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Abstract. As Cloud Computing becomes prevalent, more and more sensitive information
are being centralized into the cloud. For the protection of data privacy, sensitive data usually
have to be encrypted before outsourcing, which makes effective data utilization a very chal-
lenging task. Although traditional searchable encryption schemes allow a user to securely
search over encrypted data through keywords and selectively retrieve files of interest, these
techniques support only exact keyword search. That is, there is no tolerance of minor typos
and format inconsistencies which, on the other hand, are typical user searching behavior
and happen very frequently. This significant drawback makes existing techniques unsuitable
in Cloud Computing as it greatly affects system usability, rendering user searching expe-
riences very frustrating and system efficacy very low. In this paper, for the first time we
formalize and solve the problem of effective fuzzy keyword search over encrypted cloud data
while maintaining keyword privacy. Fuzzy keyword search greatly enhances system usability
by returning the matching files when users’ searching inputs exactly match the predefined
keywords or the closest possible matching files based on keyword similarity semantics, when
exact match fails. In our solution, we exploit edit distance to quantify keywords similarity
and develop two advanced techniques on constructing fuzzy keyword sets, which achieve op-
timized storage and representation overheads. We further propose a brand new symbol-based
trie-traverse searching scheme, where a multi-way tree structure is built up using symbols
transformed from the resulted fuzzy keyword sets. Through rigorous security analysis, we
show that our proposed solution is secure and privacy-preserving, while correctly realizing
the goal of fuzzy keyword search. Extensive experimental results demonstrate the efficiency
of the proposed solution.

1 Introduction

Cloud Computing, the new term for the long dreamed vision of computing as a utility [1], enables
convenient, on-demand network access to a centralized pool of configurable computing resources
(e.g., networks, applications, and services) that can be rapidly deployed with great efficiency
and minimal management overhead [2]. The amazing advantages of Cloud Computing include:
on-demand self-service, ubiquitous network access, location independent resource pooling, rapid
resource elasticity, usage-based pricing, transference of risk, etc. [2, 3]. Thus, Cloud Computing
could easily benefit its users in avoiding large capital outlays in the deployment and management
of both software and hardware. Undoubtedly, Cloud Computing brings unprecedented paradigm
shifting and benefits in the history of IT.

As Cloud Computing becomes prevalent, more and more sensitive information are being cen-
tralized into the cloud, such as emails, personal health records, private videos and photos, company
finance data, government documents, etc. By storing their data into the cloud, the data owners
can be relieved from the burden of data storage and maintenance so as to enjoy the on-demand
high quality data storage service. However, the fact that data owners and cloud server are not in
the same trusted domain may put the oursourced data at risk, as the cloud server may no longer
be fully trusted in such a cloud environment due to a number of reasons: the cloud server may
leak data information to unauthorized entities or be hacked. It follows that sensitive data usually
should be encrypted prior to outsourcing for data privacy and combating unsolicited accesses.
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However, data encryption makes effective data utilization a very challenging task given that there
could be a large amount of outsourced data files. Moreover, in Cloud Computing, data owners
may share their outsourced data with a large number of users. The individual users might want
to only retrieve certain specific data files they are interested in during a given session. One of
the most popular ways is to selectively retrieve files through keyword-based search instead of re-
trieving all the encrypted files back which is completely impractical in cloud computing scenarios.
Such keyword-based search technique allows users to selectively retrieve files of interest and has
been widely applied in plaintext search scenarios, such as Google search [4]. Unfortunately, data
encryption restricts user’s ability to perform keyword search and thus makes the traditional plain-
text search methods unsuitable for Cloud Computing. Besides this, data encryption also demands
the protection of keyword privacy since keywords usually contain important information related
to the data files. Although encryption of keywords can protect keyword privacy, it further renders
the traditional plaintext search techniques useless in this scenario.

To securely search over encrypted data, searchable encryption techniques have been developed
in recent years [5–13]. Searchable encryption schemes usually build up an index for each keyword
of interest and associate the index with the files that contain the keyword. By integrating the
trapdoors of keywords within the index information, effective keyword search can be realized
while both file content and keyword privacy are well-preserved. Although allowing for performing
searches securely and effectively, the existing searchable encryption techniques do not suit for cloud
computing scenario since they support only exact keyword search. That is, there is no tolerance
of minor typos and format inconsistencies which, on the other hand, are typical user searching
behavior and happen very frequently. As common practice, users may search and retrieve the data
of their respective interests using any keywords they might come up with. It is quite common
that users’ searching input might not exactly match those pre-set keywords due to the possible
typos, such as Illinois and Ilinois, representation inconsistencies, such as PO BOX and P.O.

Box, and/or her lack of exact knowledge about the data. To give a concrete example, statistics
from Google [4] shows that only less than 77% of the users’ searching input exactly matched the
name of Britney, detected in their spelling correction system within a three-month period. In
other words, searching based on exact keyword match would return unnecessary failures for more
than 23% search requests of Britney, making the searching system ineffective with low usability.
This significant drawback of existing schemes signifies the important need for new techniques
that support searching flexibility, tolerating both minor typos and format inconsistencies. That
is, secure fuzzy search capability is demanded for achieving enhanced system usability in Cloud
Computing. Although the importance of fuzzy search has received attention recently in the context
of plaintext searching by information retrieval community [14–17], it is still being overlooked and
remains to be addressed in the context of encrypted data search.

In this paper, we focus on enabling effective yet privacy-preserving fuzzy keyword search in
Cloud Computing. To the best of our knowledge, we formalize for the first time the problem
of effective fuzzy keyword search over encrypted cloud data while maintaining keyword privacy.
Fuzzy keyword search greatly enhances system usability by returning the matching files when
users’ searching inputs exactly match the predefined keywords or the closest possible matching
files based on keyword similarity semantics, when exact match fails. More specifically, we use edit
distance to quantify keywords similarity and develop two novel techniques, i.e., an wildcard-based
technique and a gram-based technique, for the construction of fuzzy keyword sets. Both techniques
eliminate the need for enumerating all the fuzzy keywords and the resulted size of the fuzzy keyword
sets is significantly reduced. Based on the constructed fuzzy keyword sets, we further propose an
advanced symbol-based trie-traverse searching scheme, where a multi-way tree structure is built
up using symbols transformed from the fuzzy keywords. Through rigorous security analysis, we
show that the proposed solution is secure and privacy-preserving, while correctly realizing the goal
of fuzzy keyword search. Extensive experimental results demonstrate the efficiency of the proposed
solution.

