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Abstract. Systems of partial differential equations that in-
clude the momentum and the mass conservation equations
are commonly used for the simulation of debris flow initia-
tion, propagation and deposition both in field and in labora-
tory research. The numerical solution of the partial differ-
ential equations can be very complicated and consequently
many approximations that neglect some of their terms have
been proposed in literature. Many numerical methods have
been also developed to solve the equations. However we
show in this paper that the choice of a reliable rheological
model can be more important than the choice of the best
approximation or the best numerical method to employ. A
simulation of a debris flow event that occurred in 2004 in an
experimental basin on the Italian Alps has been carried out to
investigate this issue. The simulated results have been com-
pared with the hydrographs recorded during the event. The
rheological parameters that have been obtained through the
calibration of the mathematical model have been also com-
pared with the rheological parameters obtained through the
calibration of previous events, occurred in the same basin.
The simulation results show that the influence of the inertial
terms of the Saint-Venant equation is much more negligible
than the influence of the rheological parameters and the ge-
ometry. A methodology to quantify this influence has been
proposed.

1 Introduction

Land-use planning and design of structural countermeasures
for debris flows are generally carried out on the basis of the
analysis of past events or using the results obtained by the
application of mathematical models. The first approach can
give useful indication on the possible effects of future debris
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flow events, but it cannot give more detailed predictions of
their effects (Suwa and Yamakoshi, 2000; Ayotte and Hungr,
2000). The application of mathematical models is employed
to obtain more quantitative estimations of the dynamic char-
acteristics of debris flows (velocity, flow depth, discharge,
flow duration, etc.). The estimation of the dynamic character-
istics of debris flows is in fact needed by administrators, deci-
sion makers and practitioners who have to protect the life, the
property and the economical activities of people who live in
debris flows prone areas and to forbid anthropic activities in
these latter (Regione Piemonte, 2002; Petrascheck and Kien-
holz, 2003). Sometimes different boundary conditions (e.g.
water-sediment hydrograph, peak discharge) are taken into
account in order to test the sensitivity of the results and the
adequacy of the designed/existing countermeasures. When a
more detailed hazard assessment is needed, especially for re-
location of settlements and human activities, more complex
mathematical models can be used (2-D models, two phase
models, movable bed models that can incorporate deposi-
tions and erosions along the torrent) (Ghilardi and Natale,
2000; Pudasaini et al., 2003, 2005). However the estimation
of the parameters to be used in the simulations is often not
straightforward and the choice of the more apt rheological
model can be very difficult. In this paper the simulation of a
debris flow event occurred in 2004 in an instrumented torrent
will be presented and the influence on results of the rheolog-
ical parameters will be discussed. A one-phase Saint-Venant
model has been used for the simulation because the avail-
able field data allowed to calibrate only 2 parameters: the
calibration of 2-D models would have required more param-
eters. At the moment, in the field practice, 1-D models are
still more commonly employed than 2-D models. This paper
should offer an help to practitioners to better understand the
performances of 1-D models.
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       Monitored reach

 

Fig. 1. The Moscardo basin and its geographical location.

2 The simulated debris flow event

The Moscardo torrent is a small torrent, located in the East-
ern Italian Alps, that has been affected in the past by several
debris flows (Marchi et al., 2002). It drains an overall area
of about 4 km2 ranging in elevation from 890 m to 2043 m
above the sea level (Fig. 1).

In 1989 two ultrasonic sensors were placed on the fan of
the torrent where the bed slope is approximately 10% and
the torrent reach is quite straight. These sensors measured

the stage performing three measurements each second with a
precision of about 1cm and allowed the recording of an hy-
drograph that show the stage variation in time. In 1996 a third
sensor was added upstream of the previously installed sen-
sors and was maintained active until 1998. Nowadays only
two ultrasonic sensors are installed along the torrent, 75 m
apart. The cross section width of the torrent reach is about
8 m. This cross section can be modelled as a broad rectangu-
lar section.
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A debris flow event occurred on 23 July 2004 that was
characterised by a first water-sediment surge that lasted about
400 s, followed by a second surge which lasted about 100 s.
The first wave had a steeper front and greater flow depths
that decreased after the peak. The second wave was shorter,
with a lower gradient in the front part. A superposition of
the upstream and downstream hydrographs reveals that no
evident modification of the shape of the debris flow wave
occurred between the two stations. The event duration is also
the same in the two hydrographs. Since the geometry of the
channel does not change along the torrent reach between the
ultrasonic gauges, the absence of a significant hydrograph
deformation suggests that no significant deposition/erosion
processes occurred between the two sites.

