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Abstract

We revisit the problem of constructing efficient secure two-party protocols for the problems of set-
intersection and set-union, focusing on the model of malicious parties. Our main results are constant-
round protocols that exhibit linear communication and a (practically) linear number of exponentiations
with simulation based security. In the heart of these constructions is a technique based on a combination
of a perfectly hiding commitment and an oblivious pseudorandom function evaluation protocol. Our
protocols readily transform into protocols that are UC-secure, and we discuss how to perform these
transformations.

Keywords: Secure two-party computation, Simulation-based security, Set-intersection, Set-union, Obliv-
ious pseudorandom function evaluation.

1 Introduction

Secure function evaluation (SFE) allows two distrusting parties to jointly compute a function of their re-
spective inputs as if the computation is executed in an ideal setting where the parties send inputs to a trusted
party that performs the computation and returns its result. Starting with the work of [46, 27, 11, 4], it is
by now well known that (in various settings, and considering semi-honest and malicious adversaries) any
polynomial-time computation can be generically compiled into a secure function evaluation protocol with
polynomial complexity. However, more often than not, the resulting protocols are inefficient for practical
uses and hence attention was given to constructing efficient protocols for specific functions. This approach
that proved quite successful for the semi-honest setting (see, e.g., [35, 20, 37, 1, 24, 33, 5, 39, 32, 36]), while
the malicious setting remained, at large, elusive (a notable exception is [1]).

We focus on the secure computation of basic set operations (intersection and union) where the parties
P1, P2, holding input sets X,Y , respectively, wish to compute X ∩Y or X ∪Y . These problems have been
widely looked at by researchers in the last few years [24, 33, 28, 6, 30, 8, 18], mainly due their potential
applications for dating services, datamining, recommendation systems, law enforcement, etc. Note that a
general protocol for these problems (e.g., [29, 31]), uses a circuit of size Ω(|X| · |Y |). Therefore, our main
goal in this work is to come up with protocols for set-intersection and set-union that are fully secured in the
malicious setting and are of better complexity to those known (including the above general results).

We begin by briefly surveying the current state of affairs with respect to two-party secure computation
of these functions for papers that relate to our work.
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• Freedman, Nissim and Pinkas studied set intersection in [24]. They represent a set by a polynomial
that zeros on the element of the set. Their construction for the semi-honest setting utilizes oblivious
polynomial evaluation and a balanced allocation scheme and exhibits linear communication (count-
ing field elements) and (almost) linear computation (counting modular exponentiations). We give a
detailed account of this protocol in Section 3.

Freedman et al. also present variants of the above protocol, for the case where one of the parties is
malicious and the other is semi-honest. In both cases, generic zero-knowledge proofs of adherence
to the protocol are avoided to gain in efficiency. The protocol for malicious P1 (client in [24]) and
semi-honest P2 (server) utilizes a cut-and-choose strategy and hence communication is inflated by
a statistical security parameter. The protocol for malicious P2 and semi-honest P1 is in the random
oracle model. A protocol that is secure in the fully malicious setup, that combines both techniques, is
sketched in Section 3.1.

• Kissner and Song [33] used polynomials to represent multi-sets. Letting the roots of QX(·) and
QY (·) coincide with elements of the multi-sets X and Y , Kissner and Song observed that if r(·), s(·)
are polynomials chosen at random then the roots of r(·) · QX(·) + s(·) · QY (·) coincide with high
probability with the multi-set X ∩ Y . This beautiful observation yields a set-intersection protocol
for the semi-honest case, where the parties use an additively homomorphic encryption scheme (the
Paillier scheme is suggested in [33]) to perform the polynomial multiplication, introducing quadratic
computation costs in the set sizes. For the security of the protocol, it is crucial that no party should
be able to decrypt on her own. Hence, the secret key should be shared and joint decryption should
be deployed. Assuming a trusted setup for the encryption scheme, the communication costs for the
two-party case are as in the protocol for semi-honest parties of [24].

For malicious parties [33] introduced generic zero-knowledge proofs for proving adherence to the
prescribed protocol (e.g., zero-knowledge proofs of knowledge for the multiplication of the encrypted
Qx(·) with a randomly selected r(·)). While this change seems to be of dire consequences to the
protocol efficiency, the analysis in [33] ignores its effects. Furthermore, the costs of setting the shared
key for the Paillier scheme are ignored in the analysis. To the best of our knowledge, there are
currently no efficient techniques for generating the shared Paillier keys, which do not incorporate an
external trusted dealer (the latter schemes include [21, 22] referenced in [33]).

In addition to that, Kissner and Song presented a protocol for the threshold set-union problem, where
only the elements that appear in the combined inputs more than t times are learnt by the parties.
Their protocol employs the same technique of polynomial multiplication and thus introduces quadratic
computation costs as above.

• Hazay and Lindell [28] revisited secure set intersection, with the aim of achieving efficient protocols
in presence of a more realistic adversarial behavior than in the benign semi-honest model, and under
standard cryptographic assumptions. Two protocols were presented, one achieves security in the
presence of malicious adversaries with one-sided simulatability, the other is secure in the presence of
covert adversaries [2]. The main tool used in these protocols is a secure implementation of oblivious
pseudorandom function evaluation.

Having P1, P2 hold sets of sizes mX ,mY respectively, both protocols in [28] are constant round, and
incur the communication of O(mX · p(n) + mY ) group elements and the computation of O(mX ·
p(n) +mY ) modular exponentiations, where set elements are taken from {0, 1}p(n).
We note that the protocols in [28] can be made secure in the malicious setup, e.g., by introducing
a secure key selection step for the oblivious PRF and by adding generic zero-knowledge proofs to
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show correctness at each step. While this would preserve the complexity of these protocols asymp-
totically (in mX ,mY ), the introduction of generic zero-knowledge proofs would probably make them
inefficient for practical use.

• Recently, Jarecki, and Liu [30] presented a very efficient protocol for computing a pseudorandom
function with a committed key (informally, this means that the same key is used in all invocations), and
showed that it yields an efficient set-intersection protocol. The main restriction of this construction
is that the input domain size of the pseudorandom function should be polynomial in the security
parameter (curiously, the proof of security for the set-intersection protocol makes use of the ability
to exhaustively search over the input domain, so removing the restriction on the input domain of the
pseudorandom function does not immediately yield a set-intersection protocol for a super-polynomial
domain).

1.1 Our Contributions

Our main contributions are efficient set-intersection and set-union protocols that are secure in the setup of
malicious parties. Our constructions are in the standard model, and are based on standard cryptographic
assumptions (in particular, no random oracle or a trusted setup).

Naturally, our main goal is to come up with protocols that exhibit low asymptotic communication and
computation costs. Noting that asymptotic complexity does not reveal everything about a protocol’s effi-
ciency or practicality, we avoid using generic zero-knowledge proofs of adherence to the prescribed pro-
tocols, even when they involve relatively short statements, and costly set up commutations that make the
efficient only for very large inputs.

Preventing the Players from Deviating from the Protocol: We inherit the oblivious polynomial eval-
uation and balanced allocation techniques used in [24]. On top of these we introduce an efficient zero-
knowledge proof that P1 uses to show that her encrypted polynomials were correctly produced (unlike
in [24], our proof does not use a cut-and-choose strategy), and a technique preventing player P2 from de-
viating meaningfully from the protocol. This technique combines a perfectly hiding commitment scheme
with an oblivious pseudorandom function evaluation protocol. In some sense, this construction replaces the
random oracle used in [24] in the case of a malicious sender, but this ‘replacement’ is only in a very weak
sense: In our construction P2 holds the key for the pseudorandom function, and hence the function does
not look random to P2. Furthermore, P2 does not need to invoke the oblivious pseudorandom evaluation
protocol to compute it. The consequence is that, unlike with the simulator for the protocol in the random
oracle model that can easily monitor all invocations of the oracle, our simulator cannot extract P2’s input to
the pseudorandom function.

We note that the protocols of [28] also use an oblivious pseudorandom function evaluation primitive,
where the the player analogous to P2 knows the key for the function. Their usage of this primitive is,
however, very unlike in our protocols. In the protocols of [28] the pseudorandom function is evaluated on
the set elements P2 holds, whereas in our protocols it is evaluated on a random payload. Furthermore, the
protocols in [28] are designed for the covert adversary model and for the one-sided simulatability model, and
hence a technique enabling the simulation of P2 is not needed, whereas our constructions allow simulation
of both parties.

Choosing the underlying encryption scheme: Our protocols make extensive use of a homomorphic en-
cryption scheme, and would remain secure (with only small modifications) under a variety of choices. We
chose to work with the El Gamal scheme (that is multiplicatively homomorphic) although it may seem
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that the more natural choice is the Paillier scheme [41], that is additively homomorphic (indeed, our initial
constructions were based on the Paillier scheme).

Using the Paillier scheme, a subtle problem emerges (this was overlooked, e.g., in [24]). Recall that
for the Paillier scheme pk = N, sk = ϕ(N). Now, if P1 knows sk when she constructs her polynomials,
then she may construct a polynomial Q(·) such that Q(y) ̸∈ Z∗

N for some specific ‘target’ value y. This
would allow her to learn about P2’s input beyond the intended protocol output. A possible solution is that
P1, P2 would first engage in a protocol to jointly generate pk and shares of sk, whereas P1 would learn sk
only after committing to her polynomials. This, however, introduces high key setup costs, and the result is a
protocol that exhibits low asymptotic costs, but, because of its high setup costs, its efficiency is gained only
for very large inputs.

Efficiency: Our protocols for set intersection and set union π∩, π∪ are constant round, work in the standard
model and do not require a trusted setup. The underlying encryption scheme is El Gamal where the keys are
selected by party P1. Both protocols do not employ any generic zero-knowledge proof.

Assuming the protocol of [23] for the pseudorandom function evaluation we get that for sets X,Y ⊂
{0, 1}p(n) of mX ,mY elements respectively, the costs of π∩, π∪ are of sending O(mX +mY · p(n)) group
elements, and the computation of O(mX +mY · (log logmX + p(n))) modular exponentiations. Note that
this is significantly better than O(mX ·mY ).

A significant improvement can be achieved by using a more efficient pseudorandom function evaluation
instead of using the function of [38] which requires a single oblivious transfer for every input bit. Further-
more, for set intersection, another significant improvement can be achieved if the size of the intersection
mX∩Y is allowed to be leaked (to P2). The resulting protocol is of sending O(mX + mX∩Y · p(n)) and
computing O(mX +mY · log logmX +mX∩Y · p(n)). When mX∩Y ≪ mY we get a protocol that is more
efficient than that of [28].

UC security: Our protocols readily transform into the UC framework as all our simulators are straight-line
in an hybrid model with access to some specific zero-knowledge proofs. We show how to modify our set
intersection protocol to one that is secure in the UC framework (in the common reference string model).

2 Preliminaries

Throughout the paper, we denote the security parameter by n, and, although not explicitly specified, input
lengths are always assumed to be bounded by some polynomial in n. A probabilistic machine is said to run
in polynomial-time (PPT) if it runs in time that is polynomial in the security parameter n alone. A function
µ(n) is negligible (in n) if for every polynomial p(·) there exists a value N such that µ(n) < 1

p(n) for all

n > N ; i.e., µ(n) = n−ω(1).
Let X = {X(n, a)}n∈N,a∈{0,1}∗ and Y = {Y (n, a)}n∈N,a∈{0,1}∗ be distribution ensembles (over

strings of length polynomial in n). We say that X and Y are computationally indistinguishable, denoted
X

c≡ Y , if for every polynomial non-uniform distinguisher D there exists a negligible µ(·) such that∣∣∣Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]
∣∣∣ < µ(n) for every n ∈ N and a ∈ {0, 1}∗.

2.1 Secure Two-Party Computation – Definitions

We briefly present the standard definition for secure multiparty computation and refer to [25, Chapter 7] for
more details and motivating discussion.
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Two-party computation. A two-party protocol problem is cast by specifying a random process that maps
pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a functionality and
denote it f = (f1, f2) : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗. That is, for every pair of inputs (x, y),
the output-vector is a random variable (f1(x, y), f2(x, y)) ranging over pairs of strings where the outputs
of P1, P2 are f1(x, y), f2(x, y) respectively. We use the notation (x, y) 7→ (f1(x, y), f2(x, y)) to describe
a functionality. For example, the Oblivious Transfer functionality is written ((x0, x1), σ) 7→ (λ, xσ), where
(x0, x1) is the first party’s input, σ is the second party’s input, and λ denotes the empty string (meaning that
the first party has no output). A special case for a two-party functionality is that of zero-knowledge proof of
knowledge for a relationRZK. This functionality is defined as:

(x, (x,w)) 7→
{

(1, λ) ifRZK(x,w) = 1
(⊥, λ) otherwise

Security of protocols. We prove the security of our protocols in the setting of malicious adversaries, that
may arbitrarily deviate from the specified protocol. Security is analyzed by comparing what an adversary
can do in a real protocol execution to what it can do in an ideal scenario. In the ideal scenario, the com-
putation involves an incorruptible trusted third party to whom the parties send their inputs. The trusted
party computes the functionality on the inputs and returns to each party its respective output. Informally, the
protocol is secure if any adversary interacting in the real protocol (i.e., where no trusted third party exists)
can do no more harm than what it could do in the ideal scenario. We consider the static setting where the
adversary is only able to corrupt a party at the outset of the protocol. There are technical issues that arise,
such as that it may be impossible to achieve fairness or guaranteed output delivery. E.g., it is possible for
the an adversarial party to prevent an honest party from receiving outputs.

Execution in the ideal model. In an ideal execution, the parties send inputs to a trusted party, that com-
putes the output. An honest party receives its input for the computation and just directs it to the trusted party,
whereas a corrupted party can replace its input with any other value of the same length. Since we do not
consider fairness, the trusted party first sends the output of the corrupted parties to the adversary, and the
adversary then decides whether the honest parties receive their (correct) outputs or an abort symbol ⊥. Let
f be a two-party functionality where f = (f1, f2), let A be a non-uniform probabilistic polynomial-time
machine, and let I ⊆ [2] be the set of corrupted parties (either P1 is corrupted or P2 is corrupted or neither).
Then, the ideal execution of f on inputs (x, y), auxiliary input z to A and security parameter n, denoted
IDEALf,A(z),I(x, y, n), is defined as the output pair of the honest party and the adversary A from the above
ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties directly
interact with each other. The adversary A controls the corrupted parties and hence sends all messages in
their place. The adversary is not bound to sending messages according to the protocol, and may follow an
arbitrary polynomial-time strategy. An honest party follows the instructions prescribed in the protocol π.

Let f be as above and let π be a two-party protocol for computing f . LetA be a non-uniform probabilis-
tic polynomial-time machine and let I ⊆ [2] be the set of corrupted parties. Then, the real execution of π on
inputs (x, y), auxiliary input z to A, and security parameter n, denoted REALπ,A(z),I(x, y, n), is defined as
the output vector of the honest parties and the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real execution
models, we can now define security of protocols. Loosely speaking, the definition asserts that a secure
protocol emulates (in the real execution model) the ideal execution model in which a trusted party exists.
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This notion is formulated by requiring the existence of adversaries in the ideal execution model that are able
to simulate adversarial behavior in the real execution model.