The rest of paper is organized as follows: Section 2 introduces the system model, threat model,
our design goal and briefly describes some necessary background for the techniques used in this
paper. Section 3 summarizes the features of related work. Section 4 and 5 provide the detailed
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description of our proposed schemes. Section 6 and 7 present the security and performance analysis,
respectively. Finally, Section 8 concludes the paper.

2 Related Work

Plaintext fuzzy keyword search. Recently, the importance of fuzzy search has received at-
tention in the context of plaintext searching in information retrieval community [15–17]. They
addressed this problem in the traditional information-access paradigm by allowing user to search
without using try-and-see approach for finding relevant information based on approximate string
matching. The approximate string matching algorithms among them can be classified into two
categories: on-line and off-line. The on-line techniques, performing search without an index, are
unacceptable for their low search efficiency, while the off-line approach, utilizing indexing tech-
niques, makes it dramatically faster. A variety of indexing algorithms, such as suffix trees, metric
trees and q-gram methods, have been presented. At the first glance, it seems possible for one to
directly apply these string matching algorithms to the context of searchable encryption by com-
puting the trapdoors on a character base within an alphabet. However, this trivial construction
suffers from the dictionary and statistics attacks and fails to achieve the search privacy.

Searchable encryption. Traditional searchable encryption [5–13] has been widely studied in
the context of cryptography. Among those works, most are focused on efficiency improvements
and security definition formalizations. The first construction of searchable encryption was pro-
posed by Song et al. [6], in which each word in the document is encrypted independently under
a special two-layered encryption construction. Goh [7] proposed to use Bloom filters to construct
the indexes for the data files. For each file, a Bloom filter containing trapdoors of all unique words
is built up and stored on the server. To search for a word, the user generates the search request
by computing the trapdoor of the word and sends it to the server. Upon receiving the request,
the server tests if any Bloom filter contains the trapdoor of the query word and returns the corre-
sponding file identifiers. To achieve more efficient search, Chang et al. [10] and Curtmola et al. [11]
both proposed similar “index” approaches, where a single encrypted hash table index is built for
the entire file collection. In the index table, each entry consists of the trapdoor of a keyword
and an encrypted set of file identifiers whose corresponding data files contain the keyword. As
a complementary approach, Boneh et al. [8] presented a public-key based searchable encryption
scheme, with an analogous scenario to that of [6]. In their construction, anyone with the public
key can write to the data stored on the server but only authorized users with the private key
can search. As an attempt to enrich query predicates, conjunctive keyword search, subset query
and range query over encrypted data, have also been proposed in [12, 18]. Note that all these ex-
isting schemes support only exact keyword search, and thus are not suitable for Cloud Computing.

Others. Private matching [19], as another related notion, has been studied mostly in the context
of secure multiparty computation to let different parties compute some function of their own data
collaboratively without revealing their data to the others. These functions could be intersection
or approximate private matching of two sets, etc. [20]. The private information retrieval [21] is
an often-used technique to retrieve the matching items secretly, which has been widely applied in
information retrieval from database and usually incurs unexpectedly computation complexity.

3 Problem Formulation

3.1 System Model

In this paper, we consider a cloud data system consisting of data owner, data user and cloud
server. Given a collection of n encrypted data files C = (F1, F2, . . . , FN) stored in the cloud server,
a predefined set of distinct keywords W = {w1, w2, ..., wp}, the cloud server provides the search
service for the authorized users over the encrypted data C. We assume the authorization between
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Fig. 1: Architecture of the fuzzy keyword search

the data owner and users is appropriately done. An authorized user types in a request to selectively
retrieve data files of his/her interest. The cloud server is responsible for mapping the searching
request to a set of data files, where each file is indexed by a file ID and linked to a set of keywords.
The fuzzy keyword search scheme returns the search results according to the following rules: 1) if
the user’s searching input exactly matches the pre-set keyword, the server is expected to return the
files containing the keyword3; 2) if there exist typos and/or format inconsistencies in the searching
input, the server will return the closest possible results based on pre-specified similarity semantics
(to be formally defined in section 3.4). An architecture of fuzzy keyword search is shown in the
Fig. 1.

3.2 Threat Model

We consider a semi-trusted server. Even though data files are encrypted, the cloud server may try
to derive other sensitive information from users’ search requests while performing keyword-based
search over C. Thus, the search should be conducted in a secure manner that allows data files to
be securely retrieved while revealing as little information as possible to the cloud server. In this
paper, when designing fuzzy keyword search scheme, we will follow the security definition deployed
in the traditional searchable encryption [11]. More specifically, it is required that nothing should
be leaked from the remotely stored files and index beyond the outcome and the pattern of search
queries.

3.3 Design Goals

In this paper, we address the problem of supporting efficient yet privacy-preserving fuzzy keyword
search services over encrypted cloud data. Specifically, we have the following goals: i) to explore
different mechanisms for constructing storage-efficient fuzzy keyword sets; ii) to design efficient
and effective fuzzy search schemes based on the constructed fuzzy keyword sets; iii) to validate
the security and evaluate the performance by conducting extensive experiments.

3.4 Preliminaries

Edit Distance There are several methods to quantitatively measure the string similarity. In this
paper, we resort to the well-studied edit distance [22] for our purpose. The edit distance ed(w1, w2)
between two words w1 and w2 is the number of operations required to transform one of them into
the other. The three primitive operations are 1) Substitution: changing one character to another in
a word; 2) Deletion: deleting one character from a word; 3) Insertion: inserting a single character
into a word. Given a keyword w, we let Sw,d denote the set of words w′ satisfying ed(w, w′) ≤ d
for a certain integer d.

