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Abstract

It is proved in this paper that for any point on an elliptic curve,
the mean value of z-coordinates of its n-division points is the same as
its x-coordinate.
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Let K be a field with char(K) > 3. Every elliptic curve E/K can be
written as a classical Weierstrass equation

E:y*=2*+ax+0

with coefficients a, b € K. A point Q on E is said to be smooth (or non-
singular) if (%\Q, g—£|Q> # (0,0), where f(z,y) = y*—2* —az —b. The point
multiplication is the operation of computing

nP=P+P+---+P

n
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for any point P € E and a positive integer n. The multiplication-by-n map

n]: E — FE
P — nP

is an isogeny of degree n?. For a point Q € E, any element of [n]7*(Q) is
called an n-division point of ). Assume (char(K),n) = 1. In this paper, the
following result on the mean value of the z-coordinates of all the n-division
points of any smooth point on an elliptic curve is proved.

Theorem 1. Let E be an elliptic curve defined over K, and let Q = (xq,yq) €
E be a smooth point with Q) # O. Set

A={P=(zp,yp) € E(K) |nP = Q}.

Then

1
EZZEPZZL‘Q.

Remark that, if (char(K),n) # 1 then we have > xp = n’zg. According
PeA

to the theorem, let P; = (x;,;),i = 1,2,--+ ,n? be all the points such that

nP = (). Let \; be the slope of the hne through = and Q, then Yo =

’I’L

Ni(zg — ;) + yi. Therefore, n?yg = Z X (" @) /n? — Z i + Zyl, thus

i=1 =1 =1 1=
we have

Z i E Z; E i ; Yi

=1 =1 =1 7 N — —
Yo = : - + =N Ti— ANz +
Q n2 n? n2 n2 ’

where \;, T3, Aix;, y; be the average value of the variables \;, x;, A\;x; and v;.
Therefore, Q = (zg,yq) = (Ti, A\i - Ti — Nixi +i)-

To prove this result, define division polynomials [1] ¢, € Z[z,y,a,b] on an



elliptic curve E : y? = 2 + ax + b, inductively as follows:

wU = 07
wl = 17
¢2 = 2y7

3 = 3at + 6ax? + 12bx — a?,

vy = 4y(2® + 5az* + 20bx® — 5ax? — 4abx — 8b? — a?),
Yong1 = Unpolliy — hpatp3 4, forn > 2,
20han = Yn(Ynyath2_1 — Yn_otp?,,), forn > 3.

It can be checked easily by induction that the 1,,’s are polynomials. More-
over, v, € Z[z,y?, a,b] when n is odd, and (2y)~'¢, € Z[z,y? a,b] when n
is even. Define the polynomial

¢n = SBZ/)% - wn—ldjn—i-l

for n > 1. Then ¢,, € Z[x,y? a,b]. Since y*> = 23 + ax + b, replacing y* by
z3+ax+0b, one have that ¢,, € Z[z, a,b]. So we can denote it by ¢, (z). Note
that, ¥, ¢, € Z[z,a,b] if n and m have the same parity.

Lemma 2. The leading term of 1, is nz™=D/2 when n is odd and is
na™ =92y when is even.

Proof. We give only the proof for the case where n is odd. The even case
can be proved similarly. It is true for n < 5. Assume that it holds for all
n < 2k + 1. Now let n = 2k + 1. If k is even, then by induction, the leading

2_ 2_ 2_
term of .ot} is (k+2)k3yle™ 2 — +*5 which is also (k+2)k%z" 2 —
by substituting y* by (2® + axz + b)?, and the leading term of Vi, s

2_
(k—1)(k+ 1)3$<2k+§) *. Thus, the leading term of Yop41 1s (2k+ 1)z
when k is even. Similarly, if k& is odd, then the leading term . 2t3 is
3 (2k+1)2—1 (2k+1)2—1
2

(k+2)k*z 2, and the leading term of ¢ 19}, is (k—1)(k+1)*x
(2k+1)%2-1

We have again the leading term of o4y is (2k + 1)z~ 2 when k is
odd. O]

(2k+1)%2-1
2

From Lemma 2, we have
Vi) =nPa"

and



Lemma 3. The coefficient of the 2" =2 term of V2 is 0, and the coefficient
of the 2=t term of Yni1tn_1 is 0.

Proof. In order to prove the result, let us define the function F' by
F(g) = (the degree of g, the degree of the second leading term of g)

for a polynomial g € Z[z,a,b]. In the following, set F(g) = (m, < {), if the
degree of g is m and the degree of the second leading term of g is less than
or equal to /.

Now we prove this lemma by induction. For n < 4, the statements are
true from the definition of v,,. Now assume that the statements hold for all
n < 2k (k > 2), ie., the coefficient of the 2"*~2 term of /2 and that of the
2"~ term of Y 1,_1 are 0's for n < 2k. Suppose that n = 2k + 1. Then

¢gk+1 = (¢k+2¢l§ - ¢k—1¢1§+1)2 = ¢2+2¢2 + ¢1§—1@/}1§+1 - 2¢k—1¢k+2¢2¢1§+1~

It is clear that F(Ypthrie) = (K* +2k +1,< k* + 2k — 1) since k + 2 < 2k
and the coefficient of the x*+D*~1 = zF*+2k term of ¢hythyis is 0 from the
assumption. So F((Vrtri2)?) = (2k* + 4k + 2, < 2k? + 4k). Furthermore,
F() = F((w3)?) = (2k* — 2, < 2k* — 4) since F(¢3) = (k* — 1, < k* — 3)

from the induction assumption. Thus
F(Yis20r) = F((Unthrrn) Vi) = (487 + 4k, < 4% + 4k — 2).
Similarly,

F(i_ytp) = F((¢k71¢k+1)2¢2‘+1) = (4k* + 4k, < 4K* + 4k — 2),

and

F (¢ 1¥p2Venty) = F(ro1Uen Ustbi2Vithn ) = (4k°+4k, < 4k*4+4k—2).
Therefore,
F(Y2,,) = (4K + 4k, < 4K* + 4k — 2).

Similarly, when n = 2k, we have that F(y3,) = (4k* — 1, < 4k* + 4k — 3).
For the polynomial v, 11,1, when n = 2k, from

Yok-1Vokr1 = Vae—1)41¥orr1 = (Vrs1¥p_y — Vk—a¥) (Vrp2V} — Ye—1¥iyy)
= V11 Vkp2Vei_ 1V — Up_ 1V — Ur—2VkDiisathy
k21 V1 VR 1

we have that F(¢o,_19ors1) = (4k?, < 4k* — 2) from the assumption. The
case for the polynomial 1, 19,11, where n = 2k + 1 can be treated similarly.
This completes the proof. O



The following corollary follows immediately from Lemma 3.
Corollary 4. The coefficient of the ™1 term of on(x) is 0.

Proof of Theorem 1: Define w,, as

4ywn = ’%Hwiq - wn72w721+1'

Let P = (zp,yp) € E. Then ([1])

P — (%(xp) wy (TP, yp) ) .

¢Z($P)’ Uy (zp,yp)?

If nP = Q, then ¢,(zp) — 29Y2(xp) = 0. Therefore, for any P € A, the z-
coordinate of P satisfies the equation ¢, (z) — zg¥2(z) = 0. From Corollary
4, we have that

bn(T) — 202 (1) = - nsza:”2_l + lower degree terms.
Since A = n?, every root of ¢,(x) — zg2(x) is the z-coordinate of some

P € A. Therefore Y xp =n’zq by Vitae Theorem. O
PeA
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