3 The mathematical model

The mathematical model employed is the same 1-D model al-
ready proposed and discussed in Arattano and Franzi (2003,
2004). A 2-D model would have actually allowed to con-
sider, for instance, the boundary effects due to the side of the
channel; however, as mentioned before, the available field
data would have not allowed to calibrate it.

Applying the momentum and mass conservation laws to
the mixture of a debris flow, a system of two partial differ-
ential equations is obtained, namely the Momentum equa-
tion and the Mass conservation equation (Cunge et al., 1980;
Abbott, 1966), that can be solved with an implicit finite-
difference scheme, according to Preismann (Cunge et al.,
1980; Abbott, 1966):

∂Q
∂t

+ gA ∂h
∂x

cosθ +
∂
∂x

(
Q2

A
) + gASf − gA tanθ=0,

∂h
∂t

+
1
b

∂Q
∂x

= 0,

(1)

whereQ is the water-sediment discharge,A is the cross sec-
tion area occupied by the debris flow,b is the free debris
flow surface width in the cross section,h is the flow depth,θ
is the bed slope angle (assumed constant),Sf is the friction
term that accounts for internal and external friction,x is the
downstream coordinate (positive downstream),g is the grav-
ity acceleration. The effects of the centrifugal forces (Puda-
saini and Hutter, 2003) are not taken into account because
the investigated reach of the Moscardo Torrent is straight.

The first term on the left side of the first equation of the
system (1) represents the effects of the local inertia, the sec-
ond term the pressure effects, the third the convective iner-
tia, the fourth the effects of internal and external friction and
the fifth the gravity effects. According to the different topo-
graphic and dynamic conditions, different terms can play dif-
ferent roles in the simulation. In particular the inertia terms
can be considered to be predominant in time and space vary-
ing processes, such as floods due to dam breaks. The fourth
term can be expressed in different ways, according to the dif-
ferent rheological behaviors of the water-sediment current.

A detailed discussion of this latter issue can be found in
Arattano and Franzi (2003). The rheological properties of
the water sediment mixture must be specified to solve the
system (1). The following closure equation has been used,
following Honda and Egashira (1997):

τ = τo + ρgh
U2

c2h2n
, (2)

whereτ o is the yield stress,c andn are two rheological pa-
rameters,ρ is the fluid density andU is the mean flow ve-
locity in the cross section. Equation (2) is one of the most
generic equation for debris flows simulation as it takes into
account the presence of a yield strength and a stress. The
term Sf in (1) is linked toτ through the following relation-
ship:

Sf =
τ

ρgh
(3)

The debris flows of the Moscardo Torrent have a heteroge-
neous grain size: transported particles range from silt and
clay to boulders (Arattano et al., 1997). On the basis of
the video recorded images of some events (Deganutti et al.,
1998) we have assumed that the coarse fraction gives to the
overall mixture a rather high drainage capability, although no
experimental measurements are available on this aspect. We
thus deem that the effect due to the excess-pore fluid pres-
sure (Hungr, 1995; Hutter et al., 1996; Iverson, 1997) can be
neglected. This hypothesis is equivalent to state that the ex-
cess pore pressure, if present, dissipates in time-scales much
smaller than the time scale of the water-sediment propaga-
tion. Actually, as far as the debris flow front is concerned,
this latter sustains generally little pore pressure and exerts
much frictional resistance because it is composed by a wedge
of coarse particles with a high hydraulic diffusivity. The is-
sue about the role of pore pressure would therefore concern
only the debris flow body; in the tail in fact non-hydrostatic
pore-pressure dissipates more rapidly than in the body (Iver-
son et al., 2000). The large dimensions of coarse particles
in the 2004 debris flow and the little amount of clay in the
mixture suggests the existence of a very high hydraulic dif-
fusivity also in the debris flow body and thus a ready dissi-
pation of the non-hydrostatic pore pressures. In these condi-
tions the total stress on the bed would be equal to the hydro-
static stresses plus the static/dispersive stresses due to con-
tacts/collisions among particles. In these conditions the term
(∂pbed /∂x) (Iverson, 1997, 2000; Jin and Fread, 1999) tends
to be equal to zero and the pore pressure distribution tends
to be hydrostatic. A hydrostatic distribution of the pore pres-
sure is a basic assumption of many rheological models (Taka-
hashi, 1991; Egashira et al., 1997) that imply resistance to
flow formulas similar to Eq. (2).