3 Note that we do not differentiate between files and file IDs in this paper.
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Fuzzy Keyword Search Using edit distance, the definition of fuzzy keyword search can be for-
mulated as follows: Given a collection of n encrypted data files C = (F1, F2, . . . , FN ) stored in the
cloud server, a set of distinct keywords W = {w1, w2, ..., wp} with predefined edit distance d, and a
searching input (w, k) with edit distance k (k ≤ d), the execution of fuzzy keyword search returns
a set of file IDs whose corresponding data files possibly contain the word w, denoted as FIDw: if
w = wi ∈W , then return FIDwi ; otherwise, if w 6∈W , then return {FIDwi}, where ed(w, wi) ≤ k.
Note that the above definition is based on the assumption that k ≤ d. In fact, d can be different for
distinct keywords and the system will return {FIDwi} satisfying ed(w, wi) ≤ min{k, d} if exact
match fails.

Trapdoors of Keywords Trapdoors of the keywords can be realized by applying a one-way
function f , which is similar as [5,7]: Given a keyword wi and a secret key sk, we can compute the
trapdoor of wi as Twi = f(sk, wi).

4 Constructions of Effective Fuzzy Keyword Search in Cloud

The key idea behind our secure fuzzy keyword search is two-fold: 1) building up fuzzy keyword
sets that incorporate not only the exact keywords but also the ones differing slightly due to minor
typos, format inconsistencies, etc.; 2) designing an efficient and secure searching approach for file
retrieval based on the resulted fuzzy keyword sets. In this section, we will focus on the first part,
i.e., building storage-efficient fuzzy keyword sets to facilitate the searching process.

4.1 The Straightforward Approach

Before introducing our constructions of fuzzy keyword sets, we first propose a straightforward
approach that achieves all the functions of fuzzy keyword search, which aims at providing an
overview of how fuzzy search scheme works.

Assume Π=(Setup(1λ), Enc(sk, ·), Dec(sk, ·)) is a symmetric encryption scheme, where sk is
a secret key, Setup(1λ) is the setup algorithm with security parameter λ, Enc(sk, ·) and Dec(sk, ·)
are the encryption and decryption algorithms, respectively. The scheme goes as follows: We can
begin by constructing the fuzzy keyword set Swi,d for each keyword wi ∈W (1 ≤ i ≤ p) with edit
distance d. The intuitive way to construct the fuzzy keyword set of wi is to enumerate all possible
words w′

i that satisfy the similarity criteria ed(wi, w
′
i) ≤ d, that is, all the words with edit distance

d from wi are listed. For example, the following is the listing variants after a substitution operation
on the first character of keyword CASTLE: {AASTLE, BASTLE, DASTLE, · · · , YASTLE, ZASTLE}. Based
on the resulted fuzzy keyword sets, the fuzzy search is conducted as follows: 1) To build an index
for wi, the data owner computes trapdoors Tw′

i
= f(sk, w′

i) for each w′
i ∈ Swi,d with a secret

key sk shared between data owner and authorized users. The data owner also encrypts FIDwi

as Enc(sk, FIDwi‖wi). The index table {({Tw′

i
}w′

i
∈Swi,d

, Enc(sk, FIDwi‖wi))}wi∈W and encrypted
data files are outsourced to the cloud server for stroage; 2) To search with w, the authorized user
computes the trapdoor Tw of w and sends it to the server; 3) Upon receiving the search request Tw,
the server compares it with the index table and returns all the possible encrypted file identifiers
{Enc(sk, FIDwi‖wi)} according to the fuzzy keyword definition in section III-D. The user decrypts
the returned results and retrieves relevant files of interest.

This straightforward approach apparently provides fuzzy keyword search over the encrypted
files while achieving search privacy using the technique of secure trapdoors. However, this approach
has serious efficiency disadvantages. The simple enumeration method in constructing fuzzy key-
word sets would introduce large storage complexities, which greatly affect the usability. Recall that
in the definition of edit distance, substitution, deletion and insertion are three kinds of operations
in computation of edit distance. The numbers of all similar words of wi satisfying ed(wi, w

′
i) ≤ d

for d = 1, 2 and 3 are approximately 2k× 26, 2k2× 262, and 4

3
k3× 263, respectively. For example,

assume there are 104 keywords in the file collection with average keyword length 10 and d = 2.
The output length of hash function is 160 bits. The resulted storage cost for the index will be
30GB. Therefore, it brings forth the demand for fuzzy keyword sets with smaller size.
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Algorithm 1 Wildcard-based Fuzzy Set Construction

1: procedure CreateWildcardFuzzySet(wi, d)
2: if d > 1 then

3: Call CreateWildcardFuzzySet(wi, d− 1);
4: end if

5: if d = 0 then

6: Set S′
wi,d = {wi};

7: else

8: for (k ← 1 to |S′
wi,d−1|) do

9: for j ← 1 to 2 ∗ |S′
wi,d−1[k]| + 1 do

10: if j is odd then

11: Set fuzzyword as S′
wi,d−1[k];

12: Insert ⋆ at position ⌊(j + 1)/2⌋;
13: else

14: Set fuzzyword as S′
wi,d−1[k];

15: Replace ⌊j/2⌋-th character with ⋆;
16: end if

17: if fuzzyword is not in S′
wi,d−1 then

18: Set S′
wi,d = S′

wi,d ∪ {fuzzyword};
19: end if

20: end for

21: end for

22: end if

23: end procedure

24: end procedure

4.2 Advanced Techniques for Constructing Fuzzy Keyword Sets

To provide more practical and effective fuzzy keyword search constructions with regard to both
storage and search efficiency, we now propose two advanced techniques to improve the straightfor-
ward approach for constructing the fuzzy keyword set. Without loss of generality, we will focus on
the case of edit distance d = 1 to elaborate the proposed advanced techniques. For larger values
of d, the reasoning is similar. Note that both techniques are carefully designed in such a way that
while suppressing the fuzzy keyword set, they will not affect the search correctness, as will be
described in section 5.

