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Abstract. Research on efficient pairing implementation has focussed on reducing the loop
length and on using higher-order twists. Existence of twists of degree larger than 2 is a very
restrictive criterion but luckily constructions for pairing-friendly elliptic curves with high-order
twists exist. In fact, Freeman, Scott and Teske showed in their overview paper that often the
best known methods of constructing pairing-friendly elliptic curves over fields of large prime
characteristic produce curves that admit twists of degree 3, 4 or 6.
A few papers have presented explicit formulas for the doubling and the addition step in Miller’s
algorithm, but the optimizations were all done for the Tate pairing with degree-2 twists, so the
main usage of the high-order twists remained incompatible with more efficient formulas.
In this paper we present efficient formulas for curves with twists of degree 2, 3, 4 or 6. These
formulas are significantly faster than their predecessors. We show how these faster formulas can
be applied to Tate and ate pairing variants, thereby speeding up all practical suggestions for
efficient pairing implementations over fields of large characteristic.
Keywords: Pairings, Miller functions, explicit formulas, Tate pairing, ate pairing, twists, Weier-
strass curves.

1 Introduction

Many new protocols are based on pairings and so the construction of pairing-friendly curves
and the efficiency of pairing computation has become a field of active research. The first wave
of this research exhausted many tricks that can be applied inside a Miller iteration, resulting
in significant computational speed ups [4, 6, 7, 34]. The second wave of improvements focussed
on constructing pairing-friendly elliptic curves [5, 10, 37, 15, 8, 21, 27, 16, 28], and this research
is extended and collected in [17]. The third and more recent wave of research has focussed on
reducing the loop length of Miller’s algorithm [35, 25, 3, 32] to be as short as possible [42, 24].
Along the way, there have been several other clever optimizations that give faster pairings in
certain scenarios, including compressed pairings [36], single coordinate pairings [20], efficient
methods of hashing to pairing-friendly groups [38], and techniques that achieve a faster final
exponentiation [23, 39].

After the introduction of projective coordinates for pairing computations in [11], very
little was heard about low level optimizations. This started to become more interesting lately
for alternative curve shapes such as Edwards curves, studied in [13, 26, 2], and curves of the
form y2 = x3 + c2, studied in [12].

* This work has been supported in part by a Queensland Government Smart State PhD Scholarship and in
part by the European Commission through the ICT Programme under Contract ICT–2007–216646 ECRYPT
II. Part of this work was done while the second author visited QUT.
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All of these improvements are presented in the context of the Tate pairing on curves
with even embedding degrees and using only quadratic twists, since the nature of the Tate
pairing allows for a relatively simple exposition and improves efficiency through denominator
elimination. At the same time, curves with larger degree twists give much more efficient
pairings and choosing special curve shapes was risking this larger benefit. On top of that,
Galbraith [19] studied the group orders of curves and their twists and showed that for Edwards
curves only quadratic twists could be used, in the sense that the only twist which preserves
the existence of a point of order 4 is a quadratic twist. This deterred further research on
ate pairings and other variants for special curves. In this paper we show that it is possible
to compute a small power of the ate pairing entirely on the twisted curve; so the curve can
be chosen so that the twist of the curve admits a particular shape. We show the fields of
definition for the respective coordinates. This provides a framework for converting Tate-like
pairing computation formulas and operation counts to their ate-like analogues.

For BN curves [8], Akane, Nogami, and Morikawa showed in [1] that the ate pairing itself
can be computed on the twisted curve. Our result covers more general curves but computes
the ate pairing only up to a power. Furthermore, the idea of using twists in order to cover
curves of special shapes is new. In the context of Weierstrass curves, our result gives an easy
way of computing the cost of evaluating the Miller function.

For all practically useful embedding degrees, the best methods of constructing pairing-
friendly curves mostly produce elliptic curves of the form y2 = x3 + ax + b with a = 0 or
b = 0 (see [17]). In this paper we consider these two cases separately to give specialized
pairing formulas in both scenarios. In particular, we achieve the fastest known formulas for
computing pairings on general curves with b = 0 in weight-(1, 2) coordinates. In addition, the
point doubling formulas we derive for curves of this form are currently the fastest published
point doubling formulas [9] across all forms of elliptic curves. For pairings on general curves
with a = 0, we use standard projective coordinates. The doubling step on these curves is
two field multiplications faster than the previous record for such curves. Furthermore, we also
consider the case of computing pairings on curves with odd embedding degrees that employ
cubic twists, where we present formulas which are significantly faster than their predecessors.
Lastly, we also suggest an improvement to the formulas presented in [12]. Note that for
ate pairings, speed ups in the doubling and addition step save computations in fields whose
sizes grow proportionately to the embedding degree. This means that applying these faster
formulas to the ate pairing variants will give relative speed ups which are consistent across all
embedding degrees and savings which do not suffer as the extension field arithmetic becomes
more complex.

The rest of this paper is organized as follows. Section 2 provides a brief background on
pairings. In Section 3, we present a modified method of computing the ate pairing where all
operations involve points only on the twisted curve. This theoretical result is a key ingredient
for efficient computation of the ate pairing and has applications outside the scope of this
paper, e.g. for Edwards curves. We then show how Tate pairing formulas and operation
counts can be easily modified to this method of computing the ate pairing. In Sections 4 and
5, we present faster formulas for pairing computations that employ quadratic, quartic or sextic
twists. In Section 6, we present faster formulas for pairings on curves with odd embedding
degrees divisible by 3. We compare our results with the state-of-the-art pairing formulas in
Section 7.
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2 Background on Pairings

Let p > 3 be a prime, and let E be an elliptic curve over Fq, char(Fq) = p, with short
Weierstrass equation E : y2 = x3 + ax + b and point at infinity O. Let r 6= p be a prime
divisor of n = #E(Fq) = q + 1− t and let k > 1 be the embedding degree of E with respect
to r, i. e. k is minimal with r | qk− 1. For the r-torsion subgroup, we have E[r] ⊆ E(Fqk). Let
µr ⊆ F∗

qk be the group of r-th roots of unity. For m ∈ Z and P ∈ E[r], let fm,P be a function
with divisor div(fm,P ) = ([m]P ) −m(P ) − (m − 1)(O). The reduced Tate pairing is defined
as

τr : E(Fqk)[r]× E(Fqk)/[r]E(Fqk)→ µr, (P,Q) 7→ fr,P (Q)
qk−1

r .