Different values have been proposed for the rheological
parametersc and n by different authors, as sumarized in
Table 1.
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Table 1. Some proposed values for the rheological parameterscandn. Thec dimensions depend on the value ofn.

Author Simulation parameters

n c

[–] [m1−n/s]

Rickenmann 1/3, 1/2 c depends on the parametern and on
(1999) the debris flow peak discharge

Takahashi 3/2 For dilatant flow behaviourc depends on
(1991) the sediment concentrationC, by volume,

Takahashi and Nakagawa (theoretical and laboratory the interstitial fluid density and the mean grain size
(1993) results)

Coussot
(1994) 3 muddy debris flows and mudflows

(Herschel-Bulkley model)
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Fig. 2. Water sediment flow depths in the upstream cross section.

The value of the parametern depends on the rheologi-
cal behavior of the debris flow mixture, as summarized by
Pierson and Costa (1987). The termτo in (2) is responsible
for the presence of a rigid plug in the flowing mixture and
a critical thickness for the flow, below which motion should
stop and the debris flow should deposit. Previous researches
in the Moscardo torrent have shown that a rigid plug flow is
not always observed for the debris flows in this torrent (De-
ganutti et al., 1998) while many of the hydrographs recorded
so far show a descending limb that does not show any criti-
cal thickness below which a stop of the motion is observed
(Marchi et al., 2002; Arattano and Franzi, 2004). Therefore
(2) was implemented in the simulation withτ o=0 (Nsom et
al., 1998). The resulting equation is often used in practical
applications (Rickenmann, 1999). It probably works better
when the torrent is incised and the banks allow the mainte-
nance of a high water content, particularly behind the front
and in the tail of the debris flow: a high water content main-
tain the mixture less dense and more fluid reducing the ef-
fects or even eliminating the presence of a yield stress. Note

that Eq. (2) withτ o=0 approximates the Herschel-Bulkley or
the Bingham model for small yield stress.

In the simulation the values ofc andn have been adopted
that allowed best fit to the upstream hydrograph. A steady
flow has been assumed for the initial conditions along the
entire torrent reach in order to solve the system of Eqs. (1).
The assumed upstream boundary conditions forh are given
by the upstream recorded hydrograph (Fig. 2). Therefore the
initial and boundary conditions are, respectively, the follow-
ing:{

t = 0
U = U(x, 0);h = h(x, 0) for 0<x<L steady flow

(4)

{
x = 0
U=f [h(0, t)]=chn

√
Sf ; h=h(0, t) for )<t<800 s

(5)

where:

– L is the length of the torrent reach, equal to the distance
between the first and the second gauging station (75 m),

– U=U(x, 0) and h=h (x, 0)have been obtained by solv-
ing system (1) where all the time derivative terms have
been set equal to zero (steady flow conditions);

– h(0, t) is the hydrogram in the upstream cross section.

As indicated before, theU (0, t)=f [h(0,t)] relationship in
the upstream reach depends on the choice of the simulation
parameters. Since theh (0, t) values in Eq. (5) are those
recorded in the upstream hydrograph, the uncertainty in the
estimation ofU and consequently in the estimation of the
debris flow discharge is much smaller than in other simula-
tions where both the upstream conditions,h andU , had to be
estimated (Honda and Egashira, 1997; Hirano et al., 1997).
The assumption of uniform flow conditions in the upstream
boundary can be found in other models (e.g. Hirano et al.,
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Fig. 3. Comparison between the recorded and simulate hydrograph
in the downstream cross section (70 m downstream). Notice that
the different flow depths for t<270 s occur because the rheological
parameters have been used also in the simulation for t<270 s when
the flow consisted mostly of clear water.

1997; Suzuky et al., 1993; Arattano and Savage, 1994). For
steep bed slopes the assumption of uniform flow conditions
can be the most reasonable, because there is a predominance
of the gravity and friction terms in Eq. (1) (Cunge, et al.,
1980). For the examined debris flow the assumed initial and
boundary conditions are reliable and reasonable and they cer-
tainly do not produce a strong influence on the results. In
fact, as the discussion that follow will put into light, the un-
steady terms in system (1) are far less than the other terms.