Wildcard-based Fuzzy Set Construction In the above straightforward approach, all the vari-
ants of the keywords have to be listed even if an operation is performed at the same position. Based
on the above observation, we proposed to use an wildcard to denote edit operations at the same
position. The wildcard-based fuzzy set of wi with edit distance d is denoted as Swi,d={S

′
wi,0, S

′
wi,1,

· · · , S′
wi,d
}, where S′

wi,τ denotes the set of words w′
i with τ wildcards. Note each wildcard repre-

sents an edit operation on wi. The procedure for wildcard-based fuzzy set construction is shown in
Algorithm 1. For example, for the keyword CASTLE with the pre-set edit distance 1, its wildcard-
based fuzzy keyword set can be constructed as SCASTLE,1 = {CASTLE, *CASTLE, *ASTLE, C*ASTLE,
C*STLE, · · · , CASTL*E, CASTL*, CASTLE*}. The total number of variants on CASTLE constructed in
this way is only 13 + 1, instead of 13× 26 + 1 as in the above exhaustive enumeration approach
when the edit distance is set to be 1. Generally, for a given keyword wi with length ℓ, the size of
Swi,1 will be only 2ℓ + 1 + 1, as compared to (2ℓ + 1) × 26 + 1 obtained in the straightforward
approach. The larger the pre-set edit distance, the more storage overhead can be reduced: with
the same setting of the example in the straightforward approach, the proposed technique can help
reduce the storage of the index from 30GB to approximately 40MB.

Gram-based Fuzzy Set Construction Another efficient technique for constructing fuzzy set
is based on grams. The gram of a string is a substring that can be used as a signature for ef-
ficient approximate search [17]. While gram has been widely used for constructing inverted list
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Algorithm 2 Gram-based Fuzzy Set Construction

1: procedure CreateGramFuzzySet(wi, d)
2: if d > 1 then

3: Call CreateGramFuzzySet(wi, d− 1);
4: end if

5: if d = 0 then

6: S′
wi,d = {wi};

7: else

8: for (k ← 1 to |S′
wi,d−1|) do

9: for j ← 1 to 2 ∗ |S′
wi,d−1[k]| + 1 do

10: Set fuzzyword as S′
wi,d−1[k];

11: Delete the j-th character;
12: if fuzzyword is not in S′

wi,d−1 then

13: Set S′
wi,d = S′

wi,d ∪ {fuzzyword}
14: end if

15: end for

16: end for

17: end if

18: end procedure

19: end procedure

for approximate string search [23–25], we use gram for the matching purpose. We propose to uti-
lize the fact that any primitive edit operation will affect at most one specific character of the
keyword, leaving all the remaining characters untouched. In other words, the relative order of
the remaining characters after the primitive operations is always kept the same as it is before
the operations. With this significant observation, the fuzzy keyword set for a keyword wi with ℓ
single characters supporting edit distance d can be constructed as Swi,d = {S′

wi,τ}0≤τ≤d, where
S′

wi,τ consists of all the (ℓ–τ)-gram from wi and with the same relative order (we assume that
d ≤ ℓ). For example, the gram-based fuzzy set SCASTLE,1 for keyword CASTLE can be constructed as
{CASTLE, CSTLE, CATLE, CASLE, CASTE, CASTL, ASTLE}. Generally, given a keyword wi with ℓ single
characters, the size of S′

wi,τ is Cℓ−τ
ℓ , and the size of Swi,d is Cℓ

ℓ + Cℓ−1

ℓ + · · ·+ Cℓ−d
ℓ . Compared to

wildcard-based construction, gram-based construction can further reduce the storage of the index
from 40MB to approximately 10MB under the same setting as in the wildcard-based approach.
The procedure for gram-based fuzzy set construction is shown in Algorithm 2.

5 Efficient Fuzzy Searching Schemes

As shown in section 4, the size of fuzzy keyword set is greatly reduced using the proposed advanced
techniques. However, the above constructions introduce another challenge: How to generate the
search request and how to perform fuzzy keyword search? In the straightforward approach, because
the index is created by enumerating all of fuzzy words for each keyword, there always exists
matching words for the search request as long as the edit distance between them is equal or
less than d. To design fuzzy search schemes based on the fuzzy keyword sets constructed from
wildcard-based or gram-based technique, we compute the searching request regarding (w, k) as
{Tw′}w′∈Sw,k

, where Sw,k = {S′
w,0, S

′
w,1, · · · , S′

w,k} is generated in the same way as in the fuzzy
keyword set construction. In this section, we will show how to achieve fuzzy keyword search based
on the fuzzy sets constructed from the proposed advanced techniques. For simplicity, we will only
consider the fixed d in our scheme designs. In this section, we start with some intuitive solutions,
the analysis of which will motivate us to develop more efficient ones.

5.1 The Intuitive Solutions

Based on the storage-efficient fuzzy keyword set constructed as above, an efficient way to realize
fuzzy keyword search is to use the traditional listing approach. Specifically, the scheme goes as
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User Cloud Server

