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Abstract

We observe that the function introduced by Z. Tu and Y. Deng in the
ePrint Archive paper 2009/272 is weak against fast algebraic attacks. We
propose an alternative function sharing all the properties of the Tu-Deng
function but having not this weakness.
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1 Introduction

For being usable as a filter function in the pseudo-random generator of a stream
cipher, a Boolean function f : Fn2 7→ F2 must be balanced (that is, have a
uniformly distributed output, to avoid distinguishing attacks), have high non-
linearity (that is, lie at a Hamming distance from affine Boolean functions
close to the maximum 2n−1 − 2n/2−1, to allow resistance to fast correlation
attacks [10]), have high algebraic degree (i.e. have a polynomial representation
in F2[x1, · · · , xn]/(x1 + x2

1, · · · , xn + x2
n) with degree close to the maximum n,

to avoid Berlekamp-Massey attack [9] and Rønjom-Helleseth attack [12]), have
high algebraic immunity (close to the maximum dn/2e to avoid the standard
algebraic attack [5, 11]) and behave well against fast algebraic attacks [4]. If
one of these requirements is not fulfilled by a function, then the function may
represent a theoretical interest but is not suitable for applications in stream
ciphers.

In [3], an infinite class of balanced functions in any number n of variables,
with optimal algebraic immunity has been introduced. The algebraic degree of
the functions in this class is optimal and its nonlinearity computed for small
values of n is very good; a lower bound on the nonlinearity could be proved and
shows that the nonlinearity is much better than for all the previously introduced
functions with high algebraic immunity but this lower bound is not enough for
asserting that the function allows resisting the fast correlation attack; the gap
between the computed values and the provable lower bound for this kind of
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functions has been also observed by researchers working on sequences (see e.g.
[6]).

In [13] is introduced another infinite class of balanced functions, in any even
number of variables, with optimal algebraic immunity, which is related to the
class of [3]. The nonlinearity of the functions in this class is provably good, as
well as the algebraic degree. The optimal algebraic immunity of the function is
proved in [13] up to a conjecture which has been proved til n/2 = 29, which is
quite sufficient for cryptographic purposes. So this class seemed promising.

However we point out in the present note that the functions of this class
are weak against fast algebraic attacks. We propose another balanced function,
having not this weakness, and having optimal algebraic immunity and algebraic
degree and good nonlinearity.

2 Preliminaries

Let Fn2 be the n-dimensional vector space over F2, and Bn the set of n-variable
(Boolean) functions from Fn2 to F2. The basic representation of a Boolean
function f(x1, · · · , xn) is by the output column of its truth table, i.e., a binary
string of length 2n,

[f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), f(1, 1, · · · , 0), · · · , f(1, 1, · · · , 1)].

The Hamming weight wt(f) of a Boolean function f ∈ Bn is the weight of
this string, that is, the size of the support Supp(f) = {x ∈ Fn2 | f(x) = 1} of
the function. The Hamming distance dH(f, g) between two Boolean functions
f and g is the Hamming weight of their difference f + g (by abuse of notation,
we use + to denote the addition on F2, i.e., the XOR). We say that a Boolean
function f is balanced if its truth table contains an equal number of 1’s and 0’s,
that is, if its Hamming weight equals 2n−1.

Any Boolean function has a unique representation as a multivariate polyno-
mial over F2, called the algebraic normal form (ANF), of the special form:

f(x1, · · · , xn) =
∑

I⊆{1,2,··· ,n}

aI
∏
i∈I

xi.

The algebraic degree, deg(f), is the global degree of this polynomial, that is,
the number of variables in the highest order term with non zero coefficient.
A Boolean function is affine if it has degree at most 1. The set of all affine
functions is denoted by An.

We shall need another representation of Boolean functions, by univariate
polynomials over the field F2n . We identify the field F2n and the vector space
Fn2 : this field being an n-dimensional F2-vector space, we can choose a basis
(β1, · · · , βn) and identify every element x =

∑n
i=1 xiβi ∈ F2n with the n-tuple

of its coordinates (x1, · · · , xn) ∈ Fn2 . Every function f : F2n → F2n (and in
particular every Boolean function f : F2n → F2) can then be uniquely repre-
sented as a polynomial

∑2n−1
j=0 ajx

j where aj ∈ F2n . Indeed, the mapping which
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maps every such polynomial to the corresponding function from F2n to itself is
F2n -linear, injective (since a non-zero polynomial of degree at most 2n − 1 over
a field cannot have more than 2n−1 zeroes in this field) and therefore surjective
since the F2n -vector spaces of these polynomials and of the functions from F2n

to itself have the same dimension 2n. The function is Boolean if and only if
the functions f(x) and (f(x))2 are represented by the same polynomial, that is,
if a0, a2n−1 ∈ F2 and, for every i = 1, · · · , 2n − 2, we have a2j = (aj)2, where
2j is taken mod 2n − 1. Then the algebraic degree of the function equals the
maximum 2-weight w2(j) of j such that aj 6= 0, where the 2-weight of j equals
the number of 1’s in its binary expansion. In this representation, the elements
of An are all the functions tr(ax), a ∈ F2n , where tr is the trace function:
tr(x) = x+ x2 + x22

+ · · ·+ x2n−1
.