Definition 2.1 Let f and π be as above. Protocol π is said to securely compute f with abort in the presence
of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary A for the real
model, there exists a non-uniform probabilistic polynomial-time adversary S for the ideal model, such that
for every I ⊆ [2],{

IDEALf,S(z),I(x, y, n)
}
x,y,z∈{0,1}∗,n∈IN

c≡
{

REALπ,A(z),I(x, y, n)
}
x,y,z∈{0,1}∗,n∈IN

where |x| = |y|.

The f -hybrid model. In our constructions we will use secure two-party protocols as sub-protocols. A
standard way of abstracting out the details of a sub-protocol computing a functionality f is to work in a
hybrid model where the two parties directly interact with each other (as in the real model) as well as access a
trusted implementation of f (as in the ideal model). In an execution of a protocol π that uses a sub-protocol
for securely computing f , the parties run π and issue ideal calls to a trusted party for computing f instead
of invoking the sub-protocol for f . These ideal calls are just instructions to send an input to the trusted
party, which, upon receiving the inputs from the parties, computes f and sends each party its corresponding
output. After receiving these outputs back from the trusted party, the protocol π continues. We stress that
this is a sequential composition, i.e., the parties do not send messages in π between the time that they send
input to the trusted party and the time that they receive back output. The trusted party may be used a number
of times throughout the execution of π. However, each invocation of the functionality f is independent (i.e.,
the trusted party does not maintain any state between these calls). We call the regular messages of π that are
sent amongst the parties standard messages and the messages that are sent between parties and the trusted
party ideal messages.

Let f be a functionality and let π be a two-party protocol that uses ideal calls to a trusted party computing
f . Furthermore, let A be a non-uniform probabilistic polynomial-time machine and let I be the set of
corrupted parties. Then, the f -hybrid execution of π on inputs (x, y), auxiliary input z to A and security
parameter n, denoted HYBRID

f
π,A(z),I(x, y, n), is defined as the output vector of the honest parties and the

adversary A from the hybrid execution of π with a trusted party computing f .
Let f and π be as above, and let ρ be a protocol. Consider the real protocol πρ that is defined as follows.

All standard messages of π are unchanged. When a party Pi is instructed to send an ideal message αi to the
trusted party, it begins a real execution of ρ with input αi instead. When this execution of ρ concludes with
output βi, party Pi continues with π as if βi was the output received by the trusted party (i.e. as if it were
running in the f -hybrid model). Then, the composition theorem of [7] states that if ρ securely computes f ,
then the output distribution of a protocol π in a hybrid execution with f is computationally indistinguishable
from the output distribution of the real protocol πρ. Thus, it suffices to analyze the security of π when using
ideal calls to f ; security of the real protocol πρ is derived via this composition theorem.

2.2 The El Gamal Encryption Scheme

The El Gamal encryption scheme operates on a cyclic group G of prime order q. We will work in the group
Z∗
q′ where q′ = 2q + 1 is prime, and set G to be the subgroup of Zq′ of quadratic residues modulo q′ (note

that membership in G can be easily checked). Let g denote a random generator in G, then the public and
secret keys are ⟨G, q, g, h⟩ and ⟨G, q, g, x⟩ where x←R Zq and h = gx. A message m ∈ G is encrypted by
choosing y ←R Zq and the ciphertext is ⟨gy, hy ·m⟩. A ciphertext c = ⟨α, β⟩ is decrypted as m = β/αx.
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We use the property that given y = logg α one can reconstruct m = β/hy and hence a party encrypting m
can prove knowledge of m by proving knowledge of y.

The semantic security of the El Gamal scheme follows from the hardness of decisional Diffie-Hellman
(DDH) in G. The El Gamal scheme is homomorphic relative to multiplication. I.e., if ⟨α1, β1⟩ encrypts m1

and ⟨α2, β2⟩ encrypts m2 then ⟨α1 · α2, β1 · β2⟩ encrypts m1m2.

2.3 Perfectly Hiding Commitment

We use a perfectly-hiding commitment scheme (com, dec) with a zero-knowledge proof of knowledge πCOM

for the relation
RCOM =

{(
c, (r,m)

)
| c = com(m; r)

}
,

where com(m; r) denotes the commitment to a message m using random coins r. We instantiate com(·; ·)
with Pedersen’s commitment scheme [42], using the same underlying group G used for the El Gamal
scheme. I.e., let q′ = 2q+1 where q′, q are primes and let g, h be generators of the subgroup G of quadratic
residues modulo q′. A commitment to m is then defined as com(m; r) = gmhr where r ←R Zq−1. The
scheme is perfectly hiding as for every m, r,m′ there exists a single r′ such that gmhr = gm

′
hr

′
. The

scheme is binding assuming hardness of computing logg h. However, given logg h, it is possible to de-
commit any commitment c into any message m ∈ Zq. We instantiate πCOM with the proof of knowledge
from [40] (this proof is not a zero-knowledge proof, yet can be modified using standard techniques; [26]).

2.4 Zero-knowledge Proofs

Our protocols employ zero-knowledge proofs of knowledge for the following relations (in the following, G
is a group of prime order):

Proof Type Protocol Relation/Language Reference
ZKPK πDL RDL = {((G, g, h), x) | h = gx} [44]
ZKPK πDDH RDDH = {((G, g, g1, g2, g3), x) | g1 = gx ∧ g3 = gx2}} [13]

ZK πNZ LNZ = {(G, g, h, ⟨α, β⟩) | ∃ (m ̸= 0, r) s.t. α = gr, β = hrgm} Section 2.4.1

2.4.1 Zero-Knowledge Proof for LNZ

We use standard techniques for constructing a zero-knowledge proof for the language of encryptions ⟨α, β⟩
of non-zero exponents of g:

LNZ = {(G, g, h, ⟨α, β⟩) | ∃ (m ̸= 0, r) s.t. α = gr, β = hrgm} .

The construction is based on a zero-knowledge protocol πMULT for the language

LMULT =
{
(G, g, h, c1, c2, c3) | ∃m,m′ ∈ Zq s.t. c1, c2, c3 are encryptions of gm, gm

′
, gmm′

resp.
}
.

πMULT is a modification of a protocol by Damgård and M. Jurik [15] designed for the Paillier encryption
scheme:

Protocol 1 (zero-knowledge proof for LMULT):

• Joint statement: A public key h for El Gamal encryption, and encryptions ⟨α, β⟩, ⟨α′, β′⟩, ⟨α′′, β′′⟩ (where
h, α, β, α′, β′, α′′, β′′ ∈ G).
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• Auxiliary input for the prover: Three message-randomness pairs (m, r), (m′, r′), (m′′, r′′) such that ⟨α, β⟩, ⟨α′, β′⟩,
⟨α′′, β′′⟩ are encryptions of of gm, gm

′
, gm

′′
with randomness r, r′, r′′ respectively, and m′′ = mm′.

• Auxiliary inputs for both parties: A prime p such that p− 1 = 2q for a prime q, the description of a group G
of order q for which the DDH assumption holds, and a generator g of G.

• The protocol:

1. V chooses at random c ∈ Zq and sends a commitment z = com(c; y) = gchy to P . The parties engage
in the protocol πCOM where V proves knowledge of the committed value c and the randomness y. If V
fails to prove knowledge of c, then P aborts.

2. P chooses at random a ∈ Zq sets b = am′ and sends to V encryptions ⟨αa, βa⟩ and ⟨αb, βb⟩ of ga and
gb respectively (i.e., ga is encrypted as ⟨αa, βa⟩ = ⟨gra , hraga⟩ where ra is chosen at random from Zq,
and similarly for gb).

3. V opens the commitment by sending y, c to P . P verifies that the commitment was opened correctly and
aborts if this is not the case.

4. Both parties use the homomorphic properties of the scheme to compute an encryption ⟨αd, βd⟩ of gd where
d = cm + a. P sends d to V , and proves in zero knowledge that (g, h, αd, βd/g

d) is a Diffie-Hellman
tuple, i.e., ⟨αd, βd⟩ is an encryption of gd.

5. Both parties use the homomorphic properties of the scheme to compute an encryption ⟨αe, βe⟩ of ge where
e = dm′− b− cm′′. Note that if m′′ = mm′ then e = dm′− b− cm′′ = (cm+a)m′−am′− cm′′ = 0.
P proves in zero knowledge that (g, h, αe, βe/g

d) is a Diffie-Hellman tuple, i.e., ⟨αe, βe⟩ is an encryption
of g0 = 1.

6. V accepts if it accepts in all zero-knowledge proofs.

Proposition 2.1 Assume that com is a perfectly-hiding commitment scheme. Then, Protocol 1 is a zero-
knowledge proof for LMULT with perfect completeness and negligible soundness error.

Proof: Our proof is in the hybrid setting where a trusted party computes πDDH and πCOM. It is easy to check
that all of V ’s checks pass when interacting with a honest P that follows the protocol, and hence we have
perfect completeness. To prove soundness, let a, b be the numbers encrypted in the first two encryptions
sent by a. Since V computes the encryption of d, it must be that d = cm + a. The first zero-knowledge
proof ensures that V indeed learns d. Similarly, since V computes the encryption of e, it must be that
e = dm′− b− cm′′ = (cm+ a)m′− b− cm′′ = c(mm′−m′′)+ am′− b. Now, if mm′ ̸= m′′ then e = 0
only if c = (b− am′)/(mm′ −m′′). As V accepts only if e = 0, we get that it accepts with probability at
most 1/q.

Zero knowledge. Construct a simulator S for V ∗ as follows. The input to S is (g, h, ⟨α, β⟩, ⟨α′, β′⟩, ⟨α′′, β′′⟩),
i.e., the encryption of m,m′,m′′, and, furthermore, mm′ = m′′. The simulator receives V ’s commitment
z, and the inputs c, y to the functionality RCOM. If the functionality returns 0 then S aborts. Otherwise, S
computes an encryption ⟨αe, βe⟩ to g0, chooses d ∈ Zq at random, and computes an encryption ⟨αd, βd⟩ to
gd. Finally, S uses the homomorphic operations to compute encryption ⟨αa, βa⟩ of ga where a = d − cm
and an encryption ⟨αb, βb⟩ of gb where b = dm′ − cm′′. S completes the execution of the protocol using
encryptions ⟨αa, βa⟩ and ⟨αb, βb⟩, and returning 1 to V in each of the invocation of the zero-knowledge
proofs.

V manages to open the commitment to a value that is different from that given as input to RCOM with
only a negligible probability. If that is not the case, then the views are identical (to see that, note that the a
and b are distributed identically in both executions).

We continue with a zero-knowledge proof πNZ for language LNZ.
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Protocol 2 (zero-knowledge proof for LNZ):

• Joint statement: A public key h for El Gamal encryption, and an encryption ⟨α, β⟩ (h, α, β ∈ G).

• Auxiliary input for the prover: A pair (m, r) such that m ̸= 0 and ⟨α, β⟩ is an encryption of m with
randomness r, i.e., α = gr and β = hrgm.

• Auxiliary inputs for both parties: A prime p such that p− 1 = 2q for a prime q, the description of a group G
of order q for which the DDH assumption holds, and a generator g of G.

• The protocol:

1. The prover P chooses a random value m′ ∈ Zq \ {0} and sets m′′ = mm′. P computes encryptions
⟨α′, β′⟩, ⟨α′′, β′′⟩ of gm

′
, gm

′′
respectively , i.e., α′ = gr

′
, β′ = hr′gm

′
and α′′ = gr

′′
, β′′ = hr′′gm

′′
.

2. P, V engage in πMULT, where P proves that the ciphertexts ⟨α, β⟩, ⟨α′, β′⟩, ⟨α′′, β′′⟩ encrypt messages
gm, gm

′
, gm

′′
such that m′′ = mm′.

3. P sends m′′ and proves that ⟨α′′, β′′⟩ is an encryption of gm
′′

by proving that (g, h, α′′, β′′/gm
′′
) is a

Diffie-Hellman tuple using πDDH.

4. V accepts if it accepts in the zero-knowledge proof and the received m′′ is non-zero.

Proposition 2.2 Assuming hardness of the DDH problem Protocol 2 is a computational zero-knowledge
proof for LNZ with perfect completeness and negligible soundness.

Proof: Our proof is in the hybrid setting where a trusted party computes πDDH and πMULT. Completeness
follows trivially as all of V ’s checks pass when interacting with the honest P that computes m′′, α′, β′, α′′, β′′

correctly. To prove soundness also follows easily noting that a zero m multiplied by any value results a zero,
hence P fails in proving that ⟨α′′, β′′⟩ is an encryption of gm

′′
for m′′ ̸= 0.

Zero knowledge. We construct a simulator S for V ∗ as follows: The input to S the encryption of m,
i.e., (g, h, ⟨α, β⟩). S chooses m′,m′′ at random and sends to V their encryptions ⟨α′, β′⟩, ⟨α′′, β′′⟩. It then
emulates the trusted party for πMULT and returns 1 to the verifier for the hybrid executions of πMULT. Finally,
S sends m′′ to V , then emulates the trusted party for πDDH and returns 1 to V .

The view of V is (g, h, α, β, α′, β′, α′′, β′′,m′′), where ⟨α, β⟩, ⟨α′, β′⟩, ⟨α′′, β′′⟩ are encryptions of mes-
sages m,m′,m′′. In the hybrid execution m′′ = mm′ whereas in the simulated execution m′′ is random.
The computationally indistinguishability of these views follows directly from the semantic security of the
El Gamal encryption scheme.

2.5 Balanced Allocation

We employ a scheme for randomly mapping elements into bins, as suggested in [24]. We use the balanced
allocation scheme of [3] where elements are inserted into B bins as follows. Let h0, h1 : {0, 1}p(n) → [B]
be two randomly chosen hash functions mapping elements from {0, 1}p(n) into bins 1, . . . , B. An element
x ∈ {0, 1}p(n) is inserted into the less occupied bin from {h0(x), h1(x)}, where ties are broken arbitrarily.
If m elements are inserted, then except with negligible probability over the choice of the hash functions
h0, h1, the maximum number of elements allocated to any single bin is at most M = O(m/B + log logB).
Setting B = m

log logm we get that M = O(log logm).1 In the protocol we deviate insignificantly from
the description above, and let P1 choose seeds for two pseudorandom functions, that are used as the hash
functions h0, h1.

1A constant factor improvement is achieved using the Always Go Left scheme in [45] where h0 : {0, 1}p(n) → [1, . . . , B
2
], h1 :

{0, 1}p(n) → [ b
2
+1, . . . , B]. An element x is inserted into the less occupied bin from {h0(x), h1(x)}; in case of a tie x is inserted

into h0(x).
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2.6 Oblivious PRF Evaluation

We use a protocol πPRF for that obliviously evaluates a pseudorandom function in the presence of a ma-
licious adversary. Let IPRF be the indexing algorithm for a pseudorandom function ensemble, and let
k ←R IPRF(1

n) be a sampled key. The functionality FPRF is defined as

(k, x) 7→ (λ, FPRF(k, x)) (1)

The PRF may be instantiated with the Naor-Reingold pseudorandom function [38] with the protocol pre-
sented in [23] (and proven in [28]). The function is defined as

FPRF((a0, . . . , an), x) = ga0
∏n

i=1 a
x[i]
i ,

where G is a group of prime order q, g is a generator of G, ai ∈ Zq and x = (x[1], . . . , x[n]) ∈ {0, 1}n.
The protocol involves executing an oblivious transfer for every bit of the input x. Combining this with the
fact that n oblivious transfers runs require 11n+29 exponentiations using the protocol in [43] (the analysis
in [43] includes the cost for generating a common reference string), one gets a constant-round protocol that
securely computes FPRF in the presence of malicious players using a constant number of exponentiations
for every bit of the input x.