Different simulations have been performed for differentc

andn values maintaining the same boundary and initial con-
ditions. The best fit between the recorded and the simulated
hydrographs was obtained forc=4 m0.8/s andn=1.2. The
comparison between the recorded downstream hydrograph
h′, t and the simulated hydrographh′′, t is quite satisfactory
(Fig. 3). Notice that the higher flow depth in the simulated
results of Fig. 3, before the surge reaches the gauge, is due
to the fact that we have applied the rheological parameters
found in the simulation to the entire wave as if it were made
of the same mixture. Actually the flow preceding the surge
was entirely different and consisted mostly of clear water.

The recorded hydrograph (Fig. 3) shows oscillations due
to the irregularities of the debris flow profile. These are due
to the pebbles, cobbles, stones, trees and smaller pieces of
vegetation that are transported on the surface of the debris
flow itself and to splashes and other turbulences, including
small waves, that take place on the debris flow surface. The
relative error in the measured hydrograph is also due to the
error of the instrumental recording device and to the value of
the time interval of the measurement (one second).

The recorded hydrographs allow to compute the total vol-
ume of debris flowing through the two cross sections, as de-
scribed in Arattano (2000). The coincidence of the curves
representing the total volumes of debris flows at the two
gauging stations (Fig. 4) seems in agreement with one of
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Fig. 4. Comparison between estimated volumes upstream and
downstream.

the basic assumption of the model: the absence of deposi-
tion/erosion processes along the monitored torrent reach.

4 Debris flow rheology

The simulation results have been obtained for an unsteady
one-dimensional model with initial and boundary conditions
deduced from recordings or from empirical evaluations. If
a reliable estimation of the initial and boundary conditions
is possible, the higher uncertainties in the simulation results
are either due to the uncertainties in the assumption of the
rheological behavior or to other aspects of the modeling of
the debris flow. In the following this point will be discussed
in a greater detail. It will also be shown that, for the studied
case, a simple model that neglects the inertial terms of the
Saint-Venant equation can give good simulation results.

4.1 Rheological behaviour of the debris flow – discussion

The rheological properties of a debris flow affect its dynamic
characteristics and, therefore, the amount of the dynamic
impact against defence structures. The impact forces ex-
erted on levees or dams are generally obtained and quanti-
fied through the application of the momentum transfer prin-
ciple or through the energy conservation theorem. The pre-
diction of the rheological behaviour usually relies on obser-
vations of past events occurred in the same area. The field
data collected in the Moscardo Torrent, since the inception
of the monitoring activities, have provided important infor-
mation regarding this latter issue. Following the same proce-
dure employed in this paper the debris flows that occurred on
20 July 1993, 22 June 1996, 8 July 1996 and 4 August 2002
have been previously modelled (Arattano and Franzi, 2003,
2004). Table 2 summarises the values ofc andn found for
these events.

As far as the July 2004 event is concerned, the values
found for the parameters of the model are similar to the pa-
rameters found for the event occurred on 4 August 2002. The
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Table 2. Comparison of the simulation parameters for the 1993, 1996, 2002 and 2004 Moscardo events.

20.07.1993 22.06.1996 08.07.1996 04.08.2002 23.07.2004

c (*) 14 14 14 5 4

n (-) 0.2 0.2 0.66 1.3 1.2

(*) unit of c depend onn value, according to the relationship [c]=m(1−n)/s.

deposits of this latter event, surveyed few days after its oc-
currence (Arattano and Franzi, 2004), appeared to be quite
coarse and with a very small fine fraction. These field evi-
dences led to interpret this debris flow as a stony debris flow.
Therefore the value ofn that resulted from the simulation
of the 4 August 2002 event was considered as indicative of a
flow behaviour of the dilatant type, as that proposed by Taka-
hashi (1978, 1980, 1991) (Arattano and Franzi, 2004). The
same behaviour can be hypothesized for the July 2004 event.