In practice one restricts the arguments to groups of prime order r. If r2 - n, the most common
choice is to take the groups

G1 = E[r] ∩ ker(φq − [1]) = E(Fq)[r], G2 = E[r] ∩ ker(φq − [q]) ⊆ E(Fqk),

where φq is the q-power Frobenius endomorphism on E. The groups G1 and G2 are the
eigenspaces of φq on E[r] and we have E[r] = G1 ⊕ G2. From now on, we consider er, the
reduced Tate pairing restricted to G1 ×G2, i. e.

er : G1 ×G2 → µr, (P,Q) 7→ fr,P (Q)
qk−1

r .

Let T = t− 1. Restricting the Tate pairing to G2 ×G1 leads to the ate pairing [25]

aT : G2 ×G1 → µr, (Q,P ) 7→ fT,Q(P )
qk−1

r .

Note that the parameter r is changed to T . The group G2 consists of points defined over
Fqk . Often G2 can be represented by a subgroup G′

2 of a curve isomorphic to E over Fqk .
Let d | k; an elliptic curve E′ over Fqk/d is called a twist of degree d of E if there is an
isomorphism ψ : E′ → E defined over Fqk , and this is the smallest extension of Fqk/d over
which ψ is defined. Depending on the j-invariant j(E) of E, there exist twists of degree at
most 6. Pairing-friendly curves with twists of degree higher than 2 arise from constructions
with j-invariants j(E) = 0 and j(E) = 1728.

A twist of E is given by E′: y2 = x3 + aω4x + bω6 for some ω ∈ Fqk . The isomorphism
between E′ and E is Ψ : E′ → E : (x′, y′) → (x′/ω2, y′/ω3) with inverse Ψ−1 : E → E′ :
(x, y) → (ω2x, ω3y). Depending on j(E) and ω, we obtain the possible degrees of a twist
E′ as summarized in Table 1. The isomorphism Ψ induces a group isomorphism G′

2 → G2,
where G′

2 = E′(Fqk/d)[r]. Thus, points in G2 can be represented by their image under Ψ−1.
In what follows, we write P ′ for the point on the twist E′ corresponding to a point P ∈ E,
i. e. P ′ = Ψ−1(P ) and P = Ψ(P ′). The last two columns in Table 1 show the subfields of Fqk

in which the coordinates of the specific points are contained. For example (Fqk/2 ,Fqk) means
that the x-coordinate is in Fqk/2 and the y-coordinate is in Fqk . The last column illustrates
that the coordinates of P ′ lie in the same fields as the coordinates of Q. The importance of
this becomes evident in Section 3. Since the points in G′

2 are defined over a smaller field than
those in G2, curve arithmetic is more efficient in G′

2.
Assume that E has a twist of degree d and that d | k. Let e = k/d, Te = T e mod r. The

twisted ate pairing is defined as

ηTe : G1 ×G2 → µr, (P,Q) 7→ fTe,P (Q)
qk−1

r .
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d j(E) fields of definition Q′ = (xQ′ , yQ′) Q = Ψ(Q′)
a, b for powers of ω P = (xP , yP ) P ′ = Ψ−1(P )

2 6∈ {0, 1728} ω2, ω4, ω6 ∈ Fqk/2 (Fqk/2 , Fqk/2) (Fqk/2 , Fqk )

a 6= 0, b 6= 0 ω3 ∈ Fqk \ Fqk/2 (Fq, Fq) (Fqk/2 , Fqk )

3 0 ω6, ω3 ∈ Fqk/3 (Fqk/3 , Fqk/3) (Fqk , Fqk/3)

a = 0, b 6= 0 ω2 ∈ Fqk \ Fqk/3 (Fq, Fq) (Fqk , Fqk/3)

4 1728 ω4 ∈ Fqk/4 , ω2 ∈ Fqk/2 (Fqk/4 , Fqk/4) (Fqk/2 , Fqk )

a 6= 0, b = 0 ω3 ∈ Fqk \ Fqk/2 (Fq, Fq) (Fqk/2 , Fqk )

6 0 ω6 ∈ Fqk/6 , ω3 ∈ Fqk/3 (Fqk/6 , Fqk/6) (Fqk/2 , Fqk/3)

a = 0, b 6= 0 ω2 ∈ Fqk/2 (Fq, Fq) (Fqk/2 , Fqk/3)

Table 1. The nature of the twist isomorphisms for twists of degree d.

The reduced Tate and the twisted ate pairing are both defined on G1 × G2, while the
ate pairing is defined on G2 ×G1. We aim to simultaneously treat both concepts of pairings
by respectively fixing R and S as the first and second arguments of either pairing. For both
variants, we thus write fm,R(S)(q

k−1)/r, where m,R, S are chosen according to the desired
pairing. In view of Table 1 we point out that the coordinates of R, and thereby those of any
multiple U of R, are defined over a strict subfield of Fpk , whilst in most cases one of the
coordinates of S is minimally defined over Fpk . Miller’s algorithm is used to compute the
pairing as follows: Let m = (ml−1, . . . ,m1,m0)2 be the binary representation of m, initialize
U = R, f = 1 and compute

1. for i = l − 2 to 0 do
(a) f ← f2 · fDBL(U)(S), U ← [2]U , //doubling step (DBL)
(b) if mi = 1 then f ← f · fADD(U,R)(S), U ← U +R. //addition step (ADD)

2. f ← f (qk−1)/r.

The function fDBL(U) is defined as fDBL(U) = lDBL(U)/vDBL(U), where lDBL(U) is the function
of the line tangent to E at the point U and vDBL(U) is the function of the vertical line through
[2]U . Analogously, the function fADD(U,R) is defined as fADD(U,R) = lADD(U,R)/vADD(U,R),
where lADD(U,R) is the function of the line through the points U and R and vADD(U,R) is the
function of the vertical line through U +R.

Step 1 in the above algorithm is called the Miller loop; it computes the function value
fm,R(S) up to r-th powers. Step 2, the final exponentiation, determines the final pairing value.