3 Secure Set Intersection

We now consider the functionality of set intersection, where each party’s input consists of a set, and the size
of the other party’s input set. If the set sizes match, then the functionality outputs the intersection of these
input sets to P1. Otherwise P1 is given ⊥. More formally:

Definition 3.1 Let X and Y be subsets of a predetermined domain (wlog, we assume X,Y ⊂ {0, 1}p(n) for
some polynomial p() such that 2p(n) is super-polynomial in n, and that the set elements can be represented
as elements of some finite group), the functionality F∩ is:

((X,mY ), (Y,mX)) 7→
{

(X ∩ Y, λ) if |X| = mX , |Y | = mY and X,Y ⊆ {0, 1}p(n)
(⊥, λ) otherwise

In the rest of this section we present in detail our construction for a protocol realizing F∩ in the presence
of malicious adversaries. We begin by briefly describing the construction of Freedman et al. [24] for semi-
honest parties that serves as our starting point.

Secure Set Intersection with Semi-Honest Parties. The main tool used in the construction of [24] is
oblivious polynomial evaluation. The basic protocol works as follows:

1. Party P1 chooses encryption/decryption keys (pk, sk) ← G(1n) for a homomorphic encryption
scheme (G,E,D) and sends pk to P2.

2. P1 computes the coefficients of a polynomial Q(·) of degree mX , with roots set to the mX elements
of X , and sends the encrypted coefficients to P2.

3. For each element y ∈ Y (in random order), party P2 chooses a random value r (taken from an
appropriate set depending on the encryption scheme), and uses the homomorphic properties of the
encryption scheme to compute an encryption of r ·Q(y) + y. P2 sends the encrypted values to P1.
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4. Upon receiving these encrypted values, P1 extracts X∩Y by decrypting each value and then checking
if the result is in X . Note that if y ∈ X ∩ Y then by the construction of the polynomial Q(·) we get
that r ·Q(y)+y = r ·0+y = y. Otherwise, r ·Q(y)+y is a random value that reveals no information
about y and (with high probability) is not in X .

Note that the communication complexity of this simple scheme is linear in mX + mY , as mX + 1
encrypted values are sent from P1 to P2 (these are the encrypted coefficients of Q(·)), and mY encrypted
values are sent from P2 to P1 (i.e., Q(y) for every y ∈ Y ). However, the work performed by P2 is high, as
each of the mY oblivious polynomial evaluations includes performing O(mX) exponentiations, totaling in
O(mX ·mY ) exponentiations.

To save on computational work, Freedman et al. introduced a balanced allocation scheme into the proto-
col. Loosely speaking, they used the balanced allocation scheme of [3] mentioned above with B = mX

log logmX

bins, each of size M = O(mX/B + log logB) = O(log logmX). Party P1 now uses the balanced alloca-
tion scheme to hash every x ∈ X into one of the B bins resulting (with high probability) with each bin’s
load being at most M . Instead of a single polynomial of degree mX party P1 now constructs a degree-M
polynomial for each of the B bins, i.e., polynomials Q1(·), . . . , QB(·) such that the roots of Qi(·) are the
elements put in bin i. As some of the bins contain less than M elements, P1 pads each polynomial with zero
coefficients up to degree M . Upon receiving the encrypted polynomials, party P2 obliviously evaluates the
encryption of r0 ·Qh0(y)(y) + y and r1 ·Qh1(y)(y) + y for each of the two bins h0(y), h1(y) in which y can
be allocated, enabling P1 to extract X ∩ Y as above.

Neglecting small constant factors, the communication complexity is not affected as P1 now sends
BM = O(mX) encrypted values and P2 replies with 2mY encrypted values. There is, however, a dra-
matic reduction in the work performed by P2 as each of the oblivious polynomial evaluations amounts now
to performing just O(M) exponentiations, and hence P2 performs O(mY · M) = O(mY · log logmX)
exponentiations overall. For completeness we include a description of the protocol by Freedman et al. for
semi-honest parties:

Protocol 3 (set-intersection protocol secure in the presence of semi-honest parties):

• Inputs: The input of P1 is mY and a set X ⊆ {0, 1}p(n) containing mX items; the input of P2 is mX and a
set Y ⊆ {0, 1}p(n) containing mY items.

• Auxiliary inputs: A security parameter 1n.

• The protocol:

1. Key setup: P1 chooses the secret and public keys (sk, pk) for the underlying homomorphic encryption
scheme (e.g., Paillier or El Gamal). She sends pk to P2.

2. Setting the balanced allocation scheme: P1 computes the parameters B,M for the scheme and chooses
the seeds for two (pseudo-)random hash functions h0, h1 : {0, 1}p(n) → [B]. She sends B,M, h0, h1 to
P2.

3. Creating polynomials for the set X: For every x ∈ X , P1 maps x into the less occupied bin from
{h0(x), h1(x)} (ties broken arbitrarily). Let Bi denote the set of elements mapped into bin i and let

Qi(x)
def
=

∑M
j=0 Qi,j · xj denote a polynomial with the set of roots Bi. P1 encrypts the coefficients of the

polynomials and sends the encrypted coefficients to P2.

4. Substituting in the polynomials: Let y1, . . . , ymY be a random ordering of the elements of set Y . P2

does the following for all α ∈ {1, . . . ,mY }:

(a) He sets ĥ0 = h0(yα), ĥ1 = h1(yα).
(b) He chooses two random elements in the underlying group of the homomorphic encryption scheme

r0, r1. He then uses the homomorphic properties of the encryption scheme to compute an encryption
of r0 ·Qĥ0

(yα) + yα and r1 ·Qĥ1
(yα) + yα. Both encrypted values are sent to P1.
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5. Computing the intersection: P1 decrypts each received value. If the decrypted value is in X then P1

records as part of her local output.

Note that, since the parties are semi-honest, P1 outputs X ∩ Y with probability negligibly close to 1: (i)
For elements yα ∈ X ∩Y we get that Qh0(yα)(yα) = 0 or Qh1(yα)(yα) = 0, hence one of the corresponding
encrypted values is yα itself, and P1 would record it in its local output. (ii) For yα ̸∈ X ∩ Y we get that
Qh0(yα)(yα) ̸= 0 and Qh1(yα)(yα) ̸= 0 and hence corresponding encrypted values are two random values
r0 + y and r1 + y that fall within X with only a negligible probability.

Efficiency. The protocol runs in a constant number of rounds. The communication costs are of sending
the encrypted polynomials (BM values) and the encrypted r0 ·Qĥ0

(yα) + yα and r1 ·Qĥ1
(yα) + yα (2mY

values). Using the El Gamal or Paillier encryption schemes, the computation costs are of encrypting the
polynomials (O(BM) exponentiations) and of obliviously computing the encryptions of r0 ·Qĥ0

(yα) + yα
and r1 ·Qĥ1

(yα)+yα (O(MmY ) exponentiations). Overall, we get that the overall communication costs are
of sending O(mX +mY ) encryptions, and the computation costs are of performing O(mX +mY log log n)
modular exponentiations.

3.1 Constructing a Protocol for Malicious Parties

We note a couple of issues that need to be addressed in transforming the above protocol for semi-honest
parties to a protocol for malicious parties:

1. It is easy for P1 to construct the B polynomials such that it would learn about elements that are
not in the intersection X ∩ Y . For instance, if Qi(·) is identically zero then P1 learns all elements
{y ∈ Y : h0(y) = i or h1(y) = i}. Similarly, if the sum of degrees of Q1, . . . , QB exceeds mX then
P1 may learn about more than mX elements in P2’s input.

To resolve these problems we introduce a zero-knowledge protocol for verifying that Qi ̸≡ 0 for all
i ∈ {1, . . . , B}, and

∑
i∈{1,...,B} deg(Qi) = mX .

2. While party P2 is supposed to send mY pairs of encryptions resulting from substituting a value y
(known to P2) in the (encrypted) polynomials Qh0(y) and Qh1(y) it may deviate from his prescribed
computation. Thus, P2’s input to the protocol may be ill defined. A solution suggested in [24]
solves this problem partially, as it deals with the case where each element y is substituted in a single
polynomial. This solution avoids the standard usage of zero-knowledge proofs by P2 that it indeed
followed the protocol. Instead, it enables party P1 to redo the entire computation supposedly carried
out by P2 on y and verify that its outcome is consistent with the messages received from P2 (this is
where the construction uses a random oracle).

We remove the dependency on the random oracle and present a solution to the case where y is substi-
tuted in two polynomials.

3.2 Checking the Polynomials

Our set-intersection protocol utilizes a zero-knowledge proof of knowledge for the relation2

RPOLY =
{(
{qi,j}i,j ,mX , pk

)
,
(
{Qi,j , ri,j}i,j

)∣∣∣ ∀i, j qi,j = Epk(Qi,j ; ri,j) ∧∑
i deg(Qi(·)) = mX ∧ ∀i, Qi(·) ̸≡ 0

}
2We will use the convention that the degree of a polynomial Qi(·) can be chosen to be any integer j′ such that Qi,j = 0 for all

j ≥ j′, hence equality with mX can always be achieved.
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where i ∈ {1, . . . , B}, j ∈ {0, . . . ,M}.
For completeness, we give the zero-knowledge proof of knowledge for RPOLY. The main ingredient of

the protocol is a sub-protocol where for every polynomial Qi(·) the prover sends a sequence of encrypted
values Zi,j where Zi,j = 1 for every 0 ≤ j ≤ deg(Qi(·)), and 0 otherwise. After the prover proves that
the values Zi,j were constructed correctly, calculating the sum of degrees easily translates to summing over
Zi,j for 1 ≤ i ≤ B and 0 ≤ j ≤ M . This can be done using the homomorphic properties of the El Gamal
encryption scheme. More formally,

Protocol 4 (zero-knowledge proof of knowledge πPOLY forRPOLY):
Joint statement: B · (M + 1) encryptions {qi,j}i∈{1,...,B},j∈{0,...,M}, a public-key pk = ⟨G, q, g, h⟩ and an
integer mX .

• Auxiliary inputs for the prover: B ·(M+1) pairs {Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M} where qi,j is an encryption
of Qi,j with randomness ri,j .

• Convention: Both parties check every received ciphertext for validity (i.e, that it is in G), and abort if an invalid
ciphertext is received. Unless written differently, i ∈ {1, . . . , B} and j ∈ {0, . . . ,M}.

• Notation: We abuse notation and write Epk(m) (instead of Epk(g
m)) for the encryption of gm. Using this

notation, the El Gamal encryption scheme is additively homomorphic. We note, however, that the result of
decrypting Epk(m) is gm, i.e., Dsk (Epk(m)) = gm.

• The protocol:

1. For every qi,j = ⟨αi,j , βi,j⟩, P proves the knowledge of logg αi,j using πDL.

2. P sets Zi,j = 1 for 0 ≤ j ≤ deg(Qi(·)), and otherwise Zi,j = 0. The prover P computes zi,j =
Epk(Zi,j) and sends {zi,j}i,j to the verifier V . For all i ∈ {1, . . . , B}, j ∈ {0, . . . ,M}, V chooses
ui,j ←R Zq and sends {ui,j}i,j to P . For i ∈ {1, . . . , B}, P performs the following:

(a) P proves that Zi,0, Zi,1, . . . , Zi,M is monotonically non-increasing, i.e., that Zi,j = 0 and Zi,j+1 = 1
does not happen for any value of j ∈ {0, . . . ,M − 1}. For that, P and V compute an encryptions
of Zi,j − Zi,j+1 and 1 − Zi,j − Zi,j+1, and P proves that Zi,j − Zi,j+1 ∈ {0, 1} by showing that
one of these encryptions denotes a Diffie-Hellman tuple.3

(b) It completes the proof that the values Zi,j were constructed correctly by proving (similarly to Step 2a
above) for all i, j that one of the encryptions {qi,j , z′i,j} is an encryption of zero, where z′i,j is an
encryption of 1− Zi,j .4

(c) It proves that for all i, that Qi(·) is not identically zero (i.e., that Qi,j ̸= 0 for some j): Both
parties use the homomorphic properties of the encryption scheme to compute an encryption vi =
Epk(

∑M
j=0 ui,j ·Qi,j). P then proves that vi is not an encryption of zero using πNZ.

(d) Finally, to prove that the sum of degrees of the polynomials {Qi(·)} equals mX , both parties com-
pute an encryption t of T =

∑
i,j Zi,j − B − mX . Then P proves that (pk,Epk(T )) is a Diffie-

Hellman tuple using πDDH.

3. V verifies all the zero-knowledge proofs and decryptions. If any of the verifications fails, V outputs 0,
otherwise, it outputs 1.

Note that Protocol πPOLY runs in a constant number of rounds because each of the zero-knowledge
proofs can be implemented in constant rounds and can be invoked in parallel for multiple instances. The

3This proof is a simple extension of the standard proof for RDDH using a general technique. In particular, the prover separates
the challenge c it is given by the verifier into two values; c1 and c2 such that c = c1 ⊕ c2. Assume w.l.o.g. that it does not have
a witness for the first statement, then it always chooses c1 in which it knows how to complete the proof (similarly to what the
simulator for πDDH does), and uses its witness for the other statement to complete the second proof on a giving challenge c2. Note
that the verifier cannot distinguish whether the prover knows the first of the second witness. See [12] for more details.

4We ignore the case in which both encryptions are zero encryptions since it means that P may not count a zero.
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parties compute and exchange O(BM) = O(mX) encryptions and execute O(BM) = O(mX) zero-
knowledge proofs (for πDDH, πNZ). Overall, these amount to performing O(mX) exponentiations and ex-
changing O(mX) group elements.

We prove security in the following theorem,

Theorem 3.2 Assume that πDL, πDDH and πNZ are as described above and that (G,E,D) is the El Gamal
encryption scheme. Then πPOLY (Protocol 4) is a computational zero-knowledge proof of knowledge for
RPOLY with perfect completeness.

Proof: We first show perfect completeness. Clearly, V always accepts and outputs 1 since the parties sum
up the degrees of the polynomials from the set {Qi(·)}i.

Zero knowledge. Let V ∗ be an arbitrary probabilistic polynomial-time strategy for V . Then a simulator
SPOLY for this proof can be constructed using the simulators SDL, SDDH and SNZ from the corresponding
proofs of πDL, πDDH and πNZ. That is, SPOLY invokes V ∗ and sends it the sets of encryptions {zi,j}i,j and
{mi,j}i,j , that actually are encryptions of zeros. It completes the execution such that every time it is needed
to play a prover in a zero-knowledge proof, it runs the appropriate simulator.

We show below that the output distributions in the real and the simulated proofs are computationally
indistinguishable. The proof uses a sequence of hybrid games.

Game H0: The simulated execution.

Game H1: In this game the simulator S1 is given as input P ’s witness {Qi,j , ri,j}i,j . S1 works exactly like
S, except that instead of sending zero encryptions, it computes the sets {zi,j}i,j as in the real proof. Then
the output distributions in the simulation and in game Game H1 is computationally indistinguishable via a
standard reduction to the security of (G,E,D).