The large variation of thec and n values shown in Ta-
ble 2 suggests that the rheological coefficients are not con-
stant, even for debris flows taking place in the same torrent.
This implies that, for purposes of hazard prediction and as-
sessment on a debris fan, different simulations have to be
performed assuming different rheological behaviors and ex-
ploring the related consequences. Bothc andn have a strong
influence on the dynamics: therefore, for practical applica-
tions of the proposed methodology, a sensitivity analysis of
the results for different [n, c] pairs should also be performed.
In SEct. 4.3 this point will be further discussed.

4.2 Influence on simulation results of the terms of the
Saint-Venant equation

A numerical scheme is needed to solve the partial differen-
tial equations (1) for given initial and boundary conditions.
Many schemes have been proposed in literature (Jan, 1997;
Hashimoto et al., 2000; Cunge at al., 1980), either implicit or
explicit, either one step or multisteps. In general the great-
est difficulties in the numerical solutions are represented by
the non linear terms (e.g the convective term) and by the ne-
cessity to simulate dam-break like hydrographs with rapidly
varying flow depths, discharges and velocities. Different nu-
merical methods have been proposed to obtain stable math-
ematical algorithms and consistent schemes (Cunge at al.,
1980; Abbott, 1992). In general, some simplifications of
system (1) may apply if the boundary and geometrical con-
ditions allow to neglect some of the terms in the momen-
tum equation. However it is often not easy to choose which
term can be neglected, because the influence of the differen-
tial terms cannot be evaluated “a priori”, given their strong
variation in time and space during the simulation.

Here a comparison has been carried out of the values and
the related influence of the different terms in system (1). As
stated before, for steep bed slopes, the influence of the fourth

and fifth term in the momentum equation can be predomi-
nant on the other terms so that the propagation model can
be strongly simplified. The resulting model is the so-called
“kinematic model” (Arattano and Savage, 1994). The mo-
mentum equation holds in this case:

Sf = tanθ (6)

Computing the difference between the bed slope, tanθ , and
Sf , that is the computed value of the energy gradient, it is
possible to obtain an estimation of the error due to the ap-
proximation introduced in the computation with the neglect-
ing of the differential terms in system (1) and thus evaluate
their influence:

−
1

gA

[
∂Q

∂t
+ gA

∂h

∂x
cosθ +

∂

∂x
(
Q2

A
)

]
= Sf − tanθ (7)

The relative error,εk, due to the neglecting of the differential
terms in system (1) will be given by:

εk =
Sf − tanθ

tanθ
(8)

The relative error,εk, is linked to the relative error in the
estimation of the flow heighth. In fact rewriting Eq. (2),
with τ o=0 holds:

h =
2n

√
U2

Sf c2
(9)

Recalling that the termSf is given by:

Sf =
τ

ρgh

and differentiating Eq. (9) with respect toSf for a constant
discharge, the following equation can be obtained (see ap-
pendix):

∂h

h
= −

1

2(n + 1)

∂Sf

Sf

. (10)

The term ∂Sf /Sf can be assumed as an estimation of the
relative error in the evaluation ofSf . Equation (6) states that
Sf can be approximately assumed equal to tanθ , thus the
error∂ Sf will be given bySf –tanθ and the relative error∂
Sf / Sf will be given by:

∂Sf

Sf

=
Sf − tanθ

Sf

. (11)
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Figure 5 has to be substituted by the following. 
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Fig. 5. Variation of∂h/h in Eq. (10) andεi in time. The relative er-
ror εi has been plotted only for t> 270 s (see Fig. 2). The simulated
debris flow profile has been shown.

Considering that, for steep bed slopes,Sf is actually very
close to tanθ , the denominator of Eq. (11) can be substituted
by tanθ , and thus ∂ Sf / Sf is approximately equal toεk

(Eq. 8). Equations (8), (10) and (11) thus shows then that
the relative error,εk, due to the neglecting of the differential
terms in system (1) is directly related to the relative error,∂

h/h, in the evaluation ofh. The relative errorεk can thus be
assumed as an indicator of the relative error in the estimation
of h made with the kinematic simplification given by Eq. (6).

