
Solving the Shortest Lattice Vector Problem in Time 22.465n

Xavier Pujol1 and Damien Stehlé2

1 Université de Lyon, Laboratoire LIP, CNRS-ENSL-INRIA-UCBL, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
2 CNRS, Macquarie University and University of Sydney,

Department of Mathematics and Statistics F07, University of Sydney NSW 2006, Australia
{xavier.pujol,damien.stehle}@ens-lyon.fr

Abstract. The Shortest lattice Vector Problem is central in lattice-based cryptography, as well as in
many areas of computational mathematics and computer science. We present an algorithm for solving
it in time 22.465n+o(n) and space 21.233n+o(n), where n is the lattice dimension. This improves the best
previously known algorithm, by Micciancio and Voulgaris [SODA 2010], which runs in time 23.199n+o(n)

and space 21.325n+o(n).

Keywords. Lattices, Shortest Vector Problem, sieve algorithms.

1 Introduction

A lattice L is a discrete subgroup of Rn. The dimension of L is d = dim(spanL). Any lattice can be
represented as the set of integer linear combinations of d linearly independent vectors b1, . . . ,bd. These
vectors form a basis of L and we write L = L(b1, . . . ,bd). Since a lattice is discrete, it has shortest non-zero
vectors. The norm λ(L) of these vectors is called the minimum of L. The Shortest Vector Problem (SVP)
consists in finding such a vector. For the sake of simplicity, we consider only full rank integer lattices is this
article, i.e., d = n and L ⊆ Zn. SVP is known to be NP-hard under randomized reductions [1], and to remain
so even if relaxed by arbitrary constant factors [12, 9] (i.e., finding a non-zero vector no longer than γλ(L)).
Oppositely, the polynomial-time LLL algorithm [13] achieves an approximation factor (

√
4/3 + ε)n, for any

fixed ε > 0.
SVP is of prime interest in cryptography for two reasons: first, the security of several lattice-based

cryptosystems (see, e.g., [2, 18, 7], and the survey [14]) relies on the hardness of polynomially relaxed versions
of the decisional variant of SVP; second, the main cryptanalytic tool against lattice-based cryptosystems,
namely the BKZ algorithm [19], relies on an algorithm that solves SVP in moderate dimensions. Note that
SVP also occurs naturally in algorithmic number theory [4] and in combinatorial optimization [5].

The currently known algorithms for SVP can be separated in two categories. On one side, deterministic
algorithms enumerate all lattice vectors shorter than a fixed bound A ≥ λ(L), by working on the Gram-
Schmidt orthogonalization of the given lattice basis. They were introduced by Kannan [11] and Fincke and
Pohst [6]. If given as input an LLL-reduced basis, the algorithm of Fincke and Pohst runs in time 2O(n2),
while the complexity of Kannan’s algorithm in the worst case is 2

n
2e+o(n) (this complexity upper bound is

proved in [8]). Note that for all complexity statements, we omit a multiplicative factor that is polynomial in
the bitsize of the lattice basis. Enumeration algorithms require a polynomially bounded amount of space.

On the other side, the algorithms with the best theorical complexity are probabilistic (Monte Carlo) sieve
algorithms, the first of which was introduced by Ajtai, Kumar and Sivakumar in [3]. The initial complexity
bound of 2O(n) was later improved by Regev [17], then decreased to 25.9n+o(n) by Nguyen and Vidick [16]
and recently decreased further to 23.4n+o(n) by Micciancio and Voulgaris [15]. The authors of [15] also
introduced ListSieve, another sieve algorithm algorithm which solves SVP in time 23.199n+o(n). Contrary
to enumeration algorithms, sieve algorithms require an exponential amount of space.

Our result. We present an improved version of ListSieve which solves SVP in time 22.465n+o(n) and
space 21.233n+o(n) (the constants are chosen to minimize the time complexity: a better space complexity can

be achieved at the expense of increasing the time complexity). The main new ingredient is the use of the
birthday paradox to decrease the number of vectors that must be generated to ensure that the sieve succeeds.