The number of iterations of the Miller loop is equal to l − 1, where l is the bitlength of
m. Therefore, reducing the bitlength of m reduces the number of iterations in the Miller loop
which reduces the cost of the pairing computation. Several papers have proposed methods for
loop shortening [30, 32, 43, 42, 24]. For example, for the twisted ate pairing one can replace
Te by any of its powers modulo r and choose the smallest of those. A good choice for the
ate pairing is to use the R-ate pairing [30], which often achieves an optimal loop length
of log(r)/ϕ(k), yielding an optimal pairing [42]. All curves we consider in the following are
defined over the prime field Fp. We therefore restrict to the case q = p from now on.

3 Computing the Ate Pairing Entirely on the Twisted Curve

Several authors have presented new formulas that achieve faster iterations of the Miller loop
on certain curves [11, 13, 26, 2, 12]. The operation counts presented in these papers are given
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in the context of Tate pairing computations on curves with even embedding degrees, where
all elliptic curve operations occur in the base field Fp and the function in the Miller loop are
evaluated at a point which has one coordinate in Fpk/2 and one in the full extension field Fpk .
This allows for a relatively simple exposition. However, the ate pairing reverses the roles of the
points involved and employs twisted curves. This means that some of the optimizations can
not be applied in the same fashion. The purpose of this section is to tidy up this discussion
and to show how operation counts for the Tate pairing can be easily modified to give the
analogous ate pairing count.

The usual practice when computing the ate pairing aT (Q,P ) of the points P ∈ E(Fp) and
Q ∈ E(Fpk) is to map the point Q to the twisted curve using the isomorphism Ψ−1, so that
the point operations (doubling/addition) in the Miller loop can be performed more efficiently
using the point Q′ = Ψ−1(Q) ∈ E′(Fpk/d), whose coordinates are defined over the smaller field
Fpk/d . When it is time to compute the Miller line, Q′ is “untwisted” back to the full extension
field via Q = Ψ(Q′). Operation counts for the Tate pairing do not carry over directly to the
ate pairing. In particular, for the Tate pairing it is the y-coordinate of the second argument
that is in the full extension field Fpk , whereas one of the coordinates of the first argument in
the ate pairing is in Fpk . This means that all optimizations that were based on eliminating
subfield elements have to be revised.

Furthermore, pairings on special curves such as Edwards curves and the curves in [12]
pose conditions on cofactors of the group order. Galbraith [19] pointed out to us that for
twists of degree larger than 2, E and E′ can not both simultaneously be in Edwards form.
His arguments also apply to the curves in [12] with sextic twists. So far this meant that the
formulas used for the point operations and the formulas derived for the Miller functions must
be treated separately which usually results in a greater overall operation count.

We show that a small (≤ 6) power of the ate pairing can be computed entirely on the
twisted curve, rendering the above concerns obsolete. Our pairing can make use of loop short-
ening techniques just like the ate pairing, but only requires one curve (the twisted curve) to
have particular properties. Furthermore, Table 1 shows that most coordinates of the twisted
points P ′ and Q′ are defined over subfields. Note that the computation of a small power of
pairings for efficiency reasons has been addressed in previous work, see for example [14].

Theorem 1. Let E/Fp : y2 = x3+ax+b and let E′/Fpk/d : y′2 = x′3+aω4x′+bω6, a degree-d
twist of E. Let Ψ be the associated twist isomorphism Ψ : E′ → E : (x′, y′)→ (x′/ω2, y′/ω3).
Let P ∈ G1, Q ∈ G2, and let Q′ = Ψ−1(Q) and P ′ = Ψ−1(P ). Let aT (Q,P ) be the ate pairing
of Q and P .Then

aT (Q,P )gcd(d,6) = aT (Q′, P ′)gcd(d,6),

where aT (Q′, P ′) uses the same loop parameter as aT (Q,P ) on E, but takes the two twisted
points Q′ and P ′ as inputs, instead of Q and P .

Proof. Since all factors of the Miller values that lie in a proper subfield of Fpk vanish under
the final exponentiation, it suffices to show that the Miller function updates at each iteration
are equal, up to a constant defined over any proper subfield over Fpk . The computation of
aT (Q,P ) is composed of addition and doubling steps. Consider the gradients of the lines at
either the doubling or addition stage of the Miller loop respectively. We have

y′2 − y′1
x′2 − x′1

=
ω3y2 − ω3y1

ω2x2 − ω2x1
= ω

y2 − y1

x2 − x1
and

3x′21 + aω4

2y′1
=

3ω4x2
1 + aω4

2ω3y1
= ω

3x2
1 + a

2y1
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for addition and doubling. We write the update to the Miller function at the doubling step as

fDBL(U ′)(P
′) = (lDBL(U ′)(P

′))/(vDBL(U ′)(P
′)) = (yU ′ − yP ′ − λ′(xU ′ − xP ′))/(xP ′ − x[2]U ′)

= (ω3yU − ω3yP − ωλ(ω2xU − ω2xP ))/(ω2xP − ω2x[2]U ) = ω · fDBL(U)(P ),

where λ and λ′ are the gradients determined before. We also have fADD(U ′,Q′)(P ′) = ω ·
fADD(U,Q)(P ). For twists of degree d = 2 and d = 4, observe that ω2 = ωgcd(d,6) is in a
subfield of Fpk and thus vanishes in the final exponentiation. Similarly, for d = 3 and d = 6,
ω3 and ω6 are both in subfields of Fpk so that introducing a factor of 3 and 6 respectively to
the exponent of aT (Q′, P ′) will give an identical result to the computation of aT (Q,P ). ut

Corollary 2. If aT (Q,P ) is bilinear and non-degenerate, then so is aT (Q′, P ′).

Remark 3. Note that for d = 6 both ω2 and ω3 are in proper subfields of Fpk . Thus their
contributions to the denominator and numerator vanish in the final exponentiation, so there
is no need to introduce a factor of 6 to the final exponent. That is, for sextic twists it is
actually always the case that aT (Q,P ) = aT (Q′, P ′). If denominator elimination is used for
d = 6, the values differ by ω3 which lies in a subfield. For k = 12 and BN curves this case
was considered by Akane, Nogami, and Morikawa [1] who showed that up to constants from
subfields aT (Q,P ) = aT (Q′, P ′).