Since the value of the right-hand-side term in Eq. (11) and
consequently the value of∂ Sf /Sf , can be calculated by
means of the results of the simulation, the relative errorεk

made in our simulation can be obtained from Eq. (10) (sub-
stituting the value of∂ Sf / Sf obtained through the simu-
lation and assumingn=1.2). We calculated the value ofεk

following this procedure and we found that, for the larger
debris flow wave of the July 2004 event,εk was generally
less than 1%. It resulted higher than 1% only twice, for 6
and 5 s, respectively. In the latter time interval,εk reached
a maximum value of 2.96%. This shows that the approxi-
mated assumption made in Eq. (6) affects the results, as far
as the estimation of flow depth is concerned, only by some
percentages. This influence appears even more negligible if
the irregularities in the debris flow profile that are due to the
presence of pebbles, cobbles, wood debris and superficial
waves are taken into account. These irregularities impede
a good match between the simulated hydrograph{h′, t} and
the recorded one{h′′, t}. Actually the relative error made in
the estimation ofh, given by Eq. (8), is much smaller than
the relative errorεi produced by the inadequacy of the model
to reproduce the irregularities of the real debris flow profile:

εi =
h′

− h′′

h′′
(12)

as shown in Fig. 5. Notice that the large value ofεi is
predominantly due to the complexity of the examined phe-
nomenon with its irregular profile. This irregularity of profile
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Fig. 6. Variation in time of the different terms in Saint Vent Equa-
tion, in the downstream cross section. The recorded debris flow
profile has been solely indicated to provide an indication about the
points where the term were calculated along the wave profile.

can not be predicted with deterministic mathematical tools.
For our examined event, even if a more complex model were
used, with a complete Saint Venant equation, no significant
improvement in the results would be obtained. This can be
also shown, from a mathematical point of view, by comput-
ing the magnitude of the differential terms in the momentum
equation. Figure 6 shows that the value of the differential
terms of Eq. (7), given by tanθ–Sf , is very small [ranging
between –0.0174 and +0.00179] along the entire wave: in-
cluding them in the equation would have not changed the
results. The results shown in Fig. 6 refer to the downstream
cross section.

Figure 6 also shows that the influence of all the non-linear
terms on the left hand of Eq. (7) is far less than the bed slope
itself. According to the obtained results, the left hand term
in Eq. (7) is higher (in module) than 0.01 for only 3 s. More-
over the differential terms on the left hand of Eq. (7) have an
opposite sign thus eliding each other. All this supports the
applicability of the kinematic model to the examined case.

4.3 Influence of rheology on simulation results

According to Eq. (9), the evaluation of the water-sediment
depthh depends on the estimation of the rheological param-
etersc andn. The variability of these parameters for events
occurred in the same torrent has been evidenced in past in-
vestigations and is shown in Table 2. The choice of the most
reliable [c, n] pair for the debris flow event that is being ex-
amined is therefore crucial. Since the dynamic behavior of
a debris flow changes in time and also changes for differ-
ent events any choice regarding the rheological parameters
for debris flows hazard assessment purposes is inevitably af-
fected by uncertainties. A method is proposed here to evalu-
ate the effects of these uncertainties on the simulation results.
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Fig. 7. Dispersion ofεk andεn in time, in correspondence to the
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By simply differentiating Eq. (9) with respect ton the fol-
lowing formula can be obtained for a constant discharge (see
appendix for derivation):

εn =
∂h

h
= −

1

n + 1
ln h · ∂n (13)

which shows that the relative error in the estimation of the
flow depth is proportional to the uncertainty in the estima-
tion of the parametern. This means that the relative error in
the estimation of the flow depth depends on the uncertainties
in determining the rheological behavior of the debris flow
mixture. If no measurements were available for the studied
case, a practitioner or a technician who had to chose a value
for n would probably assumen equal to the mean value of
the maximum (n=1.3) and minimum (n=0.2) values obtained
in past simulations, that isn=0.75. In this case the∂ n term
would result equal to about 0.55. The relative errorεn has
been therefore computed assuming∂ n=0.55 andn=0.75. In
Fig. 7 εn is compared withεk. Each plotted point refers to
the sameh(t) recorded value at the downstream cross sec-
tion. From this comparison it is shown that the order of mag-
nitude ofεnfalls in the range [–0.27; 0.062;] and it is much
greater than the range of variation ofεk.