(secret key sk); (GW , {Enc(sk, FIDwi‖wi)}wi∈W )
1. Generate Sw,k and compute
{Tw′}w′∈Sw,k

using sk as the

search request regarding (w, k);
{Tw′}w′∈Sw,k
−−−−−−−−−−→
Search request

2. Search over GW according to Alg. 3; return:

i) Enc(sk, FIDwi‖wi) if w = wi ∈ W ;
ii) {Enc(sk,FIDwi‖wi)} if w 6∈ W according

to the searching rule in section V-A.
{Enc(sk,FIDwi

‖wi)}
←−−−−−−−−−−−−−

Search results

3. Decrypt and retrieve data files.

Fig. 2: Protocol for the symbol-based trie-traverse fuzzy keyword search

follows: (1) In the index building phase, for each keyword wi ∈ W , the data owner computes trap-
doors Tw′

i
= f(sk, w′

i) for all w′
i ∈ Swi,d with secret key sk. Then he computes Enc(sk, FIDwi‖wi)

and outsources the index table {{Tw′

i
}w′

i
∈Swi,d

, Enc(sk, FIDwi‖wi)} together with the encrypted
data files to the cloud server; (2) Assume an authorized user types in w as the searching input,
with the pre-set edit distance k. The searching input is first transformed to a fuzzy set Sw,k.
Then, the trapdoors {Tw′}w′∈Sw,k

for each element w′ ∈ Sw,k are generated and submitted as the
search request to the cloud server; (3) Upon receiving the search request, the server first compares
{Tw′}w′∈S′

w,0
with the index and returns the search result as Enc(sk, FIDw‖w) if there exists an

exact match. Otherwise, the server will compare all the elements of {Tw′}w′∈S′
w,τ

(1 ≤ τ ≤ k) with
the index for the file collection and return all of the matched results {Enc(sk, FIDwi‖wi)}. The
user now can obtain {FIDwi‖wi} through decryption and retrieve files of interest.

In fact, the correctness of the search result is based on the following observation: Assume the
search request {Tw′}w′∈Sw,k

for w and the index {Tw′

i
}w′

i
∈Swi,d

for keyword wi are computed with
edit distance k and d, respectively. As long as the edit distance satisfies ed(w, wi) ≤ k, there would
always exist at least one match between the elements in Sw,k and the ones in Swi,d. Therefore, the
search correctness is still maintained according to the fuzzy keyword search definition in 3.4 (The
security proof of the listing approach will be given in section 6 for both the wildcard-based and
the gram-based fuzzy keyword set constructions). The scheme also supports for variable d, and
the results in section 6 will still hold by replacing the condition ed(w, wi) ≤ k with ed(w, wi) ≤
min{k, d}. To further hide the keyword length information, dummy trapdoors can be added such
that all of the fuzzy sets have the same size. In this listing approach, both the searching cost and
the storage cost at the server side are O(τ |W |), where τ = max{{|Swi,d|}wi∈W }.

Another solution is to explore Bloom filter [26] to represent the fuzzy keyword set Swi,d for
each keyword wi with edit distance d, namely, the trapdoor set {Tw′

i
}w′

i
∈Swi,d

is inserted into
keyword wi’s Bloom filter as the index stored on the server. Now by binding the encrypted file
identifiers Enc(sk, FIDwi‖wi) to wi’s Bloom filter, a per keyword index is generated to track the
data files. Upon receiving the search request {Tw′}w′∈Sw,k

, the server tests which Bloom filters
contain 1’s in all r locations for each element w′ ∈ Sw,k and returns the search results, assuming
there are r independent hash functions h1, . . . , hr used in the construction of Bloom filter. In
this solution, the server will only need to store a bit array of m bits instead of the trapdoor
information for all fuzzy set regarding wi. Compared to the listing scheme, both storage cost
and searching cost are now O(|W |). However, due to the property of Bloom filter, there exists
probability of falsely recognizing an unrelated word w′

i as in {Tw′

i
}w′

i
∈Swi,d

. For a keyword wi and
its corresponding Bloom filter with a bit array of m bits, the probability of a false positive is then
f = (1 − (1 − 1/m)r|Swi,d|)r ≈ (1 − e−r|Swi,d|/m)r. While the Bloom filter above is built for each
keyword wi ∈ W , it can also be built based on each file. The intuition behind this idea is to insert
fuzzy set Swi,d of all the keywords belonging to the same file into a single Bloom filter, a search
request {Tw′}w′∈Sw,k

for (w, k) is conducted by testing all the words in {Tw′}w′∈Sw,k
through each
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Fig. 3: An example of integrated symbol-based index for all words in the fuzzy keyword set.

file’s Bloom filter. Note that the search cost associated with this solution is O(|N |), where N is
the number of data files.

5.2 The Symbol-based Trie-Traverse Search Scheme

To enhance the search efficiency, we now propose a symbol-based trie-traverse search scheme,
where a multi-way tree is constructed for storing the fuzzy keyword set {Swi,d}wi∈W over a finite
symbol set. The key idea behind this construction is that all trapdoors sharing a common prefix
may have common nodes. The root is associated with an empty set and the symbols in a trapdoor
can be recovered in a search from the root to the leaf that ends the trapdoor. All fuzzy words in
the trie can be found by a depth-first search. Assume ∆ = {αi} is a predefined symbol set, where
the number of different symbols is | ∆ |= 2n, that is, each symbol αi ∈ ∆ can be denoted by n
bits. The scheme, as described in Fig. 2, works as follows:

(1) Assume the data owner wants to outsource the file collection C with keyword set W , he
computes Tw′

i
as αi1 · · ·αil/n

for each w′
i ∈ Swi,d (i = 1, · · · , p), where l is the output length of

one-way function f(x). A tree GW covering all the fuzzy keywords of wi ∈ W is built up based
on symbols in ∆. The data owner attaches the Enc(sk, FIDwi‖wi) to GW for i = 1, . . . , p and
outsources these information to the cloud server;

(2) To search files containing w with edit distance k, the user computes Tw′ for each w′ ∈ Sw,k

and sends {Tw′}w′∈Sw,k
to the server;

(3) Upon receiving the request, the server divides each Tw′ into a sequence of symbols, performs
the search over GW using Algorithm 3 and returns {Enc(sk, FIDwi‖wi)} to the user.