For the other cases either ω2 or ω3 lie in a proper subfield Fpe of Fpk . If 4 or 9 divides∏
d|k Φd(p)/(pe− 1), respectively, we obtain ω(pk−1)/r = 1 and thus automatically aT (Q,P ) =

aT (Q′, P ′). However, in general these conditions are not satisfied, and the extra power of 2 or
3 is needed to obtain the same result.

Computing the ate pairing as aT (Q′, P ′) and using twists as in Table 1 implies (for d < 6)
that the only coordinate that lies in the full extension field Fpk belongs to the second argument;
for d = 6 all coordinates are defined over subfields. In this sense, the field operations encoun-
tered in computing the ate pairing aT (Q′, P ′) on E′ mimic the field operations encountered
in computing the Tate pairing er(P,Q) on E. Thus, point operation and line computation
formulas that work in the Tate pairing can directly be applied to the ate pairing.

Inversions in Fpk are prohibitively expensive and so we will show for all curves types a way
to eliminate denominators. Therefore, at the doubling or addition stage of a Miller iteration
the update function is given by a polynomial f =

∑
i,j Li,j ·xi

Sy
j
S , where the Li,j are functions

solely of the intermediate point U (doubling) or of the intermediate point U and the base
point R (addition). In the Tate pairing computation of er(P,Q), the Li,j are functions of
some multiple of the point P ∈ E(Fp) and therefore all calculations required to compute the
Li,j are performed in the base field Fp. Similarly, in the modified definition of the ate pairing
computation of aT (Q′, P ′), the Li,j are functions of some multiple of the point Q′ ∈ E′(Fpe)
and therefore all calculations required to compute the Li,j in this case are performed in the
subfield Fpe . Thus, if the computations of the Li,j in an iteration of the Tate pairing require
mm1 + ss1, where m1 and s1 denote multiplication and squaring in Fp, then the equivalent
computations in an iteration of the ate pairing will require mme+sse, where me and se denote
multiplication and squaring in Fpe ; we usually skip the subscript in m1, s1; a multiplication
by the curve constant a costs da.

For even embedding degrees (admitting quadratic, sextic or quartic twists) the function
update always simplifies to f = L1,0x+L0,1y+L0,0, so that we have two extra multiplications
required here (L1,0 by x and L0,1 by y). In the Tate pairing as well as in the ate pairing each
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of these multiplications costs e = k/d base field multiplications. If k is odd and divisible by
three and if the curve admits a cubic twist, the function update requires more terms. For
comparison, let there be hADD non-zero terms (excluding L0,0) in the addition step and hDBL

in the doubling step, each of which costs e = k/3 base field multiplications. We summarize
the situation for different twists in Table 2.

k even DBL ADD/ mADD

Tate pairing t(P, Q) m1m + s1s + 2em + mk + sk m2m + s2s + 2em + mk

Ate pairing aT (Q′, P ′) m1me + s1se + 2em + mk + sk m2me + s2se + 2em + mk

k odd, 3 | k DBL ADD/ mADD

Tate pairing t(P, Q) m1m + s1s + hDBLem + mk + sk m2m + s2s + hADDem + mk

Ate pairing aT (Q′, P ′) m1me + s1se + hDBLem + mk + sk m2me + s2se + hADDem + mk

Table 2. Converting operation counts for single addition and doubling steps in the Tate pairing t(P, Q) and
ate pairing aT (Q′, P ′).

Note that by Theorem 1 the computation of aT (Q′, P ′)gcd(d,6) can be done entirely on
the twisted curve. This means that Edwards curves can be employed in the ate setting if we
choose the original curve such that the twisted curve can be written in Edwards form.

4 Pairings on y2 = x3 + ax with even embedding degrees

The only curves which admit quartic twists over Fp are of the form E : y2 = x3 + ax. In this
section we assume that the embedding degree k is even and so by Table 1 we can use that
the x-coordinates of Q (used in the Tate pairing) and of P ′ (used in our modified ate pairing)
are defined over a subfield of Fpk . Using the naming convention introduced in Section 2, xS

is defined over a subfield of Fpk while yS is minimally defined over Fpk .
Curves of the form E : y2 = x3 + ax have not received much attention, even for simple

elliptic curve arithmetic, e.g. no special formulas are reported in the EFD [9]. We present new
formulas for addition and doubling in a new coordinate system, which we call “weight-(1, 2)
coordinates”. The point (X : Y : Z) corresponds to the affine point (x, y), where x = X/Z
and y = Y/Z2. The projective curve equation for these weights is Y 2 = X3Z + aXZ3. Lopez
and Dahab studied such coordinates in the context of elliptic curves over binary fields but
these weights have not been used in the context of curves over odd-characteristic fields.

Unsurprisingly, our new formulas for addition and doubling are faster than the general
formulas presented in the EFD, but it is quite remarkable that our doubling formulas are
faster than any doubling formulas reported for elliptic curves in the EFD.

We extend the explicit formulas for curve operations to compute the doubling and the
addition step on these curves. The resulting pairing computations are also significantly faster
than their predecessors.

Doubling formulas. For this curve shape the affine doubling formulas to compute (x3, y3) =
[2]U = [2](x1, y1) simplify to x3 = λ2−2x1, y3 = λ(x1−x3)−y1, where λ = (3x2

1+a)/(2y1). In
weight-(1, 2) coordinates the doubling formulas to compute (X3 : Y3 : Z3) = [2](X1 : Y1 : Z1)
become

X3 = (X2
1 − aZ2

1 )2, Y3 = 2Y1(X2
1 − aZ2

1 )((X2
1 + aZ2

1 )2 + 4aZ2
1X

2
1 ), Z3 = 4Y 2

1 .
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The point doubling needs 1m + 6s + 1da using the following sequence of operations.

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = aC, X3 = (A−D)2, (1)

E = 2(A+D)2 −X3, F = ((A−D + Y1)2 −B −X3), Y3 = E · F, Z3 = 4B.