Games H2 − H5: In this series of games we replace every invocation of a simulator with the correspond-
ing real prover. The proof that the output distribution of every two consecutive games is computationally
indistinguishable is by reduction to the zero-knowledge property of these proofs.

Note that the last game is identical to the real proof and thus the proof is concluded.

Knowledge extraction. Let P ∗
x,ζ,ρ be an arbitrary prover machine where x = ({qi,j}i,j ,mX , pk), ζ is an

auxiliary input and ρ is P ∗
x,ζ,ρ’s random tape. In the following analysis, we neglect the probability that each

of the following event occurs, as it is negligible: (i) In one of the zero-knowledge proofs V accepts a false
statement made by P ∗

x,ζ,ρ; (ii) For some i ∈ {1, . . . , B}
∑M

j=0 ui,j ·Qi,j = 0 although
∑M

j=0Qi,j ̸= 0 (due
to the randomness of {ui,j}i,j).

Conditioned on the above, it follows immediately that none of the polynomials Qi(·) is identically zero
(otherwise, P ∗

x,ζ,ρ convinces V on a false statement for LNZ). It is left to show that
∑

i deg(Qi(·)) − B =
mX . For all i and j let Zi,j denote the decrypted value of zi,j , and note that Zi,j ∈ {0, 1} (if computed
honestly) because either Zi,j = 0 or 1 − Zi,j = 0. Noting that the value a − b ∈ {0, 1} excludes the
case where a = 0 and b > 0, we get that that for all i the sequence Zi,0, . . . , Zi,M is monotonically non-
increasing, and finally, as one of these values {(1−Zi,j), Qi,j} equals zero, it must be that Zi,j = 1 whenever
Qi,j ̸= 0.5 Combining these two last observations with Qi(·) ̸≡ 0, we get that

∑
j Zi,j ≥ deg(Qi(·)) + 1.

Furthermore, we have that
∑

i,j Zi,j −B = mX , as proven in Step 2d, we therefore get the required bound
on the sum of degrees.

5We ignore the case in which Zi,j > 1 since it must be that Qi,j = 0 and so, P counts zero elements which only increases the
overall sum.
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It remains to show the existence of a knowledge extractor K which works as follows. It first plays the
verifier in πPOLY and aborts if it does not accept the proof. If it accepts the proof, then it runs the knowledge
extractor for πDL in order to obtain ri,j = logg αi,j for all i, j. It then sets Qi,j = (βi,j)/(αi,j)

ri,j . If K does
not succeed in extracting, it outputs fail. (Doing the above naively as described may result in K running in
super-polynomial time. This can be solved using the witness-extended emulator described in [34].)

3.3 Secure Set-Intersection in the Presence of Malicious Adversaries

We now get to the main contribution of this work – a protocol that securely computes F∩ in the presence of
malicious adversaries, in the standard model. The main ingredient is a subtle combination of an oblivious
pseudorandom function evaluation protocol and a perfectly hiding commitment scheme. Somewhat counter
intuitively, the oblivious PRF need not be committed (in a sense that the same key is being reused) – the
proof of security shows that although party P2 that controls the key may change it between invocations, this
does not get him any advantage.

The oblivious PRF is used to save on using a (generic) zero-knowledge protocol for party P2’s adherence
to the protocol. Recall that in the protocol of Freedman et al. P1 learns for every y ∈ Y two values:
r0 ·Qh0(y)(y) + y and r1 ·Qh1(y)(y) + y where r0, r1 are randomly distributed. If y ̸∈ X then both values
are random, and reveal no information about y. If, y ∈ X then one of these values equals y. In our protocol,
the ‘payload’ y of this computation is replaced by a secret s. The result of the polynomial evaluation step
is, hence, that if y ̸∈ X then P1 learns no information about s, and if y ∈ X then P1 learns s.

The crux of our construction is that the strings r0, r1 (as well as other) are not really random. These
are pseudorandom strings that are directly derived from FPRF(k, s). What we get, is that if y ̸∈ X then P1

learns nothing about s or y. If, on the other hand, y ∈ X then P1 learns s, and furthermore after P1 invokes
the oblivious PRF protocol, she can recover y and check that the computations P2 performed based on the
other ‘random’ strings were performed correctly.

A complication arises as P2 (who selects the key k for the PRF) computes FPRF(k, s) by himself, and
hence it is impossible for the simulator to extract s from this computation. We thus provide the simulator
with an alternative means of extracting s (and also the corresponding y value) by having P2 commit to both.
To guarantee independence of inputs (i.e., that P1 would not be able to choose his inputs depending on
P2’s commitment or vise versa), this commitment is perfectly hiding and is performed before P1 sends the
encrypted polynomials representing her input set X .

We continue with a formal description of the protocol. A high level description is presented in Figure 1.

Protocol 5 (π∩ – secure set-intersection):

• Inputs: The input of P1 is mY and a set X ⊆ {0, 1}p(n) containing mX items; the input of P2 is mX and a
set Y ⊆ {0, 1}p(n) containing mY items (hence, both parties know mX and mY ).

• Auxiliary inputs: A security parameter 1n, a prime q′ such that q′ = 2q + 1 for a prime q. The group G is the
subgroup of quadratic residues modulo q′ and g is a generator of G.

• Convention: Both parties check every received ciphertext for validity (i.e, that it is in G), and abort otherwise.

• The protocol:

1. Key setup for the encryption and commitment schemes: P1 chooses t, t′ ←R Zq, sets h = gt, h′ = gt
′

and sends h, h′ to P2. The key for the Pedersen commitment scheme is h. The public and private keys
for the El Gamal scheme are pk = h′ and sk = t′. P1 proves knowledge of logg h and logg h

′ using the
zero-knowledge proof of knowledge forRDL.

2. Setting the balanced allocation scheme: P1 computes the parameters B,M for the scheme and chooses
the seeds for two (pseudo-)random hash functions h0, h1 : {0, 1}p(n) → [B]. She sends B,M, h0, h1 to
P2 that checks that the parameters B,M were computed correctly, and aborts otherwise.
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P1(X,my) P2(Y = {yα}α∈{1...mY },mX)

For all α ∈ {1 . . .mY } :
� comα = hyαgsα

sα ←R Zq

← ZKPOK πcom ←

encrypted Q1(·), . . . , QB(·)-

Q1(·) . . . QB(·) −→ πPOLY

←− encrypted Q1(·), . . . , QB(·)
−→ 0/1

k ← IPRF(1
n),

For all α ∈ {1 . . .mY } :
FPRF(k, sα)→ r0∥r1∥r̂0∥r̂1
q0

def
= r0 ·Qh0(yα)(yα),

q1
def
= r1 ·Qh1(yα)(yα).

�

e0α = Epk

(
(sα)

2 · gq0); r̂0
)

e1α = Epk

(
(sα)

2 · gq1); r̂1
)

For all α ∈ {1 . . .mY } :
z0α = Dsk(e

0
α)

z1α = Dsk(e
1
α)

Check if ∃ x ∈ X,
root ρ of z0α, z

1
α s.t.

comα = hx · gρ

ρ −→
FPRF(k, ρ)←−

πPRF

←− k

FPRF(k, ρ)→ r′0∥r′1∥r̂′0∥r̂′1

Check if e0α, e
1
α,

consistent with x

Figure 1: A high-level diagram of π∩.
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3. P2 commits to his input set: Let y1, . . . , ymY
be a random ordering of the elements of set Y . For all

α ∈ {1, . . . ,mY }, P2 chooses sα ←R Zq and sends comα = com(yα; sα) = hyαgsα to P1. P2 then
proves the knowledge of yα and sα by invoking the zero-knowledge proof of knowledge forRCOM.

4. P1 Creates the polynomials representing her input set: For every x ∈ X , P1 maps x into the less
occupied bin from {h0(x), h1(x)} (ties broken arbitrarily). Let Bi denote the set of elements mapped into

bin i. P1 constructs a polynomial Qi(x)
def
=

∑M
j=0 Qi,j · xj of degree at most M whose set of roots is

Bi.6 P1 encrypts the polynomials’ coefficients, setting qi,j = Epk(g
Qi,j ; ri,j), and sends the encrypted

coefficients to P2.

5. Checking the polynomials: P1 and P2 engage in a zero-knowledge execution πPOLY for which P1 proves
that the sets {qi,j}i∈{1,...,B},j∈{0,...,M} were computed correctly, using its witness {Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M}.
If the outcome is not 1 then P2 aborts.

6. Evaluating the polynomials: P2 chooses k ← IPRF(1
n). Then, P2 performs the following for all

α ∈ {1, . . . ,mY }:
(a) P2 computes FPRF(k, sα) and parses the result to obtain pseudorandom strings r0, r1, r̂0, r̂1 of

appropriate lengths for their usage below (i.e., r0∥r1∥r̂0∥r̂1 = FPRF(k, sα)).
(b) He sets ĥ0 = h0(yα) and ĥ1 = h1(yα).
(c) He uses the homomorphic properties of the encryption scheme to evaluate e0α = Epk(((sα)

2 mod q′)·
gr0·Qĥ0

(yα); r̂0) and e1α = Epk(((sα)
2 mod q′) · gr1·Qĥ1

(yα); r̂1) (where r̂0, r̂1 denote the random-
ness used in the re-encryptions). Then he sends e0α, e

1
α to P1.

7. Computing the intersection: For each α ∈ {1, . . . ,mY }:
(a) P1 computes z0α = Dsk(e

0
α) and z1α = Dsk(e

1
α). For each of the (up to four) roots ρ of z0α, z

1
α (roots

are computed modulo q′ = 2q + 1 and the result is considered only if it falls within Zq), she checks
if comα/g

ρ coincides with hxα for some xα ∈ X (this can be done efficiently by creating a hash
table for set {hx : x ∈ X}), and if this is the case sets ŝα to the corresponding root and marks α.

(b) P1 and P2 engage in an execution of the protocol for FPRF. If α is marked, then P1 enters ŝα as
input, and otherwise she enters a zero. P2 enters k as input. Let r′0∥r′1∥r̂′0∥r̂′1 denote P1’s output
from this execution.

(c) If α is marked, then P1 checks that e0α = Epk((ŝα)
2 · gr

′
0·Qh0(xα)(xα); r̂′0), and e1α = Epk((ŝα)

2 ·
gr

′
1·Qh1(xα)(xα); r̂′1) result from applying the homomorphic operations on the encrypted polynomials

and randomness r′0, r
′
1. If all checks succeed P1 records xα as part of her output.

A word of explanation is needed for the computation done in Step 6. A natural choice for the payload
is sα itself. However, sα ∈ Zq whereas the message space of the El Gamal encryption is G. Noting that
Zq ⊂ Z∗

q′ (neglecting 0 ∈ Zq), and that by squaring an element of Zq′ we get an element of G, we get
that treating sα as an element of Z∗

q′ and computing (sα)
2 mod q′ we get an element of G. In this mapping,

(up to) two elements of Zq share an image in G, and hence in Step 7a we need to recover and check both
pre-images.

Before getting into the proof of security, we observe that if both parties are honest, then P1 outputs
X ∩ Y with probability negligibly close to one. In this case, if for an element yα ∈ Y is holds that yα ∈ X
then one of Qh0(yα)(yα), Qh1(yα)(yα) is zero, and otherwise none of Qh0(yα)(yα), Qh1(yα)(yα) is zero. We
get:

1. If yα ∈ X ∩ Y then one of e0α, e
1
α encrypts (sα)2 mod q′. Hence, there exists a root ρ of z0α, z

1
α such

that comα/g
ρ coincides with hxα for some xα ∈ X , resulting in P1 marking α. Furthermore, as

r0, r1, r̂0, r̂1 are derived from FPRF(k, sα), the check done by P1 in Step 7 succeeds and P1 records
yα in her output.

6If Bi = ∅ then P1 sets Qi(x) = 1. Otherwise, if |Bi| < M then P1 sets the M +1− |Bi| highest-degree coefficients of Qi(·)
to zero.
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2. If yα ̸∈ X ∩ Y then none of e0α, e
1
α encrypts (sα)

2 mod q′ and (except for a negligible probability)
comα/g

ρ coincides with hxα for no root ρ of z0α, z
1
α and xα ∈ X . Hence, P1 does not mark α, and yα

is not considered in Step 7, and not included in P1’s output.

Theorem 3.3 Assume that πDL, πPRF and πPOLY are as described above, that (G,E,D) is the El Gamal
encryption scheme, and that com is a perfectly-hiding commitment scheme. Then π∩ (Protocol 5) securely
computes F∩ in the presence of malicious adversaries.

Proof: We separately prove security in the case that P1 is corrupted and the case that P2 is corrupted. For
the case where no parties are corrupted, we have demonstrated that the output is correct. Our proof is in a
hybrid model where a trusted party is used to compute the ideal functionality FPRF, and the zero-knowledge
proofs of knowledge forRPOLY,RCOM andRDL.

P1 is corrupted. Let A denote an adversary controlling P1. We construct a simulator S that commits to
a set of mY arbitrary elements, extracts A’s input X̃ and then decommits some of these commitments into
X̃ ∩Y (this is where we use the property of the Pedersen commitment that knowing logg h it can be opened
to any value). A more formal description follows:

1. S is given X , mY and A’s auxiliary input and invokes A on these inputs. S sets mX = |X|.

2. S receives from A, ((G, g, q, h), t) and ((G, g, q, h′), t′) for functionality RDL and records t, t′ only
if h = gt and h′ = gt

′
. Otherwise it aborts, sending ⊥ to the trusted party for F∩.

3. S receives from A the parameters B,M and the seeds for the two (pseudo-)random hash functions
h0, h1 : {0, 1}p(n) → [B] used in the balanced allocation scheme. If the parameters B,M were not
computed correctly, S sends ⊥ to the trusted party for F∩ and aborts.

4. For all α ∈ {1, . . . ,mY }, S chooses (ŷα, ŝα) ←R Zq × Zq and computes comα = hŷαgŝα . S sends
comα to A and emulates the ideal computation ofRCOM by sending to A the value 1.

5. S receives from A the encrypted polynomials {qi,j}i∈{1,...,B},j∈{0,...,M}.

6. S receives from A its input {Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M} for the ideal computation ofRPOLY. If the
conditions for outputting (λ, 1) are not met then S sends ⊥ to the trusted party for F∩ and aborts.

7. S sets X̃ = ∪Bi=1{x : Qi(x) = 0 ∧ (h0(x) = i ∨ h1(x) = i)} and completes X̃ to size mX by
adding distinct random elements from {0, 1}p(n). S sends X̃ to the trusted party for F∩ and receives
as answer a set Z = X̃ ∩ Y . S sets Ỹ to Z and completes Ỹ to the size mY by adding random
elements from {0, 1}p(n) (outside of X̃).

8. Let y1, . . . , ymY be a random ordering of the elements of set Ỹ . For α ∈ {1, . . . ,mY }, S considers
each commitment comα in conjunction with yα and performs the following:

(a) S computes a value sα such that comα = hyαgsα .7

(b) S chooses a random string rα (of the outcome length of the pseudorandom function) and records
the pair (sα, rα).

(c) S parses rα as r0∥r1∥r̂0∥r̂1 and completes Step 6 of the protocol playing the role of the honest
P2.