The improvement is most easily described with the Ajtai et al. algorithm (see the simplified description
of [16]). The latter samples probabilistically independent lattice vectors in the finite set L ∩ Bn(0, cλ1(L))
with a small constant c, which contains only a finite number < N of lattice points. The proof of correctness
requires that the same vector is sampled twice with high probability, and another technical constraint implies
that only a small fraction 1/x of all the vectors is taken into consideration. In the previous analyses, the
number of required vectors was Nx. However, the birthday paradox ensures that O(

√
Nx) vectors suffice.

In the case of the Ajtai et al. algorithm, this leads to a time complexity bound of 22.648n+o(n). We omit the
proof, as the improved variant of ListSieve provides a better complexity bound, although it requires more
care to ensure that the sampled vectors are independent.

Notations. We write ‖ · ‖ for the euclidean norm and 〈·, ·〉 for the dot product. If u and v are non-zero
vectors, we define φu,v as the angle between u and v. We use the notation log for the natural logarithm.
All balls Bn(x, r) are closed, and if x is omitted, it means that the ball is centred on 0. The bitsize |B| of a
basis B is sum of the bitsizes of its vectors. We let P(B) denote the fundamental parallelepiped spanned by
the basis B. Finally, for any u =

∑
i uibi, we write u mod P(B) for

∑
i(ui − buic)bi.

2 The SVP Algorithm

The first step of our algorithm is identical to ListSieve: we build a list T of lattice vectors, reducing each
randomly generated vector with vectors previously added to the list. In the second step, we reduce randomly
generated vectors with respect to the list T , but without updating it: the vectors are added to another list U .
Hence the vectors of the second list U are both short (with high probability) and independent.

The sampling method and the reduction function are essentially the same as in [15]. The reduction is
done on perturbed vectors u′ = u + x instead of lattice vectors u ∈ L, with randomly chosen x’s. If the
perturbations are large enough, a given perturbed vector can sometimes be obtained from several lattice
vectors. The fact that the reduction function is oblivious to the lattice vector is crucial for the proof of
correctness.

Input: A basis B, µ ' λ(L(B)), ξ > 1
2
, r0 > 2ξ, N1, N2.

Output: A shortest vector of L(B).

Choose (x1, . . . ,xN1 ,y1, . . . ,yN2) randomly in Bn(0, ξµ).
T ← ∅, U ← ∅.
For i = 1 to N1, do

(ti, t
′
i)← Reduction(NewPair(B,xi), T),

If ‖ti‖ ≥ r0µ then T ← T ∪ {ti}.
For i = 1 to N2, do

(ui,u
′
i)← Reduction(NewPair(B,yi), T),

U ← U ∪ {ui}.
Find closest distinct points (s1, s2) in U (fail if they do not exist).
Return s1 − s2.

Fig. 1. The SVP algorithm: ListSieve-Birthday

In Section 3, we will prove the following result.

Theorem 1 Let L be an n-dimensional integer lattice of Zn and B = (b1, . . . ,bn) be a basis of L. With
suitable choices for the parameters µ, ξ, r0, N1 and N2, the algorithm ListSieve-Birthday can be used to
solve SVP on B with probability 1− 2−Ω(n) in time 22.465n+o(n) ·Poly(|B|) and space 21.233n+o(n) ·Poly(|B|).

2

Input: A basis B and a perturbation x.
Output: A lattice vector u and a perturbed vector u′.

u′ ← (−x) mod P(B).
u ← u′ + x.
Return (u,u′).

Fig. 2. The NewPair algorithm

Input: A pair (u,u′) generated by NewPair and a list T ⊆ L.
Output: A reduced pair (u,u′).

While ∃w ∈ T : ‖u′ −w‖ ≤
(
1− 1

n

)
‖u′‖,

(u,u′)← (u−w,u′ −w).
Return (u,u′).

Fig. 3. The Reduction algorithm

3 Analysis of ListSieve-Birthday

In this section we set λ = λ(L) and fix the parameters ξ > 1/2 and r0 > 2ξ. Wlog, we assume that:

– The integer basis B is LLL-reduced. This can be done in time Poly(|B|).
– We have maxi ‖bi‖ = 2O(n)λ (see, e.g., [16, Lemma 3.3]).
– We know µ such that λ ≤ µ <

(
1 + 1

n

)
λ. This condition can be satisfied by trying a polynomial number

of values for µ.