The fastest doubling formulas reported in the EFD [9] are “dbl-20090311-hwcd” due to Hisil,
Wong, Carter, and Dawson. These formulas are optimized for “Doubling-oriented XXYZZR
coordinates for Jacobi quartics’ and need 2m+5s+1da, where a is some curve constant. Our
formulas are faster by 1 s-m tradeoff.

Line computation for doubling. In the doubling step of the pairing computation we need
to compute [2]U and to compute the line function at U and evaluate it at S = (xS , yS). The
affine formula for the computation of fDBL(U)(S) is given as

λ(X1/Z1 − xS) + yS − Y1/Z
2
1

xS − (λ2 − 2X1/Z1)
= −2Y1(−(3X2

1Z1 + aZ3
1 ) · xS + (2Y1Z1) · yS +X3

1 − aZ2
1X1)

−(4Y 2
1 Z1) · xS + 9X4

1Z1 + 6aX2
1Z

3
1 + a2Z5

1 − 8X1Y 2
1

.

Since any element except for yS is in a proper subfield of Fpk , we can omit computing the
entire denominator and also the multiplication by −Y1. We leave the factor of 2 to obtain an
s-m tradeoff. The simplified line function is

f ′DBL(U)(S) = −2(3X2
1Z1 + aZ3

1 ) · xS + (4Y1Z1) · yS + 2(X3
1 − aZ2

1X1).

We write f ′DBL(U)(S) as f ′DBL(U)(S) = L1,0 · xS + L0,1 · yS + L0,0 and compute L1,0, L0,1 and
L0,0 as

L1,0 = −2Z1 · (3 ·A+D), L0,1 = 2((Y1 + Z1)2 −B − C), L0,0 = (X1 +A−D)2 −X3 −A,

using the values computed in (1) at an additional cost of 1m+2s, so that the total operation
count for point doubling with line computation is 2m + 8s + 1da.

Addition and mixed addition. In affine coordinates, the sum (x3, y3) = U+R = (x1, y1)+
(x2, y2) is given by x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1, where λ = (y1 − y2)/(x1 − x2).
In weight-(1, 2) coordinates this becomes (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2)

X3 = (Y1Z
2
2 − Y2Z

2
1 )2 − (X1Z2 +X2Z1)(X1Z2 −X2Z1)2Z1Z2,

Y3 = ((Y1Z
2
2 − Y2Z

2
1 )(X1Z2(X1Z2 −X2Z1)2Z1Z2 −X3)− Y1Z

2
2 (X1Z2 −X2Z1)3Z1Z2)K,

Z3 = (X1Z2 −X2Z1)2(Z1Z2)2,

where K = (X1Z2 −X2Z1)Z1Z2. This addition can be computed in 14m + 5s using

A = X1 · Z2, B = X2 · Z1, C = Z2
1 , D = Z2

2 , E = Y1 ·D, F = Y2 · C,
G = A−B, H = E − F, I = G2, J = Z1 · Z2, K = J ·G,
X3 = H2 − (A+B) ·G ·K, Y3 = (H · (A · J · I −X3)− E · I ·K) ·K, Z3 = K2.

For mixed addition, i.e. Z2 = 1, the number of operations reduces to 11m + 4s omitting
computation of A,D,E and J .

Line computation for addition and mixed addition. For affine points U,R, and S the
line function is given by fADD(U,R)(S) = λ(x2−xS)+yS−y2

xS−(λ2−x1−x2)
. Again, we can omit the denominator
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because it is entirely defined over a subfield of Fpk . In weight-(1, 2) coordinates the modified
line function becomes f ′ADD(U,R)(S) = (Y1Z

2
2−Y2Z

2
1 )(X2/Z2−xS)+(X1Z2−X2Z1)Z1Z2(yS−

Y2/Z
2
2 ).

For mixed additions (Z2 = 1) this simplifies to

f ′mADD(U,R)(S) = H · (X2 − xS) +K · yS −K · Y2,

costing 12m + 4s for the complete mixed addition step in addition to the multiplications by
(X2− xS) and yS . Note that the multiplication K · Y2 cannot be saved: Because of the shape
of yS , multiplications by yS cost at most k/2m while those by yS − Y2 would cost km.

If R is reused several times it might be worthwhile to precompute 1/Y2 for longterm usage.
At the beginning of a pairing computation x̃S = (X2−xS)/Y2 and ỹS = yS/Y2 are computed.
Note that Y2 is defined over a proper subfield of Fpk , so f ′mADD(U,R)(S) can be replaced by

f ′mADD(U,R)(S)/Y2 = H · x̃S +K · ỹS −K

without changing the pairing value. Note also that Table 1 shows that x̃S and ỹS are defined
over the same fields as xS and yS are. In this case a mixed addition step costs only 11m+4s.

If instead S is reused several times, similar savings might be possible depending on the
representation of Fpk over Fpk/2 . If this is done as Fpk/2(α), multiplications by α are free, and
yS = y′Sα with y′S ∈ Fpk/2 , it is useful to precompute 1/y′S and update the function by

f ′mADD(U,R)(S)/y′S = H · x′S +Kα−K · Y ′
2 ,

where x′S = (X2 − xS)/y′S and Y ′
2 = Y2/y

′
S . Note that the remaining multiplications cost the

same as before.
If none of the input points is reused the field inversion is most likely not worth it, in

particular for very short loop lengths.
If the base point is not given in affine coordinates, i.e. Z2 6= 1 it is useful to precompute

x̃S = (X2−xSZ2)Z2 and ỹS = ySZ
2
2 . We compute Z2

2f
′
ADD(U,R)(S) = H ·x̃S+K ·ỹS−K ·Y2. The

operation count for the complete addition step is 15m + 5s in addition to the multiplications
by xS and yS .

5 Pairings on y2 = x3 + b with even embedding degrees

The only curves which can have sextic twists over Fp are of the form E : y2 = x3 + b. In
this section we assume that the embedding degree k is even and so by Table 1 we can use
that the x-coordinate of Q (in er(P,Q)) and of P ′ (in aT (Q,P )) is defined over a subfield of
Fpk . Using the naming convention introduced in Section 2, xS is defined over a subfield of
Fpk while yS might be defined over Fpk . Note that if d = 6, yS is also defined over a proper
subfield, namely Fpk/3 . For these curves we obtained the best results in standard projective
coordinates where the curve equation y2 = x3 + b becomes Y 2Z = X3 + bZ3.

