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Abstract

It is proved in this paper that for any point on an elliptic curve,
the mean value of x-coordinates of its n-division points is the same as
its x-coordinate.
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Let K be a field with char(K) > 3. Every elliptic curve E/K can be
written as a classical Weierstrass equation

E : y2 = x3 + ax+ b

with coefficients a, b ∈ K. A point Q on E is said to be smooth (or non-

singular) if
(

∂f
∂x
|Q, ∂f∂y |Q

)
6= (0, 0), where f(x, y) = y2−x3−ax−b. The point

multiplication is the operation of computing

nP = P + P + · · ·+ P︸ ︷︷ ︸
n
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for any point P ∈ E and a positive integer n. The multiplication-by-n map

[n] : E → E
P 7→ nP

is an isogeny of degree n2. For a point Q ∈ E, any element of [n]−1(Q) is
called an n-division point of Q. Assume (char(K), n) = 1. In this paper, the
following result on the mean value of the x-coordinates of all the n-division
points of any smooth point on an elliptic curve is proved.

Theorem 1. Let E be an elliptic curve defined over K, and let Q = (xQ, yQ) ∈
E be a smooth point with Q 6= O. Set

Λ = {P = (xP , yP ) ∈ E(K̄) | nP = Q}.

Then
1

n2

∑
P∈Λ

xP = xQ.

Remark that, if (char(K), n) 6= 1 then we have
∑
P∈Λ

xP = n2xQ. According

to the theorem, let Pi = (xi, yi), i = 1, 2, · · · , n2 be all the points such that
nP = Q. Let λi be the slope of the line through Pi and Q, then yQ =

λi(xQ − xi) + yi. Therefore, n2yQ =
n2∑
i=1

λi · (
n2∑
i=1

xi)/n
2 −

n2∑
i=1

λixi +
n2∑
i=1

yi, thus

we have

yQ =

n2∑
i=1

λi

n2
·

n2∑
i=1

xi

n2
−

n2∑
i=1

λixi

n2
+

n2∑
i=1

yi

n2
= λi · xi − λixi + yi,

where λi, xi, λixi, yi be the average value of the variables λi, xi, λixi and yi.
Therefore, Q = (xQ, yQ) = (xi, λi · xi − λixi + yi).

To prove this result, define division polynomials [1] ψn ∈ Z[x, y, a, b] on an
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elliptic curve E : y2 = x3 + ax+ b, inductively as follows:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1, for n ≥ 2,

2yψ2n = ψn(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1), for n ≥ 3.

It can be checked easily by induction that the ψ2n’s are polynomials. More-
over, ψn ∈ Z[x, y2, a, b] when n is odd, and (2y)−1ψn ∈ Z[x, y2, a, b] when n
is even. Define the polynomial

φn = xψ2
n − ψn−1ψn+1

for n ≥ 1. Then φn ∈ Z[x, y2, a, b]. Since y2 = x3 + ax + b, replacing y2 by
x3 +ax+ b, one have that φn ∈ Z[x, a, b]. So we can denote it by φn(x). Note
that, ψnψm ∈ Z[x, a, b] if n and m have the same parity.

Lemma 2. The leading term of ψn is nx(n2−1)/2 when n is odd and is
nx(n2−4)/2y when is even.

Proof. We give only the proof for the case where n is odd. The even case
can be proved similarly. It is true for n < 5. Assume that it holds for all
n < 2k + 1. Now let n = 2k + 1. If k is even, then by induction, the leading

term of ψk+2ψ
3
k is (k+ 2)k3y4x

(k+2)2−4
2

+ 3k2−12
2 , which is also (k+ 2)k3x

(2k+1)2−1
2

by substituting y4 by (x3 + ax + b)2, and the leading term of ψk−1ψ
3
k+1 is

(k− 1)(k+ 1)3x
(2k+1)2−1

2 . Thus, the leading term of ψ2k+1 is (2k+ 1)x
(2k+1)2−1

2

when k is even. Similarly, if k is odd, then the leading term ψk+2ψ
3
k is

(k+2)k3x
(2k+1)2−1

2 , and the leading term of ψk−1ψ
3
k+1 is (k−1)(k+1)3x

(2k+1)2−1
2 .

We have again the leading term of ψ2k+1 is (2k + 1)x
(2k+1)2−1

2 when k is
odd.