Any Boolean function should have high algebraic degree to allow the cryp-
tosystem resisting the Berlekamp-Massey attack [9].

Boolean functions used in cryptographic systems must have high nonlinearity
to withstand fast correlation attacks (see e.g. [10]). The nonlinearity of an n-
variable function f is its distance to the set of all n-variable affine functions,
i.e.,

nl(f) = min
g∈An

(dH(f, g)).

This parameter can be expressed by means of the Walsh transform. Let x =
(x1, · · · , xn) and λ = (λ1, · · · , λn) both belong to Fn2 and λ ·x be the usual inner
product in Fn2 : λ ·x = λ1x1 + · · ·+λnxn ∈ F2, or any other inner product in Fn2 .
Let f(x) be a Boolean function in n variables. The Walsh transform (depending
on the choice of the inner product) of f(x) is the integer valued function over
Fn2 defined as

Wf (λ) =
∑
x∈Fn

2

(−1)f(x)+λ·x.

If we identify the vector space Fn2 with the field F2n , then we can take for inner
product: λ · x = tr(λx).
A Boolean function f is balanced if and only if Wf (0) = 0. The nonlinearity of
f can also be given by

nl(f) = 2n−1 − 1
2

max
λ∈Fn

2

|Wf (λ)|.

For every n-variable function f we have nl(f) ≤ 2n−1 − 2n/2−1.

Algebraic attacks have been introduced recently (see [5]). They recover
the secret key, or at least the initialization of the cipher, by solving a system
of multivariate algebraic equations. In practice, for cryptosystems which are
robust against the usual attacks, this system is too complex to be solved (its
equations being highly nonlinear). In the case of stream ciphers, we can get a
very overdefined system (i.e. a system with a number of linearly independent
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equations much greater than the number of unknowns). In the combiner or
the filter model, with a linear part of size N and with an n-variable Boolean
function f as combining or filtering function, there exists a linear permutation
L : FN2 7→ FN2 and a linear mapping L′ : FN2 7→ Fn2 such that, denoting by
u1, · · · , uN the initialisation and by (si)i≥0 the pseudo-random sequence output
by the generator, we have, for every i ≥ 0:

si = f(L′ ◦ Li(u1, · · · , uN )).

The number of equations can then be much larger than the number of unknowns.
This makes less complex the resolution of the system by using Groebner basis,
and even allows linearizing the system (i.e. obtaining a system of linear equa-
tions by replacing every monomial of degree greater than 1 by a new unknown);
the resulting linear system has however too many unkwnowns and cannot be
solved. Courtois and Meier have had a simple but very efficient idea. Assume
that there exist functions g 6= 0 and h of low algebraic degrees (say, of degrees
at most d) such that f ∗ g = h. We have then, for every i ≥ 0:

si g(L′ ◦ Li(u1, · · · , uN )) = h(L′ ◦ Li(u1, · · · , uN )).

This equation in u1, · · · , uN has degree at most d, since L and L′ are linear,
and the system of equations obtained after linearization can then be solved by
Gaussian elimination. Low algebraic degree relations have been shown to exist
for several well known constructions of stream ciphers, which were immune to
all previously known attacks.
It has been shown [5, 11] that the existence of such relations is equivalent to
that of non-zero functions g of low algebraic degrees such that f ∗ g = 0 or
(f + 1) ∗ g = 0. This led to the following definition.

Definition 1 For f ∈ Bn, we define AN(f) = {g ∈ Bn | f ∗ g = 0}. Any
function g ∈ AN(f) is called an annihilator of f . The algebraic immunity (AI)
of f is the minimum algebraic degree of all the nonzero annihilators of f and of
all those of f + 1. We denote it by AI(f).

Note that AI(f) ≤ deg(f), since f ∗(1+f) = 0. Note also that the algebraic
immunity, as well as the nonlinearity and the algebraic degree, is affine invariant
(i.e. is invariant under composition by an affine automorphism). As shown in
[5], we have AI(f) ≤ dn2 e.

