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Abstract: The rapid development of quantum computing makes public key cryptosystems not 
based on commutative algebraic systems hot topic. Because of the non-commutativity property, 
the braid group with braid index more than two becomes a new candidate for constructing 
cryptographic protocols. A strong blind signature scheme is proposed based on the difficulty of the 
one-more matching conjugacy problem in the braid groups, in which the signer can not relate the 
signature of the blinded message to that of the original message. The usage of random factor 
ensures that the blind signatures of the same message are different and avoids the weakness of 
simultaneous conjugating. The scheme can resist the adaptively chosen-message attack under the 
random oracle model. 
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1 Introduction 

The braid groups were first introduced by Artin[1]. Because of the non-commutativity 
property, the braid groups have become a new candidate to construct cryptosystem and attracted 
many cryptographers’ attention. In 2000, they were first used to construct a key agreement 
protocol and a public key encryption scheme[2]. Since then there have been many attempts to 
design cryptographic primitives using braid groups. Positive proposals are key agreement 
protocols[3], an implementation of braid computations[4], the first digital signature scheme[5], entity 
authentication schemes[6, 7], public key encryption algorithm[8] and several digital signature 
schemes with additional properties[9-15]. 

The concept of blind signature was introduced by Chaum to allow a receiver to get a 
signature without giving the signer any information about the actual message or the resulting 
signature[16]. The blindness property plays a important role in electronic voting and electronic 
schemes[17, 18]. Since Chaum’s first scheme was published many blind signature schemes have 
been proposed[19, 20, 21]. But using braid groups in the constructions of blind signature schemes is 
still a new subject[11, 15]. And Kumar claimed that all of them are not secure against the linkability 
vulnerability[22]. Hence, new constructions are desirable.  

This paper proposes a new blind signature scheme over braid groups and security analysis is 
present. The rest of this paper is organized as follows. The second section introduces the basics of 
braid groups, security model and some notations. The signature scheme is proposed in section 3 
and security analysis is given in section 4. Section 5 is the conclusion.  

2 Preliminaries 

2.1 Braid Group[2]

In this section, the basics of braid groups and hard problems in braid groups are introduced. 
Definition 1 For each integer , the n-braid group is an infinite non-commutative 

group which is defined as the group generated by

2n ≥ nB

1 2 1, , , nσ σ σ −" with the relation: 

(1)    (| | 2)i j j i i jσ σ σ σ= − ≥ ;  

mailto:weiyun456@sohu.com


(2) 1 1 1     (1 2)i i i i i i i nσ σ σ σ σ σ+ + += ≤ ≤ − . 

The integer is called the braid index and each element of is called an n-braid. A braid is 

said to be positive if and only if it can be written as a product of generators

n nB

1 2 1, , , nσ σ σ −" , i.e., 

no negative powers of 1 2 1, , , nσ σ σ −" are involved. The identity nBε ∈ is also regarded as 

positive. The positive braids in form a semi-groupnB nB+ which embeds into . The fundamental 

braid is defined as: 
nB

nB∆∈ 1 2 1 1 2 2 1 2 1( )( ) (n n )σ σ σ σ σ σ σ σ σ− −∆ = " " " . 

A partial ordering" on the elements of is defined by setting v"≤ nB w≤ if and only if there 

are positive braids , nBα β +∈ satisfying w vα β= . Any braid nBα ∈ satisfying ε α≤ ≤ ∆ is 
called a canonical factor. A factorizationγ αβ= of a positive braidγ into a canonical factorα and 
a positive braidβ is said to be left-weighted ifα has the maximal word length among all such 

factorizations. Every braid can be written uniquely asnw B∈ 1
r

qw α α= ∆ " such 

that 1, , qα α" are canonical factors and 1(1 )i i i qαα + ≤ < is left-weighted. And , denoted 

by in , is the greatest integer satisfying

r

f( )w j j w∆ ≤ . r q+ , denoted bysup( , is the smallest 

integer satisfying . is called the canonical length of . 