It would also be possible for a practitioner to decide to as-
sume, for safety purposes, then value that leads to the high-
esth value. In this case the uncertainty in the estimation ofh,
due to the assumption of the value ofn in the range [0.2; 1.3]
that causes the largesth, would be much higher than in the
previous case and (13) could not be used to estimate it, since
Eq. (13) is obtained with an infinitesimal approach. Alterna-
tively, the first term in Eq. (13) can be calculated by means
of a finite difference equation, so thatεn transforms into:

εn
∼=

hn1 − hn2

h̄
=

(
Q

αc
√

Sf

) 1
n1+β

−

(
Q

αc
√

Sf

) 1
n2+β

h̄
(14)
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wheren1=1.3 andn2=0.2 and

h̄ =

(
Q

αc
√

Sf

) 1
n1+β

+

(
Q

αc
√

Sf

) 1
n2+β

2
(15)

In Fig. 8 Eq. (14) has been plotted versusεk for the debris
flow discharges computed in the upstream cross section. In
this case the relative error is of course higher than in Fig. 7.

All this shows that the uncertainties in the determination
of the rheology have a greater influence on the simulation
results than the approximations made neglecting the differ-
ential terms of the Saint Venant equation. This shows that
for our examined event if the complete Saint Venant equa-
tion were employed no significant improvement in the results
would have been obtained.

5 Conclusions

The rheological parameters of a debris flow that occurred
in the Summer 2004 in an instrumented basin on the Ital-
ian Alps have been estimated by means of a mathematical
model, imposing the best fit between simulated results and
the recorded hydrograph. The analysis shows: (i) the rheo-
logical behaviour of this debris flow event is different from
other debris flows previously occurred in the same torrent;
(ii) the analysis of the relative influence of the different terms
of the Saint Venant equation reveals the predominance of the
resistance term over the remaining terms; (iii) the value of
the error made neglecting these latter is much smaller than
the error made simulating the complex and very irregular de-
bris flow profile with a deterministic model; this suggests the
use of a very simple and approximated mathematical model
(the kinematic model) to simulate the debris flow propaga-
tion; (iv) since the resistance terms are closely related to
the rheological behaviour of the mixture, it is more impor-
tant to reliably estimate the rheological parameters used in
the simulation than focusing on the choice of the most suit-
able mathematical and numerical schemes needed to solve
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the complete Saint Venant equation system. This latter con-
sequence has been also evidenced by a comparison between
the relative error due to uncertainties in determining the rhe-
ology and the relative errors due to the kinematic approxi-
mation. These conclusions are valid for a debris flow that
occurred in a relatively simple torrent, with straight channel
and without erosion and deposition.

Appendix A

Derivation of Eq. (10)

The momentum equation in uniform flow conditions holds:

Q = AU = Achn
√

Sf (A1)

For a rectangular cross section it is:

A = bh (A2)

while in general, it is (ifA is approximated by a monomial
function):

A = αhβ (A3)

whereα andβ are parameters that depend on the shape of
the cross section.

Using Eq. (A3) in Eq. (A1), one obtains:

h =

(
Q

αc
√

Sf

) 1
n+β

(A4)

For a given discharge, Eq. (A4) can be used to calculate the
debris flow depth, for given cross section geometry, rough-
ness and bed slope.

Differentiating Eq. (A4) with respect toSf , holds

∂h

∂Sf

=

(
1

n+β

)(
Q

αc
√

Sf

) 1
n+β

−1
Q

αc

(
−

1

2

) (
Sf

)−3/2 (A5)

Dividing Eq. (A5) by Eq. (A4), holds:

∂h

h∂Sf

=

(
1

n + β

)(
Q

αc
√

Sf

)−1
Q

αc

(
−

1

2

) (
Sf

)−3/2 (A6)

and therefore

∂h

h
= −

1

2(n + β)

∂Sf

Sf

(A7)

For a rectangular (β=1) cross section, Eq. (10) holds.

Appendix B

Derivation of Eq. (13)

Differentiating Eq. (A4) with respect ton holds:

dh

dn
=

(
Q

αc
√

Sf

) 1
n+β (

−
1

(n + β)2

)
ln

(
Q

αc
√

Sf

)
=

h

(
−

1

(n + β)2

)
ln
(
hn+β

)
(B1)

From Eq. (B1) one obtains:

∂h

h
=

(
−

1

n + β

)
ln (h) · ∂n (B2)

For a rectangular (β=1) cross section, Eq. (13) holds:
Notations:
b: cross section width
A cross section area
h: water sediment depth
n: rheological parameter
Q: debris flow discharge
α, β: parameters depending on the shape

of the cross section
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