3.1 Known results

These lemmas are variants of those given in [15]. Theorem 2, which is the main tool for Lemmas 3 and 4, is
proven in [10]. For the sake of completeness, we give proofs of Lemmas 3, 4 and 5 in the appendix.

Theorem 2 (Kabatiansky and Levenshtein) Let E ⊆ Rn\{0} be a set of points. If there exists φ0 > 0
such that for any u,v ∈ E, we have φu,v ≥ φ0 then |E| ≤ 2cn+o(n) with c = − 1

2 log2 [1− cos(min(φ0, 62.99◦))]−
0.099.

Lemma 3 Let cb = log2 r0 + 0.401. For any lattice L, there are at most NB(n) = 2cbn+o(n) vectors in
Bn(0, r0µ) ∩ L.

Lemma 4 Let ct = − 1
2 log2

(
1− 2ξ

r0

)
+0.401. At any moment during the execution of ListSieve-Birthday,

the list T contains at most NT (n) = 2ctn+o(n) vectors.

Lemma 5 Let cg = − 1
2 log2

(
1− 1

4ξ2

)
and s be a shortest non-zero vector of L. Let Is = Bn(0, ξµ) ∩

Bn(−s, ξµ). If x is chosen uniformly in Bn(0, ξµ), then x ∈ Is with probability ≥ 1
NG(n) with NG(n) =

2cgn+o(n).

3.2 Proof of the main theorem

Let Nmax
1 = d4NGNT e and N2 = d8NGe

⌈√
NB
⌉
. We sample N1 uniformly in J0, Nmax

1 − 1K.
The purpose of Lemmas 6 and 7 is to prove that with high probability, there are sufficiently many

vectors ui in U such that ui is short (i.e., ‖ui‖ < r0µ) and yi ∈ Is (in that case, the perturbed vector u′i
could be associated to another lattice vector, namely u′i + s with the perturbation yi + s).

3

Lemma 6 For i ≥ 1, we define the event Ei : ‖ti‖ < r0µ related to ListSieve-Birthday called with any
N1 ≥ i. We let pi = Pr (Ei | xi ∈ Is) (at the beginning of the execution) and J = {i ≤ Nmax

1 : pi ≤ 1
2}. Then

|J | ≤ Nmax
1 /2.

Proof. Assume (for contradiction) that J > Nmax
1 /2. Then by Lemma 5 we must have∑

i∈J
(1− pi)Pr (xi ∈ Is) ≥

|J |
2NG

> NT .

This contradicts the following sequence of inequalities. The last one derives from Lemma 4 and the fact that
the event ¬Ei is equivalent to ti being added to T .∑

i∈J
(1− pi)Pr (xi ∈ Is) =

∑
i∈J

Pr ((¬Ei) ∩ (xi ∈ Is)) ≤
∑
i≥1

Pr (¬Ei) = E(|T |) ≤ NT .

ut

In the second loop of ListSieve-Birthday, we do not add any point to T . Therefore, the points that
are added to U are independent and follow the same distribution. The procedure to reduce points being the
same in both loops, we have that for any i ≤ N2 such that yi ∈ Is, the probability that ‖ui‖ < r0µ is pN1+1.
Since N1 is sampled uniformly in J0, Nmax

1 − 1K, we have pN1+1 ≥ 1
2 with probability ≥ 1

2 , by Lemma 6.

Lemma 7 With probability ≥ 1/4, there exist two distinct indices i, j ≤ N2 such that ui = uj and yi,yj ∈ Is.

Proof. Let N = 2d
√
NBe. Until the end of the current proof, we assume that pN1+1 ≥ 1

2 , which occurs with
probability ≥ 1

2 and implies that Pr (‖ui‖ ≤ r0µ | yi ∈ Is) ≥ 1
2 for all i ≤ N2. Let X = |{i ≤ N2 : (‖ui‖ ≤

r0µ) ∩ (yi ∈ Is)}|. By Lemma 5, we obtain

Pr ((‖ui‖ ≤ r0µ) ∩ (yi ∈ Is)) = Pr (‖ui‖ ≤ r0µ | yi ∈ Is) Pr (yi ∈ Is) ≥
1

2NG
.

