M [j, 1] = sk j . This process

over-writes the previous values of pk j supplied as part of the input. These memory locations
are labelled “exact”.

3. For each j ∈ J̄ , set M [j, 0] = M [j, 1] = fj where fj is the function that takes ` inputs
and outputs the j-th input. These memory locations can be now be thought of as holding
functions in (sk1, . . . , sk `) where the j-th function outputs sk j for each j ∈ J̄ . These values
are in memory locations are labelled “function”.

4. Run b′ $← A(pk1, . . . , pk `).
– If A makes a reveal(j) query and M [j] contains a single, exact value, then return M [j].

Otherwise, A′ outputs ⊥ and aborts.
– If A makes an o ← eval(f, (i1, . . . , in)) query then for each b ∈ {0, 1}:

• If M [i1, b], . . . , M [in, b] are memory elements which are exact, then compute the func-
tion f(M [i1, b], . . . , M [in, b]) and store this result in M [o, b]. The memory location
M [o, b] is declared to be exact.

• If not all M [i1, b], . . . ,M [in, b] are exact, then we build a function f∗ in the variables
(sk1, . . . , sk `) to represent the output. We pick a suitably sized random string R for f
and initially set f∗(·) = f(·; R), then for each input index iα:
∗ If M [iα, b] is an exact memory element, then set f∗ to be the function obtained by

fixing the α-th input of f∗ to be the constant value M [iα, b]. This function is in F
by the “fixed-value closure” property of F .

∗ If iα ∈ J̄ , then no change to f∗ is made. I.e. f∗ takes sk iα as input in this position.
∗ If iα > ` and M [iα, b] is a function memory element, then M [iα, b] must be as-

sociated with a function fiα(sk1, . . . , sk `). Let f∗ be the function which is the
composition of f∗ with fiα in the α-th input position. This function is in F by the
“composition closure” property of F .

The function f∗ is associated with memory element M [o, b] and this value is declared
to be function.

– If A makes an o ← challenge(i0, i1) query then A′ sets M [o, 0] = M [i0, 0] and M [o, 1] =
M [i1, 1]. This step is critical as it ensures that the memory location M [o, b] holds the
correct value which would be computed if the challenge bit is b.

– If A makes an o ← encrypt(i, j) query for j ∈ J then for each b ∈ {0, 1}:
• If M [i, b] contains an exact value then A′ computes M [o, b] = E(pk j ,M [i, b]) and

declares this memory locations to be exact.
• If M [i, b] contains a function f then A′ generates a random value R for the encryption

algorithm, stores the function E(pk j , f(·); R) at M [o, b] and declare this memory loca-
tion to be a function. This new function is in F since E ∈ F and by the “composition
closure” property of F .

– If A makes an o ← encrypt(i, j) query for j ∈ J̄ then A′ makes an encrypt query using
the functions M [i, 0] and M [i, 1]. (If either M [i, 0] or M [i, 1] is an exact value then the
corresponding constant function is passed instead.) A′ sets M [o, 0] and M [o, 1] to be equal
to the received ciphertext C. A′ declares these memory locations to be exact.

– If A makes an o ← decrypt(i, j) where M [i, b] is an exact value, then



• If j ∈ J then A′ computes M [o, b] ← D(sk j , M [i, b]). This memory location is declared
to be exact.

• If j ∈ J̄ then A′ queries its decryption oracle on M [i, b] and stores the result in M [o, b].
This memory location is declared to be exact.

– If A makes an o ← decrypt(i, j) where M [i, b] is a function, then there is a function
f(sk1, . . . , sk `) associated with M [i, b] and
• If j ∈ J then A′ associates the function D(sk j , f(·)) with M [i, b]. This function is in
F due to the fixed inputs, the fact that D ∈ F and composition closure properties of
F . This memory location is declared to be a function.

• If j ∈ J̄ thenA′ associates the functionD(fj(·), f(·)) with M [i, b] where fj(sk1, . . . , sk `) =
sk j is the function. This function is in F due to the composition closure properties of
F . This memory location is declared to be a function.