Note that by dividing the keying hash value into l/n parts, each n-bit of the hash value repre-
sents a symbol in ∆. The hash value of each fuzzy word w′

i ∈ Swi,d is deterministic because with the
same input sk and w′

i, the output αi1 · · ·αil/n
is unique. Moreover, no information about wi will be

leaked from the output αi1 · · ·αil/n
. In this scheme, the paths of trapdoors for different keywords

are integrated by merging all the paths with the same prefix into a single trie to support more effi-
cient search. The encrypted file identifiers will be indexed according to its address or name and the
index information will be stored aat the ending node of the corresponding path. Such an example
of symbol-based trie is given in Fig. 3. With the returned search results {Enc(sk, FIDwi‖wi)}, the
user may retrieve the files of his interest after decrypt and obtain {FIDwi‖wi}. For each request,
the search cost only O(l/n) at the server side, which has nothing to do with the number of files
or the size of related keywords.
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Algorithm 3 SearchingTree

1: procedure SearchingTree({T ′
w})

2: for i ← 1 to |{T ′
w}| do

3: set currentnode as root of Gw ;
4: for j ← 1 to l/n do

5: Set α as αj in the i-th T ′
w;

6: if no child of currentnode contains α then

7: break;
8: end if

9: Set currentnode as child containing α;
10: end for

11: if currentnode is leafnode then

12: Append currentnode.F IDs to resultIDset;
13: if i = 1 then

14: return resultIDset;
15: end if

16: end if

17: end for

18: return resultIDset;
19: end procedure

20: end procedure

5.3 Supporting Multiple Users

In this section, we consider a natural extension from the previous single-user setting to multi-user
setting, where a data owner stores a file collection on the cloud server and allows an arbitrary group
of users to search over his file collection. Let BE = (KeyGenBE , EncBE , DecBE) be a broadcast
encryption scheme providing revocation-scheme security against a coalition of all revoked users
[27]. Additionally, let π be a pseudo-random permutation.

The index computation is almost the same as the single-user setting except for each trapdoor
Tw, a pseudo-random permutation π(ξ, ·) is applied with a secret key ξ which is encrypted with
the broadcast encryption scheme and stored on the server.

To search with (w, k), an authorized user computes trapdoors {π(ξ, Tw′)}w′∈Sw,k
with a secret

key ξ which is distributed by the data owner.
Upon receiving the request, the server recovers the trapdoors by computing π−1 (ξ,π(ξ,Tw′)).

Because the key ξ currently used is only known by the server and the set of currently authorized
users, the search request is valid only if the user is not revoked. Each time a user is revoked,
the data owner picks a new ξ and stores it on the server encrypted such that only non-revoked
users can decrypt it. After the update, the server will use the new ξ to compute π−1(ξ, ·) for
following search requests. Furthermore, the revoked users cannot recover the current ξ and thus,
their requests will not yield valid trapdoors after the server applies π−1(ξ, ·).

6 Security Analysis

In this section, we analyze the correctness and security of the proposed fuzzy keyword search
schemes. At first, we show the correctness of the schemes in terms of two aspects, that is, com-
pleteness and soundness.

Theorem 1. The wildcard-based schemes satisfy both completeness and soundness. Specially, upon

receiving the request of w, all of the keywords {wi} will be returned if and only if ed(w, wi) ≤ k.

The proof can be derived based on the following Lemma:

Lemma 1. The intersection of the fuzzy sets Swi,d and Sw,k for wi and w is not empty if and

only if ed(w, wi) ≤ k.
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Proof. First, we show that Swi,d ∩ Sw,k is not empty when ed(w, wi) ≤ k. To prove this, it is
enough to find an element in Swi,d ∩Sw,k. Let w = a1a2 · · · as and wi = b1b2 · · · bt, where all these
ai and bj are single characters. After ed(w, wi) edit operations, w can be changed to wi according
to the definition of edit distance. Let w∗ = a∗

1
a∗
2
· · · a∗

m, where a∗
i = aj or a∗

i = ∗ if any operation
is performed at this position. Since the edit operation is inverted, from wi, the same positions
containing wildcard at w∗ will be performed. Because ed(w, wi) ≤ k, w∗ is included in both Swi,d

and Sw,k, we get the result that Swi,d ∩ Sw,k is not empty.
Next, we prove that Swi,d ∩ Sw,k is empty if ed(w, wi) > k. The proof is given by reduction.

Assume there exists an w∗ belonging to Swi,d ∩ Sw,k. We will show that ed(w, wi) ≤ k, which
reaches a contradiction. First, from the assumption that w∗ ∈ Swi,d∩Sw,k, we can get the number
of wildcard in w∗, which is denoted by n∗, is not greater than k. Next, we prove that ed(w, wi) ≤ n∗.
We will prove the inequality with induction method. First, we prove it holds when n∗ = 1. There
are nine cases should be considered: If w∗ is derived from the operation of deletion from both wi

and w, then, ed(wi, w) ≤ 1 because the other characters are the same except the character at the
same position. If the operation is deletion from wi and substitution from w, we have ed(wi, w) ≤ 1
because they will be the same after at most one substitution from wi. The other cases can be
analyzed in a similar way and are omitted. Now, assuming that it holds when n∗ = γ, we need
to prove it also holds when n∗ = γ + 1. If ŵ∗ = a∗

1
a∗
2
· · · a∗

n ∈ Swi,d ∩ Sw,k, where a∗
i = aj or

a∗
i = ∗. For an wildcard at position t, cancel the underlying operations and revert it to the original

characters in wi and w at this position. Assume two new elements w∗
i and w∗ are derived from

them respectively. Then perform one operation at position t of w∗
i to make the character of wi at

this position be the same with w, which is denoted by w′
i. After this operation, w∗

i will be changed
to w∗, which has only k wildcards. Therefore, we have ed(w′

i, w) ≤ γ from the assumption. We
know that ed(w′

i, w) ≤ γ and ed(w′
i, wi) = 1, based on which we know that ed(wi, w) ≤ γ + 1.

Thus, we can get ed(w, wi) ≤ n∗. It renders the contradiction ed(w, wi) ≤ k because n∗ ≤ k.
Therefore, Swi,d ∩ Sw,k is empty if ed(w, wi) > k.