7Recall that S knows t = logg h and thus is able to decommit comα into any value of its choice. Moreover, sα is truly random
since the equation hyαgsα = hŷαgŝα , yields t · yα + sα = t · ŷα + ŝα, or equivalently sα = t · (ŷα − yα) + ŝα.
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9. S emulates for mY times the ideal computation of FPRF as follows: One pair (sα, rα) is considered
for each emulation of FPRF, in the order in which the pairs were recorded. If it happens that A enters
a value s such that s = sα, then S returns rα, otherwise, S returns a randomly chosen string r of the
same length.

10. S outputs whatever A does.

In the following analysis we denote by X̃ the set of roots as extracted by S in Step 7 of the simulation
(before S completes it to size mX ). We ignore the event for which S completes X̃ with an element x̃ such
that x̃ ∈ Y .

Recall that we compare the simulated execution to a hybrid execution where a trusted party is used
to compute the ideal functionality FPRF, and the zero-knowledge proofs of knowledge for RPOLY, RCOM

and RDL. To prove that A’s output in the hybrid and simulated executions are computationally close we
construct a sequence of hybrid games and show that the corresponding random variables H

A(z)
ℓ (X,Y, n)

that consist of the output of A in hybrid game Hℓ are computationally close.

Game H0: The simulated execution.

Game H1: The simulator S1 does not interact with the trusted party for F∩ and is given P2’s real input Y
instead. S1 works exactly like S except that in Step 8 of the simulation it considers the commitments comα

in conjunction with the elements of Y (whereas S uses Ỹ ). The only difference between these games is
that S uses random values to complete Z to size mY , whereas S1 uses Y \ X̃ . In particular, the difference
between the two executions is that in Game H0 members of Ỹ ′ = Ỹ \ (Y ∩ X̃) are used where members of
Y ′ = Y \ X̃ = Y \ (Y ∩ X̃) are used in Game H1.

We claim that the distributions in these two executions are computationally close. Let y ∈ Y ′ (resp.
y ∈ Ỹ ′) be the α element considered in Game H1 (resp. Game H0), then A receives e0α and e1α. Note
that e0α, e

1
α are encryptions of random values and hence they do not convey any information about sα (and

hence do not affect the probability of guessing sα). In particular, the guessing of sα should only be based on
retrieving it from comα, which, even if yα is given explicitly, requires solving the discrete logarithm problem
in G.

Game H2: The simulator S2 is identical to S1 except that instead of computing every commitment comα

based on a random value ŷα, and then decommitting it into yα ∈ Y it commits to elements of Y from the
start. As com is a perfectly hiding commitment scheme, HA(z)

1 (X,Y, n) and H
A(z)
2 (X,Y, n) are identically

distributed.

Game H3: The simulator S3 is given oracle access to a truly random function HFunc and hence does not eval-
uate it by itself. This makes no difference for the output distribution – the random variables HA(z)

2 (X,Y, n)

and H
A(z)
3 (X,Y, n) are identically distributed.

Game H4: The simulator S4 is given oracle access to a pseudorandom function FPRF(k, ·). The compu-
tational indistinguishability of HA(z)

3 (X,Y, n) and H
A(z)
4 (X,Y, n) follows from the pseudorandomness of

FPRF.

Game H5: The hybrid execution. The output distribution in Game H4 is identical to the output distribution
in the hybrid execution since the only difference is that now P2 computes the PRF evaluations by himself
without the help of an oracle.

P2 is corrupted. Let A denote an adversary controlling P2 we construct a simulator S as follows. We
construct a simulator S that sends zero polynomials instead of B polynomials that were computed based on
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the real input X . Furthermore, S does not use the secret key during the execution, but uses the values it
extracts from the execution ofRcom to recompute e0α, e

1
α. A more formal description follows:

1. S is given Y , mX and 1n and invokes A on these inputs. S sets mY = |Y |.

2. S chooses t, t′ ←R Zq and sends A the keys h = gt, h′ = gt
′
. It then emulates the trusted party that

computesRDL and sends A the value 1.

3. S computes the parameters B,M for the balanced allocation scheme and chooses random seeds for
the hash functions h0, h1. These are then sent to A.

4. S receives from A a set of mY commitments {comα}mY
α=1, supposedly of elements in Y . For each

commitment comα that it receives, S emulates the trusted party that computes Rcom. It receives A’s
input for the ideal computation ofRcom, which is a pair (yα, sα). If (comα, (yα, sα)) ̸∈ Rcom then S
aborts, sending ⊥ to the ideal functionality for F∩.

5. S sends to A the encryptions of B zero polynomials.

6. S emulates the trusted party for RPOLY. It receives from A a set of BM coefficients and pk. If A’s
input is the exact set of encryptions that it received from S in the previous step, and pk then S returns
1, otherwise it returns 0.

7. for each α ∈ {1, . . . ,mY }, S receives e0α, e
1
α from A.

8. Recall that for each e0α, e
1
α that it received in the previous simulation step, S received in Step 4 of

the simulation an input (yα, sα) toRcom. S now receives A’s input k for the ideal computation FPRF

corresponding to yα; note thatAmay feed S with a different k in every round of this loop. S evaluates
r0∥r1∥r̂0∥r̂1 = FPRF(k, sα) and checks if e0α, e

1
α, are consistent with r0, r1, r̂0, r̂1 when P2’s input

is yα. That is, S recomputes these encryptions using sα, FPRF(k, sα) and yα as the honest P2 would
in the real execution, and checks whether the result equals e0α, e

1
α. If the check succeeds, S locally

records the value yα.

9. S sets Ỹ to the set of recorded values, and completes Ỹ to the size mY by adding random elements
from {0, 1}p(n).

10. S sends Ỹ to the trusted party and outputs whenever A does.

We note that there are two differences between the simulated and the hybrid executions. First, S sends
the encryptions of B zero polynomials instead of B polynomials that were computed based on the real
input X , and second, S does not use sk during its execution, and instead uses the information A sends as
input to Rcom. In the following we define a sequence of hybrid games and denote by the random variable
H

A(z)
ℓ (X,Y, n) (for a fixed n) the joint output of A and P1 in hybrid game Hℓ.

Game H0: The simulated execution.

Game H1: The simulator S1 acts identically to S except that it does not get to know the secret keys t =

logg h and t′ = logg h
′. The random variables HA(z)

0 (X,Y, n) and H
A(z)
1 (X,Y, n) are identically distributed

as both S and S1 do not use t, t′.

Game H2: In this game there is no trusted party and no honest P1. Instead, the simulator S2 is given as
input P1’s real input X . S2 works exactly like S1, except that instead of sending arbitrary polynomials, it
computes the polynomials as in the hybrid execution using the set X . In addition, S2 does not send Ỹ to the
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trusted party, but uses X to compute and output X ∩ Ỹ . The proof that HA(z)
1 (X,Y, n) and H

A(z)
2 (X,Y, n)

are computationally indistinguishable is by reduction to the semantic security of the El Gamal encryption
scheme.

Game H3: The simulator S3 acts identically to S2 except that S3 is given t′ = logg h
′ (but not t = logg h).

The random variables H
A(z)
2 (X,Y, n) and H

A(z)
3 (X,Y, n) are identically distributed as S2 and S3 do not

use t′.

Game H4: S4 computes the intersection as in the hybrid execution. To conclude the proof, We show that
H

A(z)
3 (X,Y, n) and H

A(z)
4 (X,Y, n) are statistically close. Note that S3,S4 act identically until they get to

the computation of the intersection set, where:

• In Game H3, the simulator S3 extracts pairs (yα, sα) from the zero-knowledge proof of knowledge
for Rcom on a commitment comα. For each such pair it later receives a key k for FPRF and values
e0α, e

1
α, and adds yα to Ỹ if these values are consistent with the randomness r0, r1, r̂0, r̂1 derived from

FPRF(k, sα). The output is computed as X ∩ Ỹ .

• In Game H4, the simulator S4 follows the same procedure as in the hybrid execution. That is, S4 uses
sk to decrypt e0α and e1α, computes the (up to) four roots ρ and then decides whether to mark α, and if
so – it derives ŝα, xα and checks that e0α, e

1
α are consistent with yα = xα and randomness r0, r1, r̂0, r̂1

derived from FPRF(k, ŝα).

Observe first that if an element yα satisfies the conditions for being included in the input in Game H3, it
also satisfies the conditions for being included in the input in Game H4: if S3 outputs an element yα then it
must be that yα ∈ X , and either e0α or e1α encrypts (sα)2 mod q′, and comα, e

0
α, e

1
α were computed according

to the protocol specification, and hence S4 would have outputted it.
Consider now the reverse direction. Let bad denote the event where there exists an element x ∈ X that

S4 decided to output, but should not have been outputted by S3. We show that Pr[bad] is negligible. Recall
that both S3 andA do not know logg h and that S3 knows the secret key sk. Note that for bad to occur it must
be that for some commitment comα, (i)A gives a pair (yα, sα) as input to the functionalityRcom (this pair is
recorded by S4), and (ii) one of e0α, e

1
α is decrypted to (s′)2 mod q′ where (s′)2 mod q′ ̸= (sα)

2 mod q′ such
that for some x ∈ X the values e0α, e

1
α are consistent with setting y = x and the randomness obtained from

FPRF(k, s
′), and furthermore comα = gxhs

′
. We can therefore construct a non-uniform algorithm that given

g, h ←R Zq for prime q, succeeds in computing yα, sα, x, s
′ such that gyαhsα = gxhs

′
, or equivalently

succeeds in computing logg h.

3.3.1 Efficiency

We First note that the protocol is constant round (as all its zero-knowledge proofs and subprotocols are
constant round). The costs of using current implementations of FPRF on inputs of length p(n) is that of p(n)
oblivious transfer invocations [28], and hence of O(p(n)) modular exponentiations. We get that the overall
communication costs are of sending O(mX + mY p(n)) group elements, and the computation costs are of
performing O(mX +mY (log logmX + p(n))) modular exponentiations.

3.3.2 Optimizations

Note first that if the functionality is changes to allow P2 learn the size of the intersection mX∩Y , then,
in Step 7b, it is possible to avoid invoking πPRF when α is not marked. This yields a protocol where
O(mX+mX∩Y ·p(n)) group elements are sent, and O(mX+mY ·log logmX+mX∩Y ·p(n)) exponentiation
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are computed. When mX∩Y ≪ mY , this protocol is significantly more efficient than those suggested in [28]
for weaker adversarial models. Furthermore, an improved scheme for oblivious pseudorandom function
evaluation with overall complexity which is independent of the input length yields a better efficiency as
well.

3.4 A Very Efficient Heuristic Construction

Note that we can now modify protocol π∩ to get a protocol in the random oracle model πRO
∩ by performing

the following two changes: (1) the computation of FPRF(k, sα) performed by P2 in Step 7b of π∩ is replaced
with an invocation of the random oracle, i.e., P2 computes H(sα); and (ii) the execution of the secure
protocol for evaluating FPRF by P1 and P2 in Step 7 of π∩ is replaced with an invocation of the random
oracle by P1, i.e., no communication is needed, and instead of providing s′ to the protocol for FPRF, P1

computesH(s′).
A typical proof of security in the random oracle model relies on the simulator’s ability to record the

inputs on which the random oracle is invoked, and the recorded information is used by the simulator for
malicious P2 while recovering his input. In other words, the proof of security relies on the property of
the random oracle that the only way to learn any information about H(s) is to apply H on a well defined
input s. Should πRO

∩ be implemented such that the invocations of the random oracle are replaced by a
concrete computation of some function, it seems that this proof of security would collapse, even if very
strong hardness assumptions are made with respect to this implementation.

Nevertheless, the situation in protocol π∩ is very different. Note, in particular, that the simulator for
malicious P2 cannot monitor P2’s input to FPRF (nor is this notion of inputs to the function well defined).
Instead, the simulator extracts s from the zero-knowledge proof of knowledge for the commitment on P2’s
inputs in Step 3 of π∩. This is inherited by the modified protocol πRO

∩ . Hence, should the random oracle calls
in πRO

∩ be replaced with some primitive Gen, the proof of security may still hold with small modifications,
given the hardness assumption on Gen (intuitively, some functions of the outcome of Gen(s) and s should
look random). πRO

∩ can hence be viewed as an intermediate step between the protocol in [24] that utilizes
a random oracle to cope with malicious parties, and the protocol suggested in the current paper. If the
primitive Gen is realized efficiently (e.g., if its computation incurs a constant number of exponentiations),
we get an extremely efficient protocol for F∩, where the communication costs are of sending O(mX +mY )
group elements, and the number of exponentiations is O(mX +mY log logmX).

For the sake of completeness we include a formal description of protocol πGen
∩ , that is identical to

protocol π∩ except for the replacing every invocation of FPRF(k, ·) by a computation of Gen(·). Note that
unlike in an invocation of FPRF(k, ·), no communication is needed for computing Gen(·).

Protocol 6 (πGen
∩ – secure set-intersection with a “generator”):

• Inputs: The input of P1 is mY and a set X ⊆ {0, 1}p(n) containing mX items; the input of P2 is mX and a
set Y ⊆ {0, 1}p(n) containing mY items (hence, both parties know mX and mY ).

• Auxiliary inputs: A security parameter 1n, a prime q′ such that q′ = 2q + 1 for a prime q. The group G is the
subgroup of quadratic residues modulo q′ and g is a generator of G.

• Convention: Both parties check every received ciphertext for validity (i.e, that it is in G), and abort otherwise.

• The protocol:

1. Key setup for the encryption and commitment schemes: P1 chooses t, t′ ←R Zq, sets h = gt, h′ = gt
′

and sends h, h′ to P2. The key for the Pedersen commitment scheme is h. The public and private keys
for the El Gamal scheme are pk = h′ and sk = t′. P1 proves knowledge of logg h and logg h

′ using the
zero-knowledge proof of knowledge forRDL.
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2. Setting the balanced allocation scheme: P1 computes the parameters B,M for the scheme and chooses
the seeds for two (pseudo-)random hash functions h0, h1 : {0, 1}p(n) → [B]. She sends B,M, h0, h1 to
P2 that checks that the parameters B,M were computed correctly, and aborts otherwise.

3. P2 commits to his input set: Let y1, . . . , ymY
be a random ordering of the elements of set Y . For all

α ∈ {1, . . . ,mY }, P2 chooses sα ←R Zq and sends comα = com(yα; sα) = hyαgsα to P1. P2 then
proves the knowledge of yα and sα by invoking the zero-knowledge proof of knowledge forRCOM.

4. P1 Creates the polynomials representing her input set: For every x ∈ X , P1 maps x into the less
occupied bin from {h0(x), h1(x)} (ties broken arbitrarily). Let Bi denote the set of elements mapped into

bin i. P1 constructs a polynomial Qi(x)
def
=

∑M
j=0 Qi,j · xj of degree at most M whose set of roots is

Bi.8 P1 encrypts the polynomials’ coefficients, setting qi,j = Epk(g
Qi,j ; ri,j), and sends the encrypted

coefficients to P2.

5. Checking the polynomials: P1 and P2 engage in a zero-knowledge execution πPOLY for which P1 proves
that the sets {qi,j}i∈{1,...,B},j∈{0,...,M} were computed correctly, using its witness {Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M}.
If the outcome is not 1 then P2 aborts.