Let J ′ = {1, 2, . . . , `} ∩ knowset — i.e. the indices of the private keys which are known by the
attacker. We claim that if J = J ′ then A′ is a valid attacker in the CCS security model and A′
correctly simulates the oracles for A and so A′ outputs 1 if and only if A outputs 1. Since J ′ = J
with probability 1/2` this would mean that A′ has advantage ε/2`. It therefore remains to show
if J = J ′ then A′ correctly simulates the oracles for A.

The reveal oracle works correctly as long as it is only called on memory locations that contain
single, exact values. A′ will abort if:

– A makes a reveal(i) oracle query on a memory location M [i] containing two values. This
can only occur if there exists a chain of commands which means that M [i] depends on the
result of an o ← challenge(i0, i1) query and that this chain cannot contain any encrypt
commands using public keys pk j for j ∈ J̄ . Hence, if i ∈ knowset then o ∈ knowset which is a
contradiction as A is a valid BDU attacker.

– A makes a reveal(i) oracle query on a memory location M [i] containing a function. This will
occur if there exists a chain of commands which means that M [i] depends on some sk j for
j ∈ J̄ and that this chain cannot contain any encrypt commands using public keys pk j′ for
j′ ∈ J̄ . Hence, if i ∈ knowset then j ∈ knowset which is a contradiction as j ∈ J̄ .

The evaluation oracle works correctly. It always holds representations of the values that would
be computed if A were really interacting with the BDU game, where these representations are
either the exact values or functions of the unknown private key values sk j for j ∈ J̄ . Note that
while A′ generates the values R used by probabilistic functions, this value is not directly revealed
to A. Hence, the “de-randomisation” of these functions does not affect A’s execution.

The challenge oracle also works correctly. Recall that memory location M [i, b] holds the data
value that would be held in location M [i] if the challenge bit was b. Consider a command o ←
challenge(i0, i1). If b = 0 then M [o] should contain the value of M [i0] which would have been
computed in the game with b = 0, i.e. M [o, 0] = M [i0, 0]. Similar, if b = 1 then M [o] should contains
the value of M [i1] that would have been computed in the game with b = 1, i.e. M [o, 1] = M [i1, 1].

The encrypt oracle works correctly. Again, note that the function E(pk j , f(·); R) correctly
simulates the view that A should be given. A does not know the value R even though it is given
to A′. It is interesting to note that only an encrypt(i, j) command for some j ∈ J̄ can map a
memory location with two function/exact inputs to a single exact output. This is as this is the only
command that “blocks” the backward action in the computation of knowset . Hence, the contents
of M [o] should be able to be revealed without revealing the contents M [i].

The decryption oracle is clearly functionally correct; however, there may be some suspicion
that the use of D as a function (with different knowledge rules) may leak information to the
attacker which should not be available. This is not correct – recall that we are simply simulating
an environment for A. If the environment correctly matches the BDU model then A will break
the scheme with advantage Adv BDU

A (k).
Since the oracles are correctly simulated, we have the result. ut

Corollary 1. If F is the set of all polynomial-time circuits, 2` is polynomially bounded, and Π
is KDM-CCS-CCA2 secure, then Π is KDM-BDU-CCA2 secure.



There are a couple of points to note about the proof. The first is that the factor of 2` is likely
to be optimal for black-box reductions. This is because, unlike the CCS model, the BDU model
allows the adversary to corrupt entities and obtain their private keys. These keys may not be used
in computing a “challenge” ciphertext which is revealed to the attacker. Therefore, if we are trying
to simulate the BDU environment, we must decide which indices j ∈ {1, . . . , `} correspond to keys
which can be corrupted and which correspond to keys which can be used to compute challenge
ciphertexts. We will guess this correctly with probability 1/2`. In some sense, this loss is equivalent
to the factor of ` that would be lost when moving from a multiple-user-with-corruption model to
a single-user model for traditional encryption schemes (without key dependent messages).

Secondly, the restriction that D ∈ F may be prohibitive. While this holds for the results in
Backes et al. paper [1] where the function family F consists of all polynomial-time circuits, it
does not hold for the variants of the Boneh et al. scheme [2]. In this case, we may only prove the
following simpler case:

Theorem 3. Suppose F is a BDU-compliant function family which contains E. If there exists
an attacker against the KDM-BDU-CPA security which runs in time t and has advantage ε, then
there exists an attacker against the KDM-CCS-CPA security which runs in time approximately t
and has advantage at least ε/2`.
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