When b is a square in Fp, the curve E will always have a point of order 3, otherwise
such a point will never exist in E(Fp). The former case was extensively studied in [12] in
the context of the Tate pairing. The addition formulas are independent of the nature of the
curve constant b and can therefore be used also for non-square b. We slightly improve these
addition formulas in the second half of this section and use these formulas for all curves with
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a = 0. The first part of this section focuses on achieving faster operation counts at the Miller
doubling stage on general curves of the form E : y2 = x3 + b, where we make no assumptions
about the nature of the curve constant b (and consequently the order of E).

Point doubling and line computation. The affine doubling formulas differ from those in
Section 4 in the definition of λ. We have λ = 3x2

1/2y1. In projective coordinates and after
eliminating powers of X3

1 via the curve equation, we obtain (X3 : Y3 : Z3) = [2](X1 : Y1 : Z1)
as

X3 = 2X1Y1(Y 2
1 − 9bZ2

1 ), Y3 = Y 4
1 + 18bY 2

1 Z
2
1 − 27b2Z4

1 , Z3 = 8Y 3
1 Z1.

We homogenize the affine doubling line under x1 = X1/Z1 and y1 = Y1/Z1 and get

f ′DBL(U)(S) = 3X2
1 · xS − 2Y1Z1 · yS + 3bZ2

1 − Y 2
1 .

We write f ′DBL(U)(S) = L1,0 · xS + L0,1 · yS + L0,0 and compute L1,0, L0,1, L0,0 and the point
(X3 : Y3 : Z3) using the following sequence of operations.

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = 3bC, E = (X1 + Y1)2 −A−B,

F = (Y1 + Z1)2 −B − C, G = 3D, X3 = E · (B −G),
Y3 = (B +G)2 − 12D2, Z3 = 4B · F, L1,0 = 3A, L0,1 = −F, L0,0 = D −B.

The total count for the above sequence of operations is 2m + 7s + 1db in addition to the
multiplications by xS and yS . Note that doubling outside the context of pairings would omit
the computation of A and would obtain E = 2X1Y1, needing a total of 3m + 5s + 1db. As
doubling formulas they are not competitive with those in the EFD but they are almost the
fastest for the doubling step in pairings, second only to y2 = x3 + c2 in [12].

Addition, mixed addition and line computation. For the addition of points on y2 =
x3+b, we adopt the formulas obtained in [12] for curves of the form y2 = x3+c2. These addition
and line computation formulas are independent of b being a square. If R = (X2 : Y2 : 1), the
addition U + R becomes a mixed addition; furthermore this point is fixed throughout the
computation. The addition line in [12] can be written as f ′mADD(U,R)(S) = (Y1−Y2Z1) · (X2−
xS)+(X1−X2Z1) ·yS− (X1−X2Z1) ·Y2. Note that the coefficients appear as subexpressions
in the mixed addition of U and R, so computing f ′mADD(U,R)(S) as above costs only an extra
1m in multiplying (X1 −X2Z1) by Y2.

If R is reused several times it might be worthwhile to precompute 1/Y2 for longterm usage.
At the beginning of a pairing computation x̃S = (X2−xS)/Y2 and ỹS = yS/Y2 are computed.
Note that Y2 is defined over a proper subfield of Fpk , so f ′mADD(U,R)(S) can be replaced by

f ′mADD(U,R)(S)/Y2 = (Y1 − Y2Z1) · x̃S + (X1 −X2Z1) · ỹS − (X1 −X2Z1)

without changing the pairing value. Note that also for this case Table 1 shows that x̃S and
ỹS are defined over the same fields as xS and yS are.

If S is fixed similar comments apply, see Section 4.
The operation count for the full additions (modified from [12]) is 13m+ 2s and the faster

updated mixed addition count becomes 9m + 2s.
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6 Fast Formulas for Pairing Computations with Cubic Twists

For an odd embedding degree k, the only possible non-trivial twists are cubic twists and these
only exist for curves of the form y2 = x3 + b, requiring also that 3|k. Table 1 shows that in
this scenario the point S = (xS , yS) has xS defined over the full extension field Fpk and yS

defined over a subfield. The formulas obtained in most publications including the previous
sections use denominator elimination based on xS being in a subfield.

In this section we present fast formulas for addition and doubling steps for y2 = x3 + b
and optimize them using the fact that yS , yU and xU are in a proper subfield of Fpk , while xS

is not. Our results are significantly faster than other studies of this case, but nevertheless the
cases with even embedding degree offer more advantages. For curves of the form y2 = x3 + b,
Lin et al. [31] observed that 1/vDBL(U)(S) can be written as

1
vDBL(U)(S)

=
1

xS − x[2]U
=

x2
S + xSx[2]U + x2

[2]U

(yS − y[2]U )(yS + y[2]U )
.

Since (yS − y[2]U )(yS + y[2]U ) lies in a subfield, the line function can be multiplied by x2
S +

xSx[2]U + x2
[2]U , instead of dividing it by vDBL(U)(S). Analogously, the addition step becomes

f ′ADD(U,R)(S) = lADD(U,R)(S) · (x2
S + xSxU+R + x2

U+R).

Point doubling and line computation. In projective coordinates xU = X1/Z1 and yU =
Y1/Z1, we replace X3

1 = Y 2
1 Z1 − bZ3

1 and factor f ′DBL(U)(S) to see

f ′DBL(U)(S) = α·
(
X1Z1(Y 2

1 − 9bZ2
1 ) · xS + (4Y 2

1 Z
2
1 ) · x2

S − (6X2
1Y1Z1) · yS +X2

1 (Y 2
1 + 9bZ2

1 )
)
,

where α = (18bY 2
1 Z

2
1 − 27b2Z4

1 +Y 4
1 +8Y 3

1 Z1 · yS)/(32Y 5
1 Z

3
1 ) ∈ Fpk/3 does not contain xS and

can be discarded. The values for X1 and Z1 are defined over subfields of Fpk and we obtain
more efficient formulas by computing f ′′DBL(U)(S) = f ′DBL(U)(S)X1/(Z1α) as

f ′′DBL(U)(S) = X2
1 (Y 2

1 − 9bZ2
1 ) · xS + 4X1Y

2
1 Z1 · x2

S − 6X3
1Y1 · yS + (Y 2

1 − bZ2
1 )(Y 2

1 + 9bZ2
1 ).