The complexity of the standard algebraic attack on the combiner model or
the filter model using a nonlinear function f equals roughly O(D3) in time and
O(D) in data, where D =

∑AI(f)
i=0

(
N
i

)
, where N is the size of the linear part of

the pseudo-random generator.
If a function has optimal algebraic immunity

⌈
n
2

⌉
with n odd, then it is

balanced. M. Lobanov has obtained in [8] the following tight lower bound:

nl(f) ≥ 2
AI(f)−2∑
i=0

(
n− 1
i

)
.
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Note that this bound does not assure that the nonlinearity is high enough.
A high algebraic immunity is a necessary but not sufficient condition for

robustness against all kinds of algebraic attacks. Indeed, if one can find g of low
algebraic degree and h 6= 0 of reasonable algebraic degree such that f ∗ g = h,
then a fast algebraic attack (in brief FAA) is feasible, see [4], which has a
pre-computation step of complexity O(Dlog2D) and an on-line complexity of
O(E3 +EDlogD) where E =

∑deg(g)
i=0

(
N
i

)
(note that fast algebraic attacks need

more data than standard ones). It has been shown in [4] that when e+ d ≥ n,
there must exist g of algebraic degree at most e and h of algebraic degree at
most d such that f ∗g = h. Hence, an n-variable function f can be considered as
optimal with respect to fast algebraic attacks if there do not exist two functions
g 6= 0 and h such that f ∗ g = h and deg(g) + deg(h) < n with deg(g) < n/2.
Note that if we have f ∗ g = h with g 6= 0 and deg(g) < AI(f) then we cannot
have h = 0 (since g would then be a nonzero annihilator of f , a contradiction)
and multiplying both terms of the equality by f we get f ∗h = h and then h is a
nonzero annihilator of f+1. Hence deg(h) ≥ AI(f). A function having algebraic
immunity dn/2e is then the worst possible with respect to FAA if there exists
a function g such that deg(g) = 1, and a function h such that deg(h) = dn/2e
and f ∗ g = h. The case which comes immediately after this worst case is when
there exists g such that deg(g) = 1 and h of algebraic degree deg(h) = dn/2e+1
such that f ∗ g = h.

The pseudo-random generator must also resist algebraic attacks on the aug-
mented function [7] but this condition is more on the linear update function
than on the filter function.

A new version of algebraic attack has been found recently by S. Rønjom and
T. Helleseth [12] and is very efficient. Its time complexity is roughly O(D′),
where D′ =

∑deg(f)
i=0

(
N
i

)
, where N is the size of the linear part of the pseudo-

random generator. But it needs much more data than standard algebraic at-
tacks: O(D′) also! When f has algebraic degree close to n and algebraic im-
munity close to n

2 , this is the square of what is needed by standard algebraic
attacks. However, this attack obliges the designer to choose a function with
very high algebraic degree.

The functions used in the combiner model must be additionally highly re-
silient (that is, balanced and correlation immune of a high order; see definition
e.g. in [2]) to withstand correlation attacks. It seems quite difficult to achieve
all of the necessary criteria including this one, and for this reason, the filter
generator seems more appropriate.

The balanced function g having optimal algebraic immunity introduced in
[3] can be defined for every n as the Boolean function on F2n whose support
equals {αi; i = s, · · · , s+ 2n−1 − 1}, where s is an integer and α is a primitive
element of F2n . Function g has algebraic degree n − 1 (which is optimal for a
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balanced function) and its nolinearity satisfies:

nl(g) ≥ 2n−1 +
2n/2+1

π
ln
(

π

4(2n − 1)

)
− 1 ≈ 2n−1 − 2 ln 2

π
n 2n/2.

The actual values of nl(g) computed for small values of n happen to be much
better than what gives this bound, but showing a bound proving that the non-
linearity of g is good is an open problem (also in sequence theory, see [6]).
Concerning the behavior of the function against FAA, computer investigations
made using [1, Algorithm 2] suggest the following properties of this class of
functions:

• No nonzero function g′ of algebraic degree at most e and no function h of
algebraic degree at most d exist such that g∗g′ = h, when (e, d) = (1, n−2)
for n odd and (e, d) = (1, n − 3) for n even. This has been checked for
n ≤ 12 and we conjecture it for every n.

• For e > 1, pairs (g′, h) of algebraic degrees (e, d) such that e+ d < n− 1
were never observed. Precisely, the non-existence of such pairs could be
checked exhaustively for n ≤ 9 and e < n/2, for n = 10 and e ≤ 3 and for
n = 11 and e ≤ 2. This suggests that this class of functions, even if not
always optimal against fast algebraic attacks, has a very good behavior.