The variable X has a binomial distribution of parameter p ≥ 1
2NG

. We have E(X) = pN2 ≥ 2N and
Var(X) = p(1 − p)N2 ≤ E(X). Therefore, by using Chebyshev’s inequality, we have (since NB ≥ 25 holds
for n large enough, we have N ≥ 10):

Pr (X ≤ N) ≤ Pr (|X − E(X)| ≥ E(X)−N) ≤ Var(X)
(E(X)−N)2

≤ E(X)
(E(X)−N)2

≤ 2
N
≤ 1

5
.

So with high probability ListSieve-Birthday samples at least N independent lattice points in S0 =
Bn(r0µ) ∩ L. The probability that a collision occurs is minimized when the distribution is uniform, i.e., the
probability of each point is 1/|S0|. Since we have chosen N ≥

√
|S0| (by Lemma 3), the birthday paradox

implies that the probability will be large. More precisely it is greater than

4
5

(
1−

∏
i<N

(
1− i

|S0|

))
≥ 4

5

(
1− exp

(
−N(N − 1)

2NB

))
≥ 4

5

(
1− 1

e

)
,

where we used the fact that |S0| ≤ NB (by Lemma 3). ut

In order to prove that that ListSieve-Birthday returns a shortest non-zero vector with high probability,
we introduce a modified version ListSieve-Birthday2. Recall that in Lemma 5, we have fixed a shortest
vector s and defined Is = Bn(0, ξµ) ∩ Bn(−s, ξµ). For x in Bn(0, ξµ), let τ(x) = x + s if x ∈ Is and
τ(x) = −x if x /∈ Is. The difference between ListSieve-Birthday and ListSieve-Birthday2 is that in
the latter the function τ is applied to each yi with probability 1

2 immediately after it is chosen. If x is
sampled uniformly in Bn(0, ξµ), then so is τ(x). As a consequence, the output of ListSieve-Birthday and
ListSieve-Birthday2 follow the same distribution. For x ∈ Is, let (u,u′) = Reduction(NewPair(x), T)
and (v,v′) = Reduction(NewPair(τ(x)), T). The fact that x ∈ Is implies that x = τ(x) mod P(B). The
actions of Reduction depend only on the perturbed vector, so we have v′ = u′ and v = u + s.

4

Lemma 8 Let ctime = max(cg + 2ct, 2cg + cb) and cspace = max(ct, cg + cb/2). Then with probability ≥ 1
16 ,

ListSieve-Birthday returns a shortest non-zero vector of L in time 2ctimen+o(n) and space 2cspacen+o(n).

Proof. We start by the correctness property. Assume that we run ListSieve-Birthday and ListSieve-Birthday2
on the same input and that they make the same random choices for N1 and the perturbations. By Lemma 7,
there exist two distinct indices i and j such that ui = uj and yi,yj ∈ Is in ListSieve-Birthday, with
probability ≥ 1

4 . With probability ≥ 1
4 , ListSieve-Birthday2 applies τ to yi but not to yj . Since it chooses

the same perturbations as ListSieve-Birthday, it outputs ui+s and uj = ui. Thus, with probability ≥ 1
16 ,

there exist two vectors s1 and s2 in the second vector list of ListSieve-Birthday2 such that ‖s1−s2‖ = λ(L).
This also holds for ListSieve-Birthday, since it has the same output distribution.

The space complexity is the sum of |T | and |U |. By Lemma 4, we have |T | ≤ 2ctn+o(n), and, by defini-
tion of N2, we have |U | ≤ 2(cg+cb/2)n+o(n). Since ‖bi‖ = 2O(n)µ for all i, the complexity of Reduction is
|T |Poly(n, |B|). Omitting the polynomial factor, the time complexity of the first loop is |T |N1 ≤ |T |Nmax

1 ≤
2(cg+2ct)n+o(n). The time required to find a closest pair of points in U with the naive algorithm is |U |2.
Finally, the time complexity of the second loop is |T | · |U | ≤ max(|T |2, |U |2) ≤ max(|T |Nmax