6. Evaluating the polynomials: P2 performs the following for all α ∈ {1, . . . ,mY }:
(a) He sets ĥ0 = h0(yα) and ĥ1 = h1(yα).
(b) He parses Gen(sα) to obtain pseudorandom strings r1, r2, r̂0, r̂1 of appropriate lengths for their

usage below (i.e., r1∥r2∥r̂0∥r̂1 = Gen(sα)).
He uses the homomorphic properties of the encryption scheme to evaluate e0α = Epk(((sα)

2 mod q′)·
gr0·Qĥ0

(yα); r̂0) and e1α = Epk(((sα)
2 mod q′) · gr1·Qĥ1

(yα); r̂1) (where r̂0, r̂1 denote the random-
ness used in the re-encryptions). Then he sends e0α, e

1
α to P1.

7. Computing the intersection: For each α ∈ {1, . . . ,mY }:
(a) P1 computes z0α = Dsk(e

0
α) and z1α = Dsk(e

1
α). For each of the (up to four) roots ρ of z0α, z

1
α (roots

are computed modulo q′ = 2q + 1 and the result is considered only if it falls within Zq), she checks
if comα/g

ρ coincides with hxα for some xα ∈ X (this can be done efficiently by creating a hash
table for set {hx : x ∈ X}), and if this is the case sets ŝα to the corresponding root and marks α.

(b) If α is marked, then P1 parses Gen(ŝα) to obtain r′0, r
′
1, r̂

′
0, r̂

′
1.

(c) P1 checks that e0α = Epk((ŝα)
2 · gr

′
0·Qh0(xα)(xα); r̂′0), and e1α = Epk((ŝα)

2 · gr
′
1·Qh1(xα)(xα); r̂′1)

result from applying the homomorphic operations on the encrypted polynomials and randomness
r′0, r

′
1. If all checks succeed P1 records xα as part of her output.

4 Secure Set Union

In the following section we present a protocol for the set-union problem, where both parties learn the out-
come.9 The functionality we realize is F∪, where each party enters a private input set of distinct values
from a predetermined domain, and the size of the other party’s input set. If the set sizes match, then the
functionality outputs the union of these input sets to both parties. Otherwise it outputs ⊥. More formally,
let X and Y be subsets of a predetermined domain, then functionality F∪ is presented in Figure 2.10

Due to technicality arises in the proof, we assume that every element within the domain set {0, 1}p(n)
is represented by p(n) + 1 bits, where the additional bit is set to zero. Furthermore, if the parties receive in
their output an element where this bit is set to one, they delete it. Note also that from X ∪ Y player P1 can

8If Bi = ∅ then P1 sets Qi(x) = 1. Otherwise, if |Bi| < M then P1 sets the M +1− |Bi| highest-degree coefficients of Qi(·)
to zero.

9The trivial protocol where P1 sends her input to P2 is secure in the malicious setting for the case where one party learns the
outcome. The simulator for the corrupted P2 can send to the trusted party computing the union an empty set (or a random set if the
domain is of super polynomial size). With overwhelming probability the trusted party’s output enables the simulator to learn the
input set of P1. This is a case where a protocol that is secure for the malicious model is not secure in the semi-honest model.

10The definition is in a different format from that of F∩ because both parties receive outputs.
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Functionality F∪

Functionality F∪ proceeds as follows, running parties P1, P2 and an adversary S.

• Upon receiving a message (X,mY ) from P1 and a message (Y,mX) from P2, functionality F∪ checks
first that |X| = mX , |Y | = mY and X,Y ⊆ {0, 1}p(n), and sends X ∪ Y to S. Otherwise it halts.

• Upon receiving from S a message output, functionality F∪ sends X ∪ Y to P1 and P2.

Figure 2: The set union functionality

deduce Y \X and thus |X∩Y |, but not X∩Y . This means that unlike in π∩, where P1 needs to identify the
elements yα ∈ Y such that Qĥ0

(yα) = 0 or Qĥ1
(yα) = 0, in π∪ P1 needs to identify the elements for which

Qĥ0
(yα) ̸= 0 and Qĥ1

(yα) ̸= 0. This is achieved by a sub-protocol enabling P2 to compute an encryption
of ((sα)2 mod q′) · grz ·Z where Z equals the number of zeros in {Qĥ0

(yα), Qĥ1
(yα)}. P1 can recover sα

and continue as in protocol π∪ if and only if Z = 0 (see steps 6 and 7 of protocol π∪).
A second change with respect to π∩ is that P1 needs to send her local output Y ′ – the union set – to P2,

and (as the parties are distrusting) prove correctness of the set she sends. There are two parts to this proof,
one preventing P1 from excluding elements from the union set, the other preventing P1 from including
elements that are not in the union set.

1. To prevent excluding elements, P2 verifies that Y ⊆ Y ′ and that Y ′ contains mX roots relative of the
polynomials {Qi(·)}i (i.e., these roots correspond to the input set X of P1). This ensures that P1 has
not excluded elements from its computed output.

2. To prevent including elements not represented by the polynomials {Qi(·)}, we have the parties com-
pute the size of the set-intersection (information that is anyway revealed from the output), which is
then compared with the number of elements in Y that zero these polynomials (see step 9 of protocol
π∪). Note that the check by itself does not prevent P1 from excluding an element x′ /∈ X ∩ Y (where
X is defined by the above set of roots) and replacing it with another element x (that is not in the
intersection as well).

The construction of our set-union protocol π∪ is similar to that of π∩, and the description below only
details the steps that are changed.

4.1 Zero-Knowledge Proof of Knowledge forRCOUNT

π∪ applies a modified version of πPOLY (from Section 3.2). In this section we present a zero-knowledge
proof of knowledge for this modified relation, defined by

RCOUNT =
{(
{qi}i, t, pk

)
,
(
{Qi, ri}i

)∣∣∣ ∀i qi = Epk(Qi; ri) ∧
|{i : Qi ̸= 0}| = t

}
This proof counts the non-zero encryptions within {qi}i and compares the result with t.

Protocol 7 (zero-knowledge proof of knowledge πCOUNT forRCOUNT):
Joint statement: A set of ℓ encryptions {qi}i, a public-key pk and an integer t.

• Auxiliary inputs for the prover: A set of ℓ values {Qi, ri}i.
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• Auxiliary inputs for both: A prime p such that p− 1 = 2q for a prime q, the description of a group G of order
q for which the DDH assumption holds, and a generator g of G.

• Convention: Both parties check every received ciphertext for validity (i.e, that it is in G), and abort if an invalid
ciphertext is received. Moreover, the parties concatenate the bit zero to every element in their input set. If their
output includes an element with this bit set to one, the parties delete this element.

• Notation: We abuse notation and write Epk(m) (instead of Epk(g
m)) for the encryption of gm. Using this

notation, the El Gamal encryption scheme is additively homomorphic. We note, however, that the result of
decrypting Epk(m) is gm, i.e., Dsk (Epk(m)) = gm.

• The protocol:

1. For every qi = ⟨αi, βi⟩, the prover P proves the knowledge of logg αi using πDL.

2. If Qi = 0 then P sets Zi = 1 and otherwise Zi = 0. P computes zi = Epk(Zi) and sends {zi}i to the
verifier V .

3. For all i, P performs the following:

(a) For each zi encrypting a value Zi it proves that Zi ∈ {0, 1} as follows. Note that both parties can
compute an encryption z′i of 1 − Zi.11 P then proves that one of the encryptions {zi, z′i} is a zero
encryption, by proving that either (pk, zi) or (pk, z′i) is a Diffie-Hellman tuple.12

(b) It then uses πNZ to prove that Qi+(1−Zi) ̸= 0 (this excludes the case in which Qi = 0 but Zi = 1).
(c) P concludes the proof by proving (similarly to Step 3a above) that one of the encryptions {qi, z′i} is

a zero encryption (which excludes the case in which Qi ̸= 0 but Zi = 0).

4. Finally, to prove that |{i : Qi(·) ̸= 0}| = t, both parties compute an encryption e of T =
∑

i Zi, and P
proves that (pk, e/Epk(t)) is a Diffie-Hellman tuple.

5. V verifies all the zero-knowledge proofs. If any of the verifications fails, V outputs 0, otherwise, it outputs
1.

Theorem 4.1 ssume that πDL, πDDH and πNZ are as described above and that (G,E,D) is the El Gamal
encryption scheme. Then πCOUNT (Protocol 7) is a computational zero-knowledge proof of knowledge for
RCOUNT with perfect completeness.

Due to the similarity to the proof of Proposition 3.2 we omit the details. Note that Protocol πCOUNT runs
in a constant number of rounds because each of the zero-knowledge proofs can be implemented in constant
rounds and can be invoked in parallel, as discussed in Section 3.2. Furthermore, the parties compute and
exchange O(ℓ) encryptions and execute O(ℓ) zero-knowledge proofs (for πDL, πDDH, πNZ).

4.2 Secure Set-Union in the Presence of Malicious Adversaries

We continue with a formal description of the protocol.

Protocol 8 (π∪ – secure set union):

• Inputs: The input of P1 is mY and a set X ⊆ {0, 1}p(n) containing mX items; the input of P2 is mX and a
set Y ⊆ {0, 1}p(n) containing mY items (hence, both parties know mX and mY ).

• Auxiliary inputs: A security parameter 1n, a prime p such that p− 1 = 2q for a prime q, the description of a
group G of order q for which the DDH assumption holds, and a generator g of G.

• Convention: Both parties check every received ciphertext for validity (i.e, that it is in G), and abort if an invalid
ciphertext is received.

11Here and below, we assume that P, V agree on an encryption of 1, for which both know the randomness.
12See footnote 3 for a discussion regarding this zero-knowledge proof.
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• The protocol:

1. Key setup for the encryption and commitment schemes: as in Step 1 of π∩ (protocol 5).

2. Setting the balanced allocation scheme: as in Step 2 of π∩ (protocol 5).

3. P2 commits to his input set: as in Step 3 of π∩ (protocol 3).

4. P1 Creates the polynomials representing her input set: as in Step 4 of π∩ (protocol 5).

5. Checking the polynomials: as in Step 5 of π∩ (protocol 5).

6. Evaluating the polynomials: P2 chooses k ← IPRF(1
n). Then, P2 performs the following for all

α ∈ {1, . . . ,mY }:
(a) P2 computes FPRF(k, sα) and parses the result to obtain pseudorandom strings r0, r1, r̂0, r̂1, r⊕, rz

of appropriate lengths for their usage below (i.e., r0∥r1∥r̂0∥r̂1∥r⊕∥rz = FPRF(k, sα)).

(b) He sets ĥ0 = h0(yα) and ĥ1 = h1(yα).

(c) He uses the homomorphic properties of the encryption scheme to evaluate e0α = Epk(g
r0·Qĥ0

(yα); r̂0)

and e1α = Epk(g
r1·Qĥ1

(yα); r̂1) (where r̂0, r̂1 denote the randomness used in the re-encryptions).
Then he sends e0α, e

1
α and tα = yα ⊕ r⊕ to P1.

7. Computing the union: P1 does the following for each received e0α, e
1
α:

(a) Oblivious selection:
i. For each i ∈ {0, 1}, P1 sets Zi = 1 if Dsk(e

i
α) = g0 = 1, and otherwise Zi = 0. It then

computes zi = Epk(g
Zi) and sends z0, z1 to P2.

ii. The parties run a proof that the values z0, z1 were computed correctly. (They execute Step 3 of
the zero knowledge proof πCOUNT for which P1 proves the validity of its computations.)

iii. P2 computes ez = Epk(((sα)
2 mod q′) ·grz·(Z0+Z1)) using the homomorphic properties of the

El Gamal scheme.

(b) If Dsk(e
0
α) ̸= g0 and Dsk(e

1
α) ̸= g0, then P1 sets s′α = ρ where ρ is a root of ez that falls within

Zq. Otherwise, s′α is set to zero.
(c) Then the parties engage in an execution of πPRF for which P1 enters s′α and P2 enters k. Let

r′0∥r′1∥r̂′0∥r̂′1∥r′⊕∥r′z denote P1’s output from this execution. If for y′ = tα ⊕ r′⊕ it holds that
e0α, e

1
α, ez are consistent with P1’s output from the PRF evaluation, and comα = hs′αgy

′
then P1

records y′ as part of her output (that is originally set to X).

8. Sending the output to P2: P1 sends to P2 the elements in the recorded set (in random order).

9. Verifying the output by P2:
(a) Let Y ′ denote the set that P2 receives from P1. P2 verifies first that Y ⊆ Y ′.
(b) For all y′ ∈ Y ′, the parties compute the encryptions of Qh0(y′)(y

′) and Qh1(y′)(y
′). Next the

parties run πCOUNT on these values and P1 proves that the number of zero encryptions within this
set equals mX . To exclude a case for which Qh0(y′)(y

′) = Qh1(y′)(y
′) = 0, P1 proves that either

Qh0(y′)(y
′) ̸= 0 or Qh1(y′)(y

′) ̸= 0 using the zero-knowledge proof πNZ.
(c) P2 learns the size of the intersection with respect to his evaluations from Step 6. That is, the parties

set ξ = |X ∩ Y | = mX +mY − |Y ′|. Next, the parties run πCOUNT on the evaluations from Step 6
and P1 proves that the number of zero encryptions within this set equals ξ. The parties run πNZ as
in the previous step.

(d) If all the verifications are successfully completed, P2 locally outputs Y ′.

Note that if both parties are honest, then they output X ∪ Y with probability negligibly close to one.
Note that in this case, if for an element yα ∈ Y \ X then Qh0(yα)(yα) ̸= 0 and Qh1(yα)(yα) ̸= 0, and
otherwise Qh0(yα)(yα) = 0 or Qh1(yα)(yα) = 0. We get:
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1. If yα ∈ Y \ X then both of e0α, e
1
α encrypt a random element in G. Thus Z0 + Z1 = 0 and P1

is able to recover (sα)
2 = Dsk(ez) = Dsk(Epk((sα)

2 mod q′) · grz ·(Z0+Z1)). Furthermore, as
r0, r1, r̂0, r̂1, r⊕, rz are derived from FPRF(k, sα), the check done by P1 in Step 7 succeeds and P1

records yα in her output.

2. If yα ∈ X ∩Y then one of e0α, e
1
α encrypts 0 and thus P1 cannot recover sα since Dsk(ez) is a random

element in G.

Furthermore, as P1 computes Y ′ = X ∪ Y correctly, P2 outputs this set as well. In particular, Y ′,
initially set to X , includes the set Y \Y ∩X as explained above.

Theorem 4.2 Assume that πDL, πNZ, πPRF, πPOLY and πCOUNT are as described above, that (G,E,D) is
the El Gamal encryption scheme, and that com is a perfectly-hiding commitment scheme. Then π∪ securely
computes F∪ in the presence of malicious adversaries.

Proof: We separately prove security in the case that P1 is corrupted and the case that P2 is corrupted. For
the case where no parties are corrupted, we have demonstrated that the output is correct. Our proof is in a
hybrid model where a trusted party is used to compute the ideal functionality FPRF, and the zero-knowledge
proofs of knowledge forRCOUNT,RPOLY,RCOM andRDL.