The instance with n = 9 turns out to be optimal. The problem of proving the
good behavior of g against FAA for every n is open.
The complexity of computing g(x) is same as for the discrete log, but n is small
and the Pohlig-Hellman method can be used:

218 − 1 = 27 ∗ 73 ∗ 133 ; 220 − 1 = 41 ∗ 93 ∗ 275.

This allows computing 1 bit per cycle, using 40,000 transistors.

The Tu-Deng infinite class [13] of balanced functions with optimal algebraic
immunity (if a conjecture can be proven) and provably good nonlinearity is the
2n-variable function over F 2

2n defined as follows:

f(x, y) =


g
(
x
y

)
if x 6= 0

1 if x = 0 and x ∈ {αi; i = 2n−1 − 1, · · · , 2n − 2}
0 otherwise.

It has optimal algebraic immunity as well and is balanced. Its algebraic degree
equals 2n−1 and its nonlinearity satisfies nl(f) ≥ 22n−1−2n−1−n 2n/2 ln 2−1.

3 The weakness of the Tu-Deng function against
FAA

Let us denote by b(x, y) the function g(x/y) (with the convention that x/0 = 0
for every x). This is the function considered in Construction 1 of [13]. It is
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bent and belongs to the well-known PSap Dillon’s class of hyperbent functions
(see e.g. [2]); it has algebraic degree exactly n (which is the highest possible
degree for a bent function). We can see that function f differs from b only
when x = 0. Hence for every linear Boolean function ` over F2n , the function
`(x)f(x, y) equals `(x)b(x, y) and has therefore algebraic degree at most n+ 1.
As recalled in Section 2, this is almost the worst case for the resistance to FAA
of a 2n-variable function of algebraic immunity n.

4 Repairing the Tu-Deng function

The observation in Section 3 shows that, to have a chance of allowing a good
resistance to FAA, the function must differ from function b on any affine hyper-
plane of F 2n

2 ∼ F 2
2n . In other words, the new function f , that we shall denote

by f ′ for clarity, must be defined as

f ′(x, y) = b(x, y) + 1E(x, y)

where 1E is the indicator of a set E spanning the whole F2-vectorspace F 2
2n and

such that, for every vector e, the set e+ E spans F 2
2n as well (this condition is

indeed necessary and sufficient for g differing from b on any affine hyperplane
since g equals b on the complement Hc of a linear hyperplane H if and only if
E is included in H and g equals b on H if and only if e + E is included in H,
where Hc = e+H). We shall call (P) this property of E.
Let E be a set of the form

E = {(0, u∅)} ∪
{

(αiui, ui); i 6∈ {s, · · · , s+ 2n−1 − 1}
}

(α being the primitive element of F2n used for the definition of g and f) where
for every i, the vector ui is any nonzero element of F2n . We assume that E has
the property (P). Since b has Hamming weight 22n−1 − 2n−1 and E is disjoint
from its support and has size 2n−1, the function f = b+ 1E is balanced. Since
the support of f ′ includes the support of b and b has algebraic immunity n (see
[13]), then f ′ has no nonzero annihilator of algebraic degree strictly less than n.
Let h(x, y) =

∑2n−2
i=0

∑2n−2
j=0 ai,j x

iyj be a non-zero annihilator of f ′ + 1 with
max{w2(i)+w2(j); ai,j 6= 0} ≤ n−1. We have h(0, y) = 0 and h(γ y, y) = 0 for
every y ∈ F ∗2n and every γ 6∈ supp(g) = {αi; i = s, · · · , s + 2n−1 − 1}, except
maybe for y = u∅, resp. y = ui.
For every y ∈ F ∗2n , h(γ y, y) equals:

2n−2∑
i=0

2n−2∑
j=0

ai,j γ
iyi+j =

2n−2∑
t=0

(
2n−2∑
i=0

ai,t−i γ
i

)
yt,

where t − i is taken modulo 2n − 1. Since h(γy, y) is null for every y 6= u∅,
resp. y 6= ui, and has therefore at least 2n − 1 zeros and since t ≤ 2n − 2 we
have then

∑2n−2
i=0 ai,t−i γ

i = 0 for every t and the proof ends as in [13]. The
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nonlinearity of f ′ satisfies the inequality nl(f ′) ≥ 22n−1 − 2n and maybe a bet-
ter one for clever choices of E. We are currently making investigations to check
that f ′ can have an optimal algebraic degree 2n−1 and behave well against FAA.
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