1 , |U |2). ut

Proof of Theorem 1. The time complexity is minimized when 2ct = cg + cb. By Lemmas 3, 4 and 5, this

is equivalent to r0 = 2ξ + 20.401
√

1− 1
4ξ2 . Optimizing with respect to ξ leads to ξ ' 0.9476, r0 ' 3.0169,

ctime ≤ 2.465 and cspace ≤ 1.233. Calling the algorithm n times ensures that it succeeds with probability
exponentially close to 1. ut

References

1. M. Ajtai. The shortest vector problem in l2 is NP-hard for randomized reductions (extended abstract). In
Proceedings of the 30th Symposium on the Theory of Computing (STOC 1998), pages 284–293. ACM Press, 1998.

2. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In Proceedings of
the 29th Symposium on the Theory of Computing (STOC 1997), pages 284–293. ACM Press, 1997.

3. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In Proceedings
of the 33rd Symposium on the Theory of Computing (STOC 2001), pages 601–610. ACM Press, 2001.

4. H. Cohen. A Course in Computational Algebraic Number Theory, 2nd edition. Springer-Verlag, 1995.
5. F. Eisenbrand. 50 Years of Integer Programming 1958-2008, From the Early Years to the State-of-the-Art, chapter

Integer Programming and Algorithmic Geometry of Numbers. Springer-Verlag, 2009.
6. U. Fincke and M. Pohst. A procedure for determining algebraic integers of given norm. In Proceedings of

EUROCAL, volume 162 of Lecture Notes in Computer Science, pages 194–202. Springer-Verlag, 1983.
7. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions.

In Proceedings of the 40th Symposium on the Theory of Computing (STOC 2008), pages 197–206. ACM Press,
2008.

8. G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector algorithm. In Proceedings of
Crypto 1986, volume 4622 of Lecture Notes in Computer Science, pages 170–186. Springer-Verlag, 2007.

9. I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors.
In Proceedings of the 39th Symposium on the Theory of Computing STOC 2007, pages 469–477. ACM, 2007.

10. G. A. Kabatiansky and V. I. Levenshtein. Bounds for packings on a sphere and in space. Problemy Peredachi
Informatsii, 14(1):3–25, 1978. Available in English in Problems of Information Transmission 14(1):1–17.

11. R. Kannan. Improved algorithms for integer programming and related lattice problems. In Proceedings of the
15th Symposium on the Theory of Computing (STOC 1983), pages 99–108. ACM Press, 1983.

12. S. Khot. Hardness of approximating the shortest vector problem in lattices. In Proceedings of the 2004 Symposium
on Foundations of Computer Science (FOCS 2004), pages 126–135. IEEE Computer Society Press, 2004.

13. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische
Annalen, 261:513–534, 1982.

14. D. Micciancio and O. Regev. Post-Quantum Cryptography, chapter Lattice-based Cryptography. Springer-Verlag,
2008.

15. D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem, 2010. To
appear in the proceedings of SODA’10, preliminary versions available at the URLs http://eccc.hpi-web.de/

report/2009/065 and http://cseweb.ucsd.edu/~pvoulgar/.

5

16. P. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical
Cryptology, 2(2), 2008.

17. O. Regev. Lattices in computer science, 2004. Course given at the Tel Aviv University. Available at the URL http:

//www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/.
18. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the 37th

Symposium on the Theory of Computing (STOC 2005), pages 84–93. ACM Press, 2005.
19. C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum

problems. Mathematics of Programming, 66:181–199, 1994.

Known proofs

Proof of Lemma 3. Let α = 1+ 1
n . The ball Bn

(
λ
2

)
contains exactly one lattice point. We cover Bn(r0µ) \Bn

(
λ
2

)
with coronas Tr = Bn(αr) \Bn(r) for r = λ

2 ,
λ
2α, . . . ,

λ
2α

k, with k = dn log2(2r0)e = O(n). It suffices to prove
that any corona Tr contains at most 2cn+o(n) lattice points.