From Lemma 2, we have

ψ2
n(x) = n2xn

2−1 + · · · ,

and
φn(x) = xn

2

+ · · · .
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Lemma 3. The coefficient of the xn
2−2 term of ψ2

n is 0, and the coefficient
of the xn

2−1 term of ψn+1ψn−1 is 0.

Proof. In order to prove the result, let us define the function F by

F (g) = (the degree of g, the degree of the second leading term of g)

for a polynomial g ∈ Z[x, a, b]. In the following, set F (g) = (m,≤ `), if the
degree of g is m and the degree of the second leading term of g is less than
or equal to `.

Now we prove this lemma by induction. For n ≤ 4, the statements are
true from the definition of ψn. Now assume that the statements hold for all
n < 2k (k > 2), i.e., the coefficient of the xn

2−2 term of ψ2
n and that of the

xn
2−1 term of ψn+1ψn−1 are 0’s for n < 2k. Suppose that n = 2k + 1. Then

ψ2
2k+1 = (ψk+2ψ

3
k − ψk−1ψ

3
k+1)2 = ψ2

k+2ψ
6
k + ψ2

k−1ψ
6
k+1 − 2ψk−1ψk+2ψ

3
kψ

3
k+1.

It is clear that F (ψkψk+2) = (k2 + 2k + 1,≤ k2 + 2k − 1) since k + 2 < 2k
and the coefficient of the x(k+1)2−1 = xk

2+2k term of ψkψk+2 is 0 from the
assumption. So F ((ψkψk+2)2) = (2k2 + 4k + 2,≤ 2k2 + 4k). Furthermore,
F (ψ4

k) = F ((ψ2
k)2) = (2k2 − 2,≤ 2k2 − 4) since F (ψ2

k) = (k2 − 1,≤ k2 − 3)
from the induction assumption. Thus

F (ψ2
k+2ψ

6
k) = F ((ψkψk+2)2ψ4

k) = (4k2 + 4k,≤ 4k2 + 4k − 2).

Similarly,

F (ψ2
k−1ψ

6
k+1) = F ((ψk−1ψk+1)2ψ4

k+1) = (4k2 + 4k,≤ 4k2 + 4k − 2),

and

F (2ψk−1ψk+2ψk+1ψ
3
k) = F (ψk−1ψk+1ψkψk+2ψ

2
kψ

2
k+1) = (4k2+4k,≤ 4k2+4k−2).

Therefore,
F (ψ2

2k+1) = (4k2 + 4k,≤ 4k2 + 4k − 2).

Similarly, when n = 2k, we have that F (ψ2
2k) = (4k2 − 1,≤ 4k2 + 4k − 3).

For the polynomial ψn−1ψn+1, when n = 2k, from

ψ2k−1ψ2k+1 = ψ2(k−1)+1ψ2k+1 = (ψk+1ψ
3
k−1 − ψk−2ψ

3
k)(ψk+2ψ

3
k − ψk−1ψ

3
k+1)

= ψk+1ψk−1ψk+2ψkψ
2
k−1ψ

2
k − ψ4

k−1ψ
4
k+1 − ψk−2ψkψkψk+2ψ

4
k

+ψk−2ψkψk−1ψk+1ψ
2
kψ

2
k+1,

we have that F (ψ2k−1ψ2k+1) = (4k2,≤ 4k2 − 2) from the assumption. The
case for the polynomial ψn−1ψn+1, where n = 2k+1 can be treated similarly.
This completes the proof.
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The following corollary follows immediately from Lemma 3.

Corollary 4. The coefficient of the xn
2−1 term of φn(x) is 0.

Proof of Theorem 1: Define ωn as

4yωn = ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1.

Let P = (xP , yP ) ∈ E. Then ([1])

nP =

(
φn(xP )

ψ2
n(xP )

,
ωn(xP , yP )

ψn(xP , yP )3

)
.

If nP = Q, then φn(xP ) − xQψ2
n(xP ) = 0. Therefore, for any P ∈ Λ, the x-

coordinate of P satisfies the equation φn(x)− xQψ2
n(x) = 0. From Corollary

4, we have that

φn(x)− xQψ2
n(x) = xn

2 − n2xQx
n2−1 + lower degree terms.

Since ]Λ = n2, every root of φn(x) − xQψ
2
n(x) is the x-coordinate of some

P ∈ Λ. Therefore
∑
P∈Λ

xP = n2xQ by Vitae Theorem.
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