P1 is corrupted. Let A denote an adversary controlling P1. We construct a simulator S that commits to
a set of mY arbitrary elements, extracts A’s input X̃ and then decommits some of these commitments into
X̃ ∪ Y \X̃ (this is where we use the property of the Pedersen commitment that knowing logg h it can be
opened to any value). Finally, S verifies A’s output as in the hybrid execution. A more formal description
follows:

1. S is given X , mY and A’s auxiliary input and invokes A on these inputs. S sets mX = |X|.

2. S receives from A, ((G, g, q, h), t) and ((G, g, q, h′), t′) for functionality RDL and records t, t′ only
if h = gt and h′ = gt

′
. Otherwise it aborts, sending ⊥ to the trusted party for F∩.

3. S receives from A the parameters B,M and the seeds for the two (pseudo-)random hash functions
h0, h1 : {0, 1}p(n) → [B] used in the balanced allocation scheme. If the parameters B,M were not
computed correctly, S sends ⊥ to the trusted party for F∩ and aborts.

4. For all α ∈ {1, . . . ,mY }, S chooses (ŷα, ŝα) ←R Zq × Zq and computes comα = hŷαgŝα . S sends
comα to A and emulates the ideal computation ofRCOM by sending to A the value 1.

5. S receives from A the encrypted polynomials {qi,j}i∈{1,...,B},j∈{0,...,M}.

6. S receives from A its input {Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M} for the ideal computation ofRPOLY. If the
conditions for outputting (λ, 1) are not met then S sends ⊥ to the trusted party for F∪ and aborts.

7. S sets X̃ = ∪Bi=1{x : Qi(x) = 0 ∧ (h0(x) = i ∨ h1(x) = i)} and completes X̃ to size mX by
adding mX − |X̃| arbitrary elements outside of the domain {0, 1}p(n). That is, S chooses an arbitrary
set X̂ of appropriate size from {0, 1}p(n) and concatenates the bit one to every element in this set.
S sends X̃ ∪ X̂ to the trusted party for F∪ and receives as answer a set Z = X̃ ∪ X̂ ∪ Y . S sets
Ỹ to Z\(X̃ ∪ X̂) and completes it to the size mY by choosing the same arbitrary element from X̃
mY − |Ỹ | times.
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8. Let y1, . . . , ymY be a random ordering of the elements of set Ỹ . For α ∈ {1, . . . ,mY }, S considers
each commitment comα = hŷαgŝα in conjunction with yα and performs the following:

(a) S computes a value sα such that comα = hyαgsα .13

(b) S chooses a random string rα (of the outcome length of the pseudorandom function) and records
the pair (sα, rα).

(c) S parses rα as r0∥r1∥r̂0∥r̂1∥r⊕∥rz and completes Step 6 of the protocol playing the role of the
honest P2.

9. S emulates for mY times the ideal computation of FPRF as follows: One pair (sα, rα) is considered
for each emulation of FPRF, in the order in which the pairs were recorded. If it happens that A enters
a value s such that s = sα, then S returns rα, otherwise, S returns a randomly chosen string of the
same length.

10. S completes the execution as the honest P2 using its set Ỹ . Specifically, S receives from A its inputs
for the ideal computations of RCOUNT and RNZ. If the conditions for outputting (λ, 1) are not met
then S sends ⊥ to the trusted party for F∪ and aborts. Finally, if A does not send Z\X̂ in Step 8 or
|X̃| ̸= mX , S aborts sending⊥ to F∪ (we prove below that S, playing the role of the honest P2, must
abort within Step 9 if these conditions are nor met).

11. If the execution is successfully completed, then S sends output to the trusted party for F∪. Otherwise
it sends ⊥.

12. S outputs whatever A does.

Recall that we compare the simulated execution to a hybrid execution where a trusted party is used to
compute the ideal functionality FPRF, and the zero-knowledge proofs of knowledge for RCOUNT, RPOLY,
RCOM and RDL. To prove that A’s output in the hybrid and simulated executions are computationally close
we construct a sequence of hybrid games and show that the corresponding random variables HA(z)

ℓ (X,Y, n)
that consist of the output of A in hybrid game Hℓ are computationally close.

Game H0: The simulated execution.

Game H1: The simulator S1 does not interact with the trusted party for F∪ and is given P2’s real input Y
instead. S1 works exactly like S except that in Step 8 of the simulation it considers the commitments comα

in conjunction with the elements of Y (whereas S uses Ỹ ). In addition, S1 does not send X̃ ∪ X̂ to the
trusted party, but uses Y to compute and output Y ∩ X̃ . Finally, S1 outputs the joint output of A and P2 (as
computed in this execution). The only difference between these games is that S uses an arbitrary element
from X̃ to complete Ỹ to size mY (we denote this multi-set by Ỹ ′), whereas S1 uses Y ′ = Y ∩ X̃ .

We claim that the distributions in these two executions are computationally close. Let y ∈ Y ′ (resp.
y ∈ Ỹ ′) be the α element considered in Game H1 (resp. Game H0), then A receives e0α and e1α. Note
that e0α, e

1
α are encryptions of random values and hence they do not convey any information about sα (and

hence do not affect the probability of guessing sα). In particular, the guessing of sα should only be based on
retrieving it from comα, which, even if yα is given explicitly, requires solving the discrete logarithm problem
in G. Similarly, ez is an encryption of a random value and tα is a random string, hence no information is
revealed about sα.

Game H2: The simulator S2 is identical to S1 except that instead of computing every commitment comα

based on a random value ŷα, and then decommitting it into yα ∈ Y it commits to elements of Y from the
13Recall that S knows t = logg h and thus is able to decommit comα into any value of its choice.
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start. As com is a perfectly hiding commitment scheme, HA(z)
1 (X,Y, n) and H

A(z)
2 (X,Y, n) are identically

distributed.

Game H3: The simulator S3 is given oracle access to a truly random function HFunc and hence does not eval-
uate it by itself. This makes no difference for the output distribution – the random variables HA(z)

2 (X,Y, n)

and H
A(z)
3 (X,Y, n) are identically distributed.

Game H4: The simulator S4 is given oracle access to a pseudorandom function FPRF(k, ·). The compu-
tational indistinguishability of HA(z)

3 (X,Y, n) and H
A(z)
4 (X,Y, n) follows from the pseudorandomness of

FPRF.

Game H5: The hybrid execution. The only difference between game H4 and the hybrid execution is due
to the fact that S4 aborts if A does not send the set Z\X̂ in Step 8, whereas the hybrid P2 verifies A’s
computations within Step 9. However, recall that according to the checks of P2, the output that A sends
includes Y and X̃ and nothing else; see a detailed discussion above. Then, combined with the fact that A
cannot cheat in the ideal computations of RCOUNT and RNZ we conclude that both S4 and the honest P2

outputs the same set.

P2 is corrupted. Let A denote an adversary controlling P2 we construct a simulator S as follows. We
construct a simulator S that sends zero polynomials instead of B polynomials that were computed based on
the real input X . Furthermore, S does not use the secret key during the execution, but uses the values it
extracts from the execution ofRcom to recompute e0α, e

1
α, ez, tα. A more formal description follows:

1. S is given Y , mX and 1n and invokes A on these inputs. S sets mY = |Y |.

2. S chooses t, t′ ←R Zq and sends A the keys h = gt, h′ = gt
′
. It then emulates the trusted party that

computesRDL and sends A the value 1.

3. S computes the parameters B,M for the balanced allocation scheme and chooses random seeds for
the hash functions h0, h1. These are then sent to A.

4. S receives from A a set of mY commitments {comα}mY
α=1, supposedly of elements in Y . For each

commitment comα that it receives, S emulates the trusted party that computes Rcom. It receives A’s
input for the ideal computation ofRcom, which is a pair (yα, sα). If (comα, (yα, sα)) ̸∈ Rcom then S
aborts, sending ⊥ to the ideal functionality for F∪.

5. S sends to A the encryptions of B zero polynomials.

6. S emulates the trusted party for RPOLY. It receives from A a set of BM coefficients and pk. If A’s
input is the exact set of encryptions that it received from S in the previous step, and pk then S returns
1, otherwise it returns 0.

7. for each α ∈ {1, . . . ,mY }, S receives e0α, e
1
α and tα from A and engage in an execution of oblivious

selection with A, where it sets z0, z1 to zero encryptions. S emulates the ideal execution forRCOUNT

and receives an encryption ez .

8. Recall that for each e0α, e
1
α, tα, S recorded in Step 4 of the simulation A’s input (yα, sα) to Rcom.

S now receives A’s input k for the ideal computation FPRF corresponding to yα,14 and evaluates
r0∥r1∥r̂0∥r̂1∥r⊕∥rz = FPRF(k, sα). It then checks if e0α, e

1
α, ez, tα, are consistent with r0, r1, r̂0, r̂1, r⊕, rz

14note that A may feed S with a different k in every round of this loop.
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when P2’s input is yα. That is, S recomputes these encryptions using sα, FPRF(k, sα) and yα as the
honest P2 would in the real execution, and checks whether the result equals e0α, e

1
α, ez, tα. If the check

succeeds, S locally records the value yα.

9. S sets Ỹ to the set of recorded values, and completes Ỹ to the size mY by adding mY − |Ỹ | arbitrary
elements outside of the domain {0, 1}p(n). That is, S chooses an arbitrary set Ŷ of appropriate size
from {0, 1}p(n) and concatenates the bit one to every element in this set.

10. S sends Ỹ ∪ Ŷ to the trusted party and receives as answer a set Z = X ∪ Ỹ ∪ Ŷ . S sets Y ′ = Z\Ŷ
and sends A this set.

11. S completes the execution by emulating the ideal executions for RCOUNT and RNZ. If the execution
is successfully completed, then S sends output to the trusted party for F∪. Otherwise it sends ⊥.

12. S outputs whatever A does.

We note that there are two differences between the simulated and the hybrid executions. First, S sends
the encryptions of B zero polynomials instead of B polynomials that were computed based on the real
input X , and second, S does not use sk during its execution, and instead uses the information A sends as
input to Rcom. In the following we define a sequence of hybrid games and denote by the random variable
H

A(z)
ℓ (X,Y, n) (for a fixed n) the joint output of A and P1 in hybrid game Hℓ.

Game H0: The simulated execution.

Game H1: The simulator S1 acts identically to S except that it does not get to know the secret keys t =

logg h and t′ = logg h
′. The random variables HA(z)

0 (X,Y, n) and H
A(z)
1 (X,Y, n) are identically distributed

as both S and S1 do not use t, t′.

Game H2: In this game there is no trusted party and no honest P1. Instead, the simulator S2 is given as
input P1’s real input X . S2 works exactly like S1, except that instead of sending arbitrary polynomials,
it computes the polynomials as in the hybrid execution using the set X . In addition, S2 does not send
Ỹ ∪ Ŷ to the trusted party, but uses X to compute and output X ∩ Ỹ . The proof that HA(z)

1 (X,Y, n)

and H
A(z)
2 (X,Y, n) are computationally indistinguishable is by reduction to the semantic security of the El

Gamal encryption scheme.

Game H3: The simulator S3 acts identically to S2 except that S3 is given t′ = logg h
′ (but not t = logg h).

The random variables H
A(z)
2 (X,Y, n) and H

A(z)
3 (X,Y, n) are identically distributed as S2 and S3 do not

use t′.

Game H4: S4 computes the union as in the hybrid execution. To conclude the proof, We show that
H

A(z)
3 (X,Y, n) and H

A(z)
4 (X,Y, n) are statistically close. Note that S3,S4 act identically until they get

to the computation of the intersection set, where:

• In Game H3, the simulator S3 extracts pairs (yα, sα) from the zero-knowledge proof of knowledge
for Rcom on a commitment comα. For each such pair it later receives a key k for FPRF and values
e0α, e

1
α, ez, tα, and adds yα to Ỹ if these values are consistent with the randomness r0, r1, r̂0, r̂1, r⊕, rz

derived from FPRF(k, sα). The output is computed as X ∪ Ỹ .

• In Game H4, the simulator S4 follows the same procedure as in the hybrid execution, i.e., That is, S4
uses sk to decrypt e0α, e1α and ez . It then derives s′α, y

′
α and checks that e0α, e

1
α, ez, tα are consistent

with y′α and randomness r0, r1, r̂0, r̂1, r⊕, rz derived from FPRF(k, s
′
α).
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Observe first that if an element yα satisfies the conditions for being included in the input in Game H3,
it also satisfies the conditions for being included in the input in Game H4: if S3 outputs an element yα then
it must be that comα, e

0
α, e

1
α, ez, tα were computed according to the protocol specification, and hence S4

would have outputted it.
Consider now the reverse direction. Let bad denote the event where there exists an element x ∈ X that

S4 decided to output, but should not have been outputted by S3. We show that Pr[bad] is negligible. Recall
that both S3 andA do not know logg h and that S3 knows the secret key sk. Note that for bad to occur it must
be that for some commitment comα, (i)A gives a pair (yα, sα) as input to the functionalityRcom (this pair is
recorded by S4), and (ii) one of e0α, e

1
α is decrypted to (s′)2 mod q′ where (s′)2 mod q′ ̸= (sα)

2 mod q′ such
that for some x ∈ X the values e0α, e

1
α are consistent with setting y = x and the randomness obtained from

FPRF(k, s
′), and furthermore comα = gxhs

′
. We can therefore construct a non-uniform algorithm that given

g, h ←R Zq for prime q, succeeds in computing yα, sα, x, s
′ such that gyαhsα = gxhs

′
, or equivalently

succeeds in computing logg h.

4.2.1 Efficiency

The analysis is as in Protocol 5. We First note that the protocol is constant round. The costs of using
current implementations of FPRF on inputs of length p(n) is that of p(n) oblivious transfer invocations,
and hence of O(p(n)) modular exponentiations. We get that the overall communication costs are of sending
O(mXp(n)+mY ) group elements, and the computation costs are of performing O(mXp(n)+mY log log n)
modular exponentiations.

5 Security Under Universal Composability

Our protocols can be transformed to protocols that are secure in the UC (universal composability) frame-
work. We show how to modify protocols π∩ and π∪ into protocols πUC

∩ and πUC
∪ that compute the respective

functionalities F∩ and F∪ with security under universal composability [9].
A protocol that is universally composable maintains its security even when run in an arbitrary network

setting concurrently with other secure and insecure protocols [9]. The formal definition introduces an ad-
ditional adversarial entity Z , called the environment. The environment generates the inputs to all parties,
receives all outputs, and interacts with the adversary in an arbitrary way throughout the computation. A
protocol π securely computes an ideal functionality F in the UC framework for any adversary A that in-
teracts with the parties running the protocol, there exists an ideal process adversary (or ”simulator”) S that
interacts with the trusted party, so that no environment Z can distinguish the two cases. If the above holds
for a protocol π we say that π UC realizes F and that π is UC secure; see [9] for a formal definition and the
proof that the definition implies security under composition in an arbitrary network as described above.

We remark that secure two-party computation of most interesting functionalities in this model requires
an additional trusted setup assumption such as a common reference string (CRS) [10]. Our protocols of UC
secure protocols employ sub-protocols that use a common reference string.

We begin with the observation that a security proof with straight-line simulators is essentially enough
for proving UC security. We thus identify all the locations in our proofs in which the simulator uses rewind-
ing and handle them individually. As most of these rewindings are due to simulating zero-knowledge Σ-
protocols, we first construct a general proof that UC realizes every Σ-protocol.15 This, in turn, enables to
construct non-rewinding simulators for π∩ and π∪.