Let u and v be two distinct lattice vectors in Tr ∩ Bn(r0µ). We have 〈u − v,u − v〉 ≥ λ2, so 〈u,v〉 ≤
1
2

(
‖u‖2 + ‖v‖2 − λ2

)
. This implies that:

cosφu,v =
〈u,v〉
‖u‖ · ‖v‖

≤ 1
2

(
‖u‖
‖v‖

+
‖v‖
‖u‖
− λ2

‖u‖ · ‖v‖

)
≤ 1 +

1
n
− λ2

2r20µ2
≤ 1 +

1
n
− 1

2(1 + 1
n)2r20

−→
n→∞

1− 1
2r20

.

For any ε ∈ (0, 1
2r20

) and large enough n we can apply Theorem 2 with φ0 = cos−1
(

1− 1
2r20

+ ε
)
≤ 60◦. ut

Proof of Lemma 4. First, we bound the norm of any vectors of T . NewPair returns (t, t′) such that t′ ∈ P(B)
and ‖t′ − t‖ ≤ ξµ. We have assumed that maxi ‖bi‖ = 2O(n). Hence ‖t′‖ ≤ nmaxi ‖bi‖ ≤ 2O(n)µ. After
applying Reduction, the norm of t′ does not increase and t′ − t is unchanged, so, for any ti ∈ T , we
have r0µ ≤ ‖ti‖ ≤ (2O(n) + ξ)µ. It now suffices to prove that any Tr = {ti ∈ T | rµ ≤ ‖ti‖ ≤

(
1 + 1

n

)
rµ}

for r ≥ r0 contains at most 2ctn+o(n) points. Indeed, the list T is contained in a union of O(n2) sets Tr.
Let i < j such that ti, tj ∈ Tr. The idea of the proof is that for large n, the angle between t′j and ti is

nearly π
3 because ti was already in T when tj was reduced. We use the inequality ‖tj − t′j‖ ≤ ξµ to obtain

a lower bound for φti,tj
and then apply Theorem 2.

Note that ‖t′j‖ ≤ ‖tj‖+ ξµ ≤ 3rµ. Since tj was added after ti, we have:

‖t′j − ti‖ >
(

1− 1
n

)
‖t′j‖

〈t′j − ti, t
′
j − ti〉 >

(
1− 1

n

)2

〈t′j , t′j〉 ≥
(

1− 2
n

)
〈t′j , t′j〉

〈t′j , ti〉 <
1
2

[
‖ti‖2 +

2
n
‖t′j‖2

]
≤ 1

2
‖ti‖2 +

1
n

(3rµ)2.

Moreover, we have 〈tj − t′j , ti〉 ≤ ‖t′j − tj‖ · ‖ti‖ ≤ ξµ‖ti‖. We can now bound cos(φti,tj
).

〈tj , ti〉 = 〈t′j , ti〉+ 〈tj − t′j , ti〉 ≤
1
2
‖ti‖2 +

1
n

(3rµ)2 + ξµ‖ti‖

cos(φti,tj
) =

〈tj , ti〉
‖ti‖ · ‖tj‖

≤ 1
2
‖ti‖
‖tj‖

+
1
n
· (3rµ)2

‖ti‖ · ‖tj‖
+

ξµ

‖tj‖

≤ 1
2

(
1 +

1
n

)
+

9
n

+
ξ

r

≤ 1
2

+
ξ

r0
+O

(
1
n

)
.

The bound on |Tr| follows directly from Theorem 2. ut

6

Proof of Lemma 5. The intersection Bn(0, µξ) ∩ Bn(−s, µξ) is the union of two identical n-sphere caps of
height µξ − λ

2 ≥ µ
(
ξ − 1

2

)
. Let C be one of these caps. It contains a cone of height h = µ

(
ξ − 1

2

)
whose

basis is an (n− 1)-sphere of radius r = µ
√
ξ2 − 1

4 . Moreover Bn(r) is included in a cylinder of basis Bn−1(r)
and height 2r so we have VolBn(r) ≤ 2rVolBn−1(r). Then

VolC
VolBn(ξµ)

≥ h

n
· VolBn−1(r)

VolBn(ξµ)
≥ h

2rn
· VolBn(r)

VolBn(ξµ)
≥

ξ − 1
2

2n
√
ξ2 − 1

4

(
1− 1

4ξ2

)n/2
.

ut

7