For cubic twists, the term x2
S ∈ Fpk appears in the simplified doubling line function so

we write f ′′DBL(U)(S) = L1,0 · xS + L2,0 · x2
S + L0,1 · yS + L0,0 . We compute (X3 : Y3 : Z3) =

[2](X1 : Y1 : Z1) and the necessary Li,j coefficients using 6m + 7s + 1db in addition to the
multiplications by xS , x

2
S , and yS .

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = bC, E = 3D, F = (X1 + Y1)2 −A−B,

G = (Y1 + Z1)2 −B − C, H = 3E, X3 = F · (B −H), Y3 = (B +H)2 − 3(2E)2,
Z3 = 4B ·G, L1,0 = A · (B −H), L2,0 = F ·G, L0,1 = −3A · F, L0,0 = (B −D) · (B +H).

Note that the formulas in [33] require 8m + 9s + 1db in addition to the multiplications
by xS , x

2
S , yS , y2

S , xSyS , and x2
SyS , i.e. they need 6 multiplications costing k/3 base field

multiplications each while we only need 3 such multiplications. This means that the overall
saving is 2m + 2s + km.

Addition and line computation. For additions we break with the conventional wisdom
that the line function should be given in terms of the base point. For even embedding degrees
where denominator elimination does not require further adjustment, that approach is suitable
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and particularly helps if the base point is given in affine coordinates. For the curves in this
section we will show that building the line function on the resulting point (X3 : Y3 : Z3) gives
better operation counts in spite of Z3 not being equal to 1.

The default line function is given by

(y1−y2)
(x1−x2) · (x1 − xS) + yS − y1

x3 − xS
.

Using denominator elimination techniques this gets transformed to(
(y2−y1)
(x2−x1) · (x1 − xS) + yS − y1

)
·
(
x2

3 + x3xS + x2
S

)
y2
3 − y2

S

.

This approach leads to a polynomial of the form L2,0 ·x2
S +L1,0 ·xS +L1,1 ·xSyS +L2,1 ·x2

SyS +
L0,2 · yS + L0,1 · yS + L0,0 which requires (6k/3)m after the computation of the coefficients
Li,j .

In the representation(
(y1−y2)
(x1−x2) · (x3 − xS) + yS + y3

)
·
(
x2

3 + x3xS + x2
S

)
y2
3 − y2

S

using the coordinates x3, y3 instead of x1, y1, it becomes obvious that the factor (x3−xS)(x2
3+

x3xS + x2
S) = y2

3 − y2
S appears in the left term of the numerator and that thus the whole

numerator is divisible by the subfield element yS + y3. (Note the sign change on y3 because
the line goes through (x3,−y3) by the geometric addition law on E.) This means that the
line function is of the form L2,0 · x2

S +L1,0 · xS +L0,1 · yS +L0,0, requiring only (3k/3)m after
the computation of the coefficients Li,j .

We obtain in projective coordinates

f ′ADD(U,R)(S) =
(Y1Z2 − Y2Z1)Z3(Y3 − ySZ3) + (X2

3 +X3Z3xS + Z2
3x

2
S)(X1Z2 −X2Z1)

(Y3 − ySZ3)(X1Z2 −X2Z1)Z3
.

The denominator can be discarded. To compute the numerator more efficiently we observe
that Z3 = Z1Z2(X1Z2 − X2Z1)3 so that we can divide by (X1Z2 − X2Z1); furthermore we
scale the function by 2 to allow an s-m tradeoff. This gives

f ′′ADD(U,R)(S) = 2Z2
3x

2
S + 2X3Z3xS − 2Z1Z2(X1Z2 −X2Z1)2(Y1Z2 − Y2Z1)Z3yS

+ 2X2
3 + 2Z1Z2(X1Z2 −X2Z1)2(Y1Z2 − Y2Z1)Y3.

We compute the addition and line computation using the following sequence of operations.

A = X1 · Z2, B = Y1 · Z2, C = Z1 · Z2, D = Z1 ·X2 −A, E = B − Z1 · Y2, F = D2,

G = E2, H = −D · F, I = F ·A, J = H + C ·G− 2I, K = C · F · E;
X3 = −D · J, Y3 = E · (I − J)− (H ·B), Z3 = C ·H, L = X2

3 , M = Z2
3 ,

N = (X3 + Z3)2 − L−M, L2,0 = 2M, L1,0 = N, L0,0 = 2(L+K · Y3), L0,1 = −2K · Z3.

The explicit formulas for computing (X3 : Y3 : Z3) are the same as in the EFD [9]; they
use 12m + 2s and use the intermediate variables A, . . . , J ; the values K, . . . , N are used in
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the computation of the line function. The total operation count for the above sequence of
operations is 16m + 5s in addition to the multiplications by x2

S , xS , and yS . Mixed addition
is cheaper saving one m in each of A,B, and C and needing only 13m + 5s.

In the pairing computation each addition is followed by a doubling. Thus L = X2
3 and

M = Z2
3 should be cached and used in the doubling computation. This reuse reduces the

effective costs of the addition step by 2s and similarly for the mixed-addition step. Accordingly
we report 16m + 3s and 13m + 3s in the comparison in Section 7.

7 Comparisons

This section compares the speed of our pairing formulas with the literature in the following
categories:

– (i): Curves of the form y2 = x3 + ax have twists of degree d = 2 and 4. We compare
operation counts with the results given by Ionica and Joux [26] and Arène et al. [2]; note
that those papers cover general Weierstrass curves but we are not aware of any other
study covering this case.

– (ii): Curves of the form y2 = x3 + c2 have a point of order 3 and admit twists of degrees
d = 2 and 6. These curves were studied in detail very recently in [12] and we only found
faster mixed addition formulas than those originally proposed.