15A Σ-protocol is a three rounds proof in a format of commitment, challenge, response. See [17] for more details.
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5.1 UC Zero-Knowledge for Σ-Protocols

For completeness, we present a general UC construction for Σ-protocols (that are three-round) which com-
bines the techniques of [14, 26]. We first have the verifier commit to its challenge followed by the prover
who commits to its first message. Both parties use a UC commitment scheme (comUC, decUC) that UC
realizes functionality FCOM (Figure 3 recalls the definition of [17]). The protocol of [17] realizes FCOM and
is secure assuming the hardness of the decisional composite residuosity problem in the common reference
string model, and operates in ZN .

Functionality FCOM

Functionality FCOM proceeds as follows, running with parties P1 and P2 and an adversary S.

• Generate a uniformly random modulus N that is a product of two odd primes p and q. Send N to parties
P1 and P2, and send p, q to S.

• Upon receiving a message (commit, id, Pi, Pj ,m) from Pi, send (receipt, id, Pi, Pj) to Pj and S. Record
(id, Pi, Pj ,m) and ignore subsequent messages of the form (commit, id, . . .).

• Upon receiving a message (open, id, Pi, Pj) from Pi where (id, Pi, Pj ,m) is recorded, send
(open, id, Pi, Pj ,m) to Pj and to S. Otherwise, do nothing.

Figure 3: The commitment functionality [17]

Next we have the prover choose two distinct challenges and commit to their corresponding replies
(meaning, the prover computes the response in both cases and commits to these values). Finally, the verifier
reveals its challenge and the prover opens the commitment that corresponds to this bit.16 This concludes the
high level construction of our protocol that UC realizes the zero-knowledge functionality FR

ZK, parameter-
ized by a relationR; see Figure 4.

Functionality FR
ZK

• Upon receiving a message (ZK− prover, id, x, ω) from P , do: if R(x, ω) = 1, then send
(ZK− proof, id, x) to V and S and halt. Otherwise, halt.

Figure 4: The zero-knowledge functionality

Theorem 5.1 Let π denotes a Σ-protocol for a binary relation R. Then under the hardness assumption
of the decisional composite residuosity problem, there exists a protocol πR that UC realizes FR

ZK in the
Fcom-hybrid model with soundness half.

Proof: Let πR denotes a Σ-protocol for a relationR, we present our protocol πUC
R .

Protocol 9 (UC zero-knowledge for a relationR):

• Joint statement: x and a security parameter 1n.

• Auxiliary input for the prover: A witness ω.

16Two distinct accepting transcripts enable to extract the witness in all the proofs included in this section. This technique can be
extended for any polynomial number of distinct transcripts needed for extraction.
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• The protocol:

1. The verifier chooses a random bit b ∈ {0, 1} and sends Fcom the message (commit, id, V, P, b).

2. The prover P computes α as in the original Σ-protocol, πR. It then chooses two distinct challenges β0

and β1, and computes the responses γ0 and γ1 to these challenges.

3. P sends the verifier the values {α, βi}i∈{0,1}. Furthermore, it sendsFcom the messages (commit, id0, P, V, γ0)

and (commit, id1, P, V, γ1).

4. If β0 = β1, V aborts. Otherwise, it responds P by sending the message (open, id, V, P ) toRcom.

5. Upon receiving the message (open, id, V, P, b) from Fcom, P returns it the message (open, idb, P, V ).

6. Upon receiving the message (open, idb, P, V, γb) from Fcom, V accepts only if (α, βb, γb) is an accepting
transcript.

Proposition 5.1 Protocol 9 UC realizes FR
ZK in the FCRS-hybrid model with soundness half.

Proof: Note first that the protocol is correct since in case both parties are honest, P always convinces V by
producing a pair of accepting transcripts. We further prove that the prover can only cheat with probability
half. This is due to the fact that if it does not know ω it will not be able to commit to two different accepting
transcripts, and thus will be caught with probability half. LetA be an adversary that interacts with the prover
P and the verifier V running Protocol 9. We construct an adversary S for the ideal process for FR

ZK such that
no environment Z can tell with non-negligible probability whether it is interacting with A and Protocol 9
or with S in the ideal process for FR

ZK. Recall that S interacts with the ideal functionality FR
ZK and with the

environment Z . Simulator S starts by invoking a copy of A and running a simulated interaction of A with
Z and parties P and V . S proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written onA’s input
tape (as if coming from A’s environment). Likewise, every output value written by A on its output tape is
copied to S’s own output tape (to be read by S’s environment Z).

Simulating the case where P is corrupted:

1. S emulates Fcom and internally sends A the message (receipt, id, V, P ).

2. S internally receives fromA two sets {α, βi}i∈{0,1} and its messages toFcom; (commit, id0, P, V, γ0)
and (commit, id1, P, V, γ1) and aborts in case β0 = β1.

3. If (α, β0, γ0) and (α, β1, γ1) denote a pair of valid distinct transcripts S computes ω. Otherwise S
halts.

4. S completes the simulation by sending A the message (open, id, V, P, b) for a random bit b, and
verifies that A sends Fcom the message (open, idb, P, V, γb). In this case S sends (x, ω) to the trusted
party for FR

ZK. Otherwise it halts.

Note that A’s view is identical in both the real and the simulated executions as all the messages from V are
via Fcom and b is uniform in both executions. Furthermore, the simulation fails with probability at most 1

2 ,
since if the honest verifier accepts the proof with probability that is greater than 1

2 , then it must be that the
corrupted prover committed to two distinct valid transcripts which enable the simulator to extract ω.
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Simulating the case where V is corrupted:

1. Upon receiving a message (commit, id, V, P, b), S chooses two distinct challenges β0 and β1 as the
honest prover does, and computes α as in the simulation of πR. That is, S invokes the simulator SR
of πR and plays the role of the honest verifier who sends the challenge βb. Let α be the first message
in the transcript that SR outputs. Then S internally sends A the sets {α, βi}i∈{0,1}. In addition, S
sends V the messages (receipt, id0, P, V ) and (receipt, id1, P, V ).

2. Upon receiving a message (open, id, V, P ), S internally sends A the message (open, idb, P, V, γb).

We claim that A’s view in the hybrid and the simulated executions is identical. This is due to the fact that
the transcript (α, βb, γb) is identically distributed in both executions based on the zero-knowledge property
of πR.

Simulating the case that neither party is corrupted: In this case, S generates a simulated transcript of
messages between the hybrid model parties as in the above simulations. We further claim that the simulated
and the hybrid transcripts are identical in the presence of an eavesdropper A following the same claims
as above. Then, combined with the correctness argument we conclude that the joint output distribution is
identical in both executions.

Simulating the case that both parties are corrupted: The simulator S just runs A internally who gen-
erates the messages from both P and V by itself.
This concludes our proof.

Soundness reduction. Seeing that the soundness for this UC proof is only half, which is inadequate for
our purposes, we will need to repeat it enough times to achieve a negligible soundness. That is, in order to
achieve negligible soundness in a statistical parameter 1s we invoke s independent copies of this proof in
parallel; see [26] for more details.

5.2 UC Set-Intersection

We now discuss how to construct a new protocol πUC
∩ that UC realizes functionality F∩. Similar mod-

ifications apply to the set-union protocol. Observe that the simulator for π∩ uses rewinding within the
zero-knowledge proofs and the subprotocol πPRF. We replace the standard zero-knowledge proofs, the com-
mitment scheme (com, dec), and protocol πPRF with UC constructions (protocol πUC

PRF is a modified version
of πPRF [23] where every oblivious transfer invocation is replaced with a UC oblivious transfer, we omit the
detail here). Recall that πPOLY is not a standard Σ proof, rather it employs such proofs. It can be modified
into a UC proof by employing UC subprotocols. We denote by πUC

DL , πUC
POLY and πUC

PRF the UC constructions
for the respective functionalities FDL

ZK , FPOLY and FPRF, and conclude with the following statement,

Theorem 5.2 Assume that πUC
DL , πUC

POLY and πUC
PRF are as described above, that (G,E,D) is the El Gamal

encryption scheme, and that comUC is a UC commitment scheme. Then πUC
∩ UC realizes FUC

∩ in the
{FCRS,FR

ZK,FPRF}-hybrid model in the presence of malicious adversaries.

Our proof is not modular in Fcom since we rely on the fact that P1 is given the commitment and not just
a receipt as in the ideal setting. In particular, it is essential that P2 chooses the randomness for comUC by
itself. We continue by briefly describing the construction of [17]. Let N be an RSA modulus. The hardness
assumption of the decisional composite residuosity problem asserts that no probabilistic polynomial adver-
sary can distinguish between (1+N)m ·rN mod N2 and rN mod N2, where r ←R Z∗

N and m is an arbitrary

34



value in ZN .17 Then the common reference string for the above construction includes an RSA modulus N ,
and a public-key pk which guarantees the following. If it is of the form (1 + N)m · rN mod N2 then the
scheme is prefect binding, where a commitment c is computed by comUC(m

′; r′) = pkm
′ · r′N mod N2. An

extraction of the decommitted value can be done efficiently using the factorization of N . Otherwise, it is
prefect hiding and equivocal. For completeness we present the FCRS functionality in Figure 5.

Functionality FCRS

Functionality FCRS runs with parties P1 and P2 and is parameterized by a distribution D.

• When activated for the first time on input (id, Pi, Pj) from Pi, choose a value crs←R D, send crs back
to Pi, and send (crs, Pi, Pj) to the adversary. Next, when receiving (id, Pi, Pj) from Pj (and only Pj),
send (id, crs) to Pj and to the adversary, and halt.

Figure 5: The common reference string functionality

Proof: LetA be an adversary that interacts with parties P1 and P2 running πUC
∩ . We construct an adversary

S for the ideal process for F∩ such that no environment Z can tell with non-negligible probability whether
it is interacting with A and πUC

∩ or with S in the ideal process for F∩. Recall that S interacts with the ideal
functionality F∩ and with the environment Z . Simulator S starts by invoking a copy of A and running
a simulated interaction of A with Z and parties P1 and P2. In the following proof, we only present the
constructions of the simulators, as the proof follows similarly to the proof of Theorem 3.3 with the exception
that now we omit the games that are related to the commitment scheme com. Specifically, in case P1 is
corrupted games H1 and H2 are omitted. S proceeds as follows:

Simulating the communication with Z: Every input value that S receives from Z is written onA’s input
tape (as if coming from A’s environment). Likewise, every output value written by A on its output tape is
copied to S’s own output tape (to be read by S’s environment Z).

Simulating the case where party P1 is corrupted:

1. Whenever S internally receives from A, (ZK− prover, id, (G, g, q, h), t) for the ideal computations
of FDL

ZK , it records t and internally passesA the message (ZK− proof, id, (G, g, q, h)) only if h = gt.
Otherwise it halts.

2. S internally receives from A the parameters B,M and the seeds for the two (pseudo-)random hash
functions h0, h1 : {0, 1}p(n) → [B] used in the balanced allocation scheme. If the parameters B,M
were not computed correctly, S halts.

3. Upon receiving a message (id, P1, P2), S chooses a value crs as follows. It first chooses two odd
primes p and q of appropriate length and sets N = p · q. It then sets pk = rN mod N2 for a random
r ∈ Z∗

N . S sets crs = (N, pk), and internally hands A the message (crs, P1, P2).

4. For all α ∈ {1, . . . ,mY }, S chooses (ŷα, ŝα) ←R Zq × Zq and internally sends A the commitment
comα

UC(ŷα; ŝα) under pk.

17This assumption was generalized by [16].
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5. S internally receives from A the message,

(ZK− prover, id, {Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M}, ({qi,j}i∈{1,...,B},j∈{0,...,M},mX , pk)) for the ideal
computation of FPOLY

ZK . If the conditions for outputting (λ, 1) are not met then S halts.

6. S sets X̃ = ∪Bi=1{x : Qi(x) = 0∧ (h0(x) = i∨h1(x) = i)} and completes X̃ to size mX by adding
random elements from {0, 1}p(n). S sends X̃ to the trusted party for F∩ and receives as answer a
set Z = X̃ ∩ Y . S sets Ỹ to Z and completes Ỹ to the size mY by adding random elements from
{0, 1}p(n).

7. Let y1, . . . , ymY be a random ordering of the elements of set Ỹ . For α ∈ {1, . . . ,mY }, S considers
each commitment comα

UC in conjunction with yα and performs the following:

(a) S computes a value sα such that comα
UC = com(yα; sα).

(b) S chooses a random string rα (of the outcome length of the pseudorandom function) and records
the pair (sα, rα).

(c) S parses rα as r0∥r1∥r̂0∥r̂1 and completes Step 6 of the protocol playing the role of the honest
P2.

8. S internally emulates the ideal computation of FPRF as follows: One pair (sα, rα) is considered for
each oblivious PRF execution, in the order in which the pairs were recorded. If it happens that A
enters a value s such that s = sα, then S returns rα, otherwise, S returns a randomly chosen string of
the same length.

Simulating the case where party P2 is corrupted:

1. S chooses t←R Zq and internally sends P2 the keys h = gt. It then emulates functionality RDL
ZK and

internally sends A the message (ZK− proof, id, (G, g, q, h)).

2. S computes the parameters B,M for the balanced allocation scheme and chooses random seeds for
the hash functions h0, h1. These are then internally sent to A.

3. Upon receiving a message (id, P1, P2) from A, S chooses a value crs as follows. It first chooses two
odd primes p and q of appropriate length and sets N = p · q. It then sets pk = (1+N)m · rN mod N2

for an arbitrary m ∈ ZN and a random r ∈ Z∗
N . S sets crs = (N, pk), and internally hands A the

message (id, crs).

4. S receives from A a set of mY commitments {comα
UC}

mY
α=1, supposedly of elements in Y . For each

commitment comα
UC that it receives, S computes (yα, sα) such that comα

UC = (yα; sα) using the
knowledge of p and q.

5. S sends to A the encryptions of B zero polynomials.

6. S emulates the trusted party for FPOLY
ZK and internally sends A the message

(ZK− proof, id, ({qi,j}i∈{1,...,B},j∈{0,...,M},mX , pk)).

7. for each α ∈ {1, . . . ,mY }, S receives e0α, e
1
α from A.
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8. S receivesA’s input for the ideal computationFPRF; (id, k) and evaluates r0∥r1∥r̂0∥r̂1 = FPRF(k, sα)
for every α. It then checks if e0α, e

1
α, are consistent with r0, r1, r̂0, r̂1 when P2’s input is yα. That is,

S recomputes these encryptions using sα, FPRF(k, sα) and yα as the honest P2 would in the real exe-
cution, and checks whether the result equals e0α, e

1
α. If the check succeeds, S locally records the value

yα.

9. S sets Ỹ to the set of recorded values, and completes Ỹ to the size mY by adding random elements
from {0, 1}p(n).

10. S sends Ỹ to the trusted party for F∩.

Simulating the case that neither party is corrupted: In this case, S generates a simulated transcript of
messages between the hybrid model parties as in the above simulations. We further claim that the simulated
and the hybrid transcripts are identical in the presence of an eavesdropper A following the same claims
as above. Then, combined with the correctness argument we conclude that the joint output distribution is
identical in both executions.

Simulating the case that both parties are corrupted: The simulator S just runs A internally who gen-
erates the messages from both P1 and P2 by itself.
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