The following Theorem says that in the gram-based search schemes, the satisfied keywords will
be returned, as well as some keywords which are not desired. In concrete, the returned keywords
may also include keyword wi as the answer for the request of (w, k) even if ed(w, wi) > k. For
example, to search with the request (CAT, 1), the keyword CASTLE will be returned if (CASTLE, 3) is
stored in the index, even if the edit distance of CAT and CASTLE is greater than 1. Thus, with the
returned results, the user should filter the keyword set by further computing the edit distance.

Theorem 2. The gram-based fuzzy keyword search schemes satisfy the completeness. Specially,

upon receiving the request of (w, k), all of the keywords wi will be returned if ed(w, wi) ≤ k.

The proof of the Theorem can be obtained through the following Lemma:

Lemma 2. Assume Swi,d and Sw,k are built with edit distance d and k for wi and w, respectively.

The set Swi,d ∩ Sw,k is not empty when ed(wi, w) ≤ min{d, k}.

Proof. Let ed(w1, w2) = d, after at most d operations on the characters of w1, it can be transformed
to w2. Without loss of generality, assume |w1| ≥ |w2|. It means that the remaining |w1| – d
characters in w1 are untouched and they are equal to a (|w1| – d)-character sequence in w2, which
belongs to Sw1,k1

∩ Sw2,k2
when d ≤ min{k1, k2}.

For the security analysis, we will use the security model of [11] by using the simulation-based
proof technique. There are two kinds of attacks defined by [11], that is, non-adaptive attack
and adaptive attack. In the non-adaptive attack, it only considers adversaries that make search
queries without taking into account the trapdoors and search outcomes of previous searches. The
adversaries in the adaptive attack, however, can choose their queries as a function of previously
obtained trapdoors and search outcomes. In this paper, we show the security proof against the
non-adaptive attack. To achieve the adaptive security, the technique of [11] can be applied in our
constructions similarly. We first introduce some auxiliary notions and definitions used in [11] and
adapt some of them for our fuzzy keyword search encryption scheme.
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History: an interaction between the data user and the cloud server, which is determined by
a file collection D = (F1, F2, . . . , Fn) and a set of keywords searched by the client, denoted as
Hq = (D, w1, . . . , wq).

View : what the cloud server actually sees during the interaction of a given history Hq un-
der some secret key K, including the index I∗ of D, the trapdoors of the queried keywords
{Tw′}w′∈{Sw1

,··· ,Swq}
, the number of files, their ciphertexts (C1, · · · , Cn), denoted as VK(Hq).

Trace: the precise information leaked about the history Hq, including the file identifiers of
keyword wi, which is denoted as {FIDwi}1≤i≤q (outcome of each search), the equality pattern
Πq for each search (search pattern), and the size of the encrypted files, denoted as Tr(Hq), where
Πq is regarded as a symmetric binary matrix where Πq[i, j] = 1 if any element in {Tw′}w′∈Swi

matches an element in {Tw′}w′∈Swj
, and Πq[i, j] = 0 otherwise, for 1 ≤ i, j ≤ q.

We have the security result for our search schemes as follows:

Theorem 3. Both our fuzzy keyword search schemes meet the semantic security.

Proof. Due to the space limitation, we only give the proof for the fuzzy keyword search scheme in
Section V-A. The proof of other schemes follow similarly, and thus omitted here.

To prove the semantic security of our fuzzy keyword searchable encryption scheme, it is equiv-
alent to describe a simulator S such that, given Tr(Hq), it can simulate the adversary’s view of

VK(Hq) with probability negligibly close to 1, for any q ∈ N, any Hq and K
R
← KeyGen(1k).

Note that Tr(Hq) = (FID(w1), . . . , FID(wq), {|Ci|}1≤i≤n, Πq), and VK(Hq) = (C1, . . . , Cn,
I∗, {Tw′}w′∈{Sw1

,··· ,Swq}
). We will show that the simulator S can generate a view V ∗

q with trace

Tr(Hq), which is indistinguishable from VK(Hq). Further, note that the security parameters of the
PRF f(·), hash functions π(·) and encryptions Enc(·) are known to S. Without loss of generality,
we denote the identifier of individual file as id(Fi) = i where {1 ≤ i ≤ n}.

For q = 0, S builds the set V ∗
0

= {1, 2, · · · , n, e∗
1
, e∗

2
, · · · , e∗n, I∗, C∗

1
, . . . , C∗

n, } such that
e∗i ← {0, 1}|Fi| and I∗ = (T∗, C∗), where T∗ and C∗ are generated as follows:

– To generate T∗, for 1 ≤ i ≤
∑n

i=1
| Swi,d |, S selects a random ti with the same length of

trapdoor, and sets T∗[i] = ti;
– To generate C∗, for 1 ≤ i ≤ n, S selects a random e′i with the same length of |FIDwi | and sets

C∗[i] = e′i;
– To generate {Ci}1≤i≤n, S chooses a random e∗i ∈ {0, 1}|Fi| and sets C∗

i = e∗i .

Built in this way, we claim that no probabilistic polynomial-time adversary can distinguish
between V ∗

0 and VK(H0). Otherwise, an algorithm can be built to distinguish between at least one
of the elements of V ∗

0
and VK(H0), which is impossible because of the semantic security of the

symmetric encryption and the pseudo-randomness of the trapdoor.
For q ≥ 1, S builds the set V ∗

q = {1, 2, · · · , n, e∗
1
, e∗

2
, · · · , e∗n, I∗, {T ∗

w′}w′∈{Sw1
,··· ,Swq}

such

that e∗i ← {0, 1}|Fi| and I∗ = (T∗, C∗), where T∗ and C∗ are generated as follows:

– For 1 ≤ i ≤
∑n

i=1
| Swi,d |, S selects a random ti and sets T∗[i] = ti as the simulation of T∗;

– For 1 ≤ i ≤ n, S selects a random e′i ∈ Zp and sets C∗[i] = e′i as the simulation of C∗. Then,
attach C∗[i] behind T ∗[i];

– To generate {T ∗
w′}w′∈{Swi

}, it computes {f(K, w′)} and attaches an encrypted FIDwi from
Tr(Hq).