– (iii): Curves of the form y2 = x3 + b do not necessarily have a point of order 3. We study
operation counts for twists of degree 2 and 6. These curves cover in particular BN curves
[8]. We compare our new formulas with those given for the same curve shape in [2].

– (iv) Curves of the form y2 = x3 + b also have twists of degree 3. This case requires
very different optimizations and has not been studied much in the literature. The first
paper studying pairing computation on curves admitting cubic twists [31] did not pay
close attention to the operation count itself, so we compare our formulas with the results
presented in [33], although that paper did not present addition formulas. Note that this
presentation does not show the big savings of our paper over [33] in that we need only
km multiplications instead of 2km multiplications to compute the line function.

In Table 4 we determine the operation counts for both the Tate and ate pairings in a typical
iteration of Miller’s algorithm, based on the fastest operation counts summarized in Table 3.
In optimized pairing implementations, the loop parameter is chosen to have a low Hamming
weight so that only few additions are encountered throughout the loop. Thus, the operation
counts presented in Table 4 are for the doubling stage of Miller’s algorithm. The column titled
Tate gives the equivalent number of total base field operations (multiplications and squarings
in Fp) for a Miller iteration, based on the fact that the first argument is R ∈ E(Fp) and the
second argument is S ∈ E(Fpk); for the fields of the individual coordinates see Table 1. The
column titled ate gives the equivalent number of base field operations for an iteration where
the first argument is R ∈ E′(Fpe) and the second argument is S ∈ E′(Fpk). If s = 2i3j , then
we can quantify the cost of a multiplication in the field Fps as 3i5j multiplications in Fp using
Karatsuba and/or Tom Cook multiplication, and we do the same for squarings, cf. [29] for
details. To compare across operations we follow the EFD [9] and report two sets of numbers:
the first ones are assuming that 1s = 1m and the second ones are assuming that 1s = 0.8m.
In the second case, we assume that squarings in Fpk do not make use of special properties of
the field extension. Thus we approximate the ratio of squaring to multiplication costs to be
0.8 as well. In both cases we assume multiplications by curve constants to be virtually free.
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Curve Fastest DBL Previous best DBL
Curve order Coordinates ADD Coordinates ADD

Twist degrees mADD mADD

(i) y2 = x3 + ax This paper (§4) 2m + 8s + 1da Arène et al. [2], 1m + 11s + 1da

- W(1,2) 18m + 5s + 3da Ionica and Joux [26] 9m + 6s
d = 2, 4 12m + 4s + 3da J 6m + 6s

(ii) y2 = x3 + c2 This paper (§5) 3m + 5s Costello et al. [12] 3m + 5s
3 | #E and [12] 13m + 2s + 1dc P 13m + 2s + 1dc

d = 2, 6 P 9m + 2s + 1dc 10m + 2s + 1dc

(iii) y2 = x3 + b This paper (§5) 2m + 7s + 1db Arène et al. [2] 3m + 8s
3 - #E and [12] 13m + 2s J 9m + 6s
d = 2, 6 P 9m + 2s 6m + 6s

(iv) y2 = x3 + b This paper (§6) 6m + 7s + 1db El Mrabet, Guillermin 8m + 9s + 1db

- P 16m + 3s and Ionica [33] ADD/mADD
d = 3 13m + 3s P not reported

Table 3. Comparisons of our pairing formulas with the previous fastest formulas.

We use the optimal methods of curve construction for each embedding degree, which were
originally presented in [17], to determine which categories ((i)-(iv)) E and E′ belong to.
We note that constructions 6.11-6.14 in [17] are due to [28]. The construction of BN curves
for k = 12 was given in [8] and construction 6.10 for k = 8 curves is due to [41]. For each
embedding degree, we also present the loop length ratios mopt : Te : r, where mopt is the loop
parameter of the optimal ate pairing, Te is the loop parameter of the twisted ate pairing and
r is the loop parameter of the standard Tate pairing. For all construction methods shown in
Table 4 there is an optimal ate pairing achieving the minimal loop length in Miller’s algorithm.
For the twisted ate pairing we used the shortest loop length found by considering the powers
of (t − 1)e mod r. In the last column, we compare the optimal ate pairing and twisted ate
pairing and present a factor that approximates how many times faster the computation of
the Miller loop is under the faster pairing option.

k Const. ϕ(k) ρ d E E′ mopt : Te : r Tate : ate Tate : ate amopt vs. ηTe

[17] (log) s = m s = 0.8m

4 6.4 2 2.000 4 (i) (i) 1 : 1 : 2 30 : 30 26.6 : 26.6 Even

6 6.6 2 2.000 6 (ii) (iii) 1 : 1 : 2 40 : 41 36 : 36.6 ηTe (1.02)

8 6.10 4 1.500 4 (i) (i) 3 : 3 : 4 68 : 88 61 : 77.8 ηTe (1.3)

9 6.6 6 1.333 3 (iv) (iv) 1 : 3 : 6 69 : 124 62.6 : 112 amopt (1.7)

12 6.8 4 1.000 6 (iii) (iii) 1 : 2 : 4 103 : 121 92.6 : 107.8 amopt (1.7)

16 6.11 8 1.250 4 (i) (i) 1 : 4 : 8 180 : 260 162.2 : 229.4 amopt (2.8)

18 6.12 6 1.333 6 (iii) (ii) 1 : 3 : 6 165 : 196 148.6 : 176 amopt (2.5)

24 6.6 8 1.250 6 (ii) (iii) 1 : 4 : 8 286 : 359 258 : 319.4 amopt (3.2)

27 6.6 18 1.111 3 (iv) (iv) 1 : 9 : 18 281 : 602 254.6 : 542 amopt (4.2)

32 6.13 16 1.125 4 (i) (i) 1 : 8 : 16 512 : 772 461.8 : 680.2 amopt (5.3)

36 6.14 12 1.167 6 (iii) (iii) 1 : 6 : 12 471 : 597 424.6 : 531 amopt (4.7)

48 6.6 16 1.125 6 (ii) (iii) 1 : 8 : 16 834 : 1069 752 : 950.2 amopt (6.2)

Table 4. Comparison of optimal ate pairing and twisted ate pairing.
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