It also simulates {C∗
i }1≤i≤n by choosing a random ei ∈ {0, 1}|Fi| and sets C∗

i = ei. Built
in this way, we claim that no probabilistic polynomial-time adversary can distinguish between
V ∗

q and VK(Hq). Otherwise, an algorithm can be built to distinguish between at least one of the
elements of V ∗

q and VK(Hq), which is impossible because of the semantic security of the symmetric
encryption and the pseudo-randomness of the trapdoor.

As a result, the simulator generates the view of V ∗
q = {1, 2, · · · , n, e∗

1
, e∗

2
, · · · , e∗n, I∗,

{Tw′}w′∈{Sw1
,··· ,Swn}}. The correctness of the constructed view is easy to demonstrate by searching
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Fig. 4: Fuzzy set construction time using wildcard-based approach: (a) d = 1, (b) d = 2.

on I∗ via {T ∗
w′}w′∈Swi

for each i. We claim that there is no probabilistic polynomial-time adver-
sary can distinguish between V ∗

q and VK(Hq). Otherwise, based on a standard hybrid argument,
the adversary could distinguish at least one of the elements of V ∗

q and VK(Hq). This is impossible
because each element in V ∗

q is indistinguishable from its counterpart in VK(Hq). More specifically,
the simulated encrypted ciphertext is indistinguishable because of the semantic security of the
symmetric encryption. The indistinguishability of index is based on the assumption that no one
could tell the difference between the output of pseudo-random function and a random string.

Based on the above analysis, we have proven the result of this theorem.

7 Performance Analysis

We conducted a thorough experimental evaluation of the proposed techniques on real data set: the
recent ten years’ IEEE INFOCOM publications. The data set includes about 2, 600 publications.
We extract the words in the paper titles to construct the core keyword set in our experiment.
The total number of keywords is 3, 262 and their average word length is 7.44. Our experiment
is conducted on a Linux machine with an Intel Core 2 processor running at 1.86GHz and 2G
DDR2-800 memory. The performance of our scheme is evaluated regarding the time cost of fuzzy
set construction, the time and storage cost of index construction, the search time of the listing
approach and the symbol-based trie-traverse approach.

7.1 Performance of Fuzzy Keyword Set Construction

In section 4, we propose two advanced techniques for the construction of fuzzy keyword sets, which
both can be employed in our proposed fuzzy search schemes. In our experiment, we only focus on
the wildcard-based fuzzy set construction because it provides the sound results compared to the
gram-based fuzzy set construction as discussed in section 6. Fig. 4 shows the fuzzy set construction
time by using the wildcard-based approach with edit distance d = 1 and 2. We can see that in both
cases, the wildcard-based approach is very efficient and the construction time increases linearly
with the number of keywords. The cost of constructing fuzzy keyword set under d = 1 is much
less than the case of d = 2 due to the smaller set of possible wildcard-based words.

7.2 Performance of Fuzzy Keyword Search

Efficiency of Index Construction Given the fuzzy keyword set constructed using wildcard-
based technique, we measure the time cost of index construction for the listing approach and
symbol-based trie-based approach. In our experiment, we choose n = 4 and use SHA-1 as our hash
function with output length of l = 160 bits. The resulted height of the searching tree is l/n = 40.
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Fig. 5: (a) Index construction time for edit distance d = 1. (b) Index construction time for edit distance
d = 2.
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Fig. 6: (a) Searching time for edit distance d = 1. (b) Searching time for edit distance d = 2.

Fig. 5 shows the index construction time for edit distance d = 1 and d = 2. Similar to the fuzzy
keyword set construction, the index construction time also increases linearly with the number of
distinct keywords. Compared to the listing approach, the index construction of the trie-traverse
approach includes the process of building the searching tree additionally, thus its time cost is
larger than that of listing approach. However, the whole index construction process is conducted
off-line, thus it will not affect the searching efficiency. Table 1 shows the index storage cost of the
two approaches. The symbol-based trie-traverse approach consumes more storage space than the
listing approach due to its multi-way tree structure. This additional storage cost, however, is not a
main issue in our setting, as such index information only take up a small amount of storage space
on the cloud server.

Efficiency of Search We evaluate the search performance as the number of keywords increases.
Fig. 6 shows the comparisons of average search time between the listing approach and the symbol-
based trie-traverse approach. According to the definition of fuzzy keyword search, the types of
searching inputs (e.g., k = 0 or k = 1) may affect the searching result. The experimental results
show that for the fixed value of d, better search efficiency can be achieved when the search input
exactly matches some predefined keyword. This is because S′

w,0 is always searched first during the
searching process. Note that for both d = 1 and d = 2, the trie-based search approach is much
more efficient than the listing approach. These results validate our analysis and show that our
proposed solution is very efficient and effective in supporting fuzzy keyword search over encrypted
cloud data.
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Table 1: The index storage cost.

Index size (d = 1) Index size (d = 2)

The listing approach 1.6MB 6.6MB

The trie-traverse approach 13.0MB 48.8MB

8 Conclusion

In this paper, for the first time we formalize and solve the problem of supporting efficient yet
privacy-preserving fuzzy search for achieving effective utilization of remotely stored encrypted
data in Cloud Computing. We design two advanced techniques (i.e., wildcard-based and gram-
based techniques) to construct the storage-efficient fuzzy keyword sets by exploiting two significant
observations on the similarity metric of edit distance. Based on the constructed fuzzy keyword
sets, we further propose a brand new symbol-based trie-traverse searching scheme, where a multi-
way tree structure is built up using symbols transformed from the resulted fuzzy keyword sets.
Through rigorous security analysis, we show that our proposed solution is secure and privacy-
preserving, while correctly realizing the goal of fuzzy keyword search. Extensive experimental
results demonstrate the efficiency of our solution.

As our ongoing work, we will continue to research on security mechanisms that support 1)
search semantics that takes into consideration conjunction of keywords, sequence of keywords,
and even the complex natural language semantics to produce highly relevant search results. and
2) search ranking that sorts the searching results according to the relevance criteria.
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