)w
j jw ≤ ∆ q w

Two braids , nBα β ∈ are said to be conjugate if there exist a braid such thats 1s sβ α−= . 
And byα β∼ we meanα andβ are conjugate. There are some mathematically hard problems 
related to conjugation over braid groups which can be used to design cryptographic protocols. 

Definition 2 Conjugacy Decision Problem (CDP) 
Instance: ( , ) nB Bnα β ∈ × such that 1s sβ α−= for some ns B∈ . 
Objective: Determine whetherα andβ are conjugate or not. 
Definition 3 Conjugacy Search Problem (CSP) 
Instance: ( , ) nB Bnα β ∈ × such that 1s sβ α−= for some ns B∈ . 

Objective: Find nt B∈ such that 1t tβ α−= . 
Definition 4 Simultaneous Conjugacy Search Problem (SCSP) 
Instance: 1 1

1 1( , ), , ( , )N N ns s s s B Bα α α α− −
n∈ ×" for some ns B∈ . 

Objective: Find nt B∈ such that 1 1 1 1
1 1 , , N Nt t s s t t s sα α α α− − − −= =" . 

A cryptographic scheme is said to have the weakness of simultaneous conjugating if its 
security depends on the simultaneous conjugacy search problem. 

Definition 5 Matching Conjugacy Search Problem (MCSP) 

Instance: ( , , ) n n nB B Bα β γ ∈ × × such thatα β∼ . 

Objective: Find nBδ ∈ such thatγ δ∼ ,αγ βδ∼ .  
Obviously, if CSP can be solved easily, so does MCSP. MCSP is not harder than CSP. 
There is an efficient polynomial time algorithm for solving CDP[5]. And many algorithms 

have been proposed to solve CSP, its variants and other problems in braid groups[24-29]. But none 
of them was proved to be polynomial in solving CSP or MCSP. So these hard problems are still 
used to develop cryptosystems. 
2.2 Security Model 

The existential forgery under adaptively chosen-message attack[31] is considered, in which the 
attack algorithm is allowed to: F

(1) make queries to the random oracle; hq
(2) make sq queries to the signing oracle for valid blind signatures of messages of its choice. 



hq and sq are polynomial in the security parameter . is successful if it outputs, in 

polynomial time and with non-negligible probability

k F
( )EFU CMAAdv k−

F , a valid blind signature for 
some message such that he has not asked for a valid blind signature of message . m m

The attack algorithm is said to be ( ,F , , )h st q q ε -successful if the numbers of queries it 

makes to the random oracle and the signing oracle are not more than andhq sq , respectively, and it 

can successfully outputs the forgery with the probability ( )EFU CMAAdv k ε− ≥F within polynomial 

time . A signature scheme is said to be ( ,t , , )h st q q ε -secure if there is no ( , , , )h st q q ε -successful 
attack algorithm. 

The definition of one-more matching conjugacy problem(OM-MCP) [32] is proposed in order 
to analyze the security of signature schemes based on braid groups. 

Definition 6[27] is given such thatu u( , )u u′ ′ ∼ . is a polynomial time algorithm, which 
can ask the matching conjugacy oracle

A
( )mc ⋅O and the challenge oracle for the following 

services: 
( )ch ⋅O

(1) send a request tony B∈ ( )mc ⋅O and an element nBσ ∈ is returned by , which 
satisfies

( )mc ⋅O
yσ ∼ , u yuσ ′ ∼ ; 

(2) send a request to and a random element from is returned by . ( )ch ⋅O nB ( )ch ⋅O
OM-MCP means has to output pairs A N 1 1( , ), , ( , )N Ny yσ σ" satisfying i yiσ ∼ and 

( 1, , )i iu y u i Nσ ′ =∼ " after obtaining from1, , Ny y" ( )ch ⋅O on the condition that the requests 

sent to are not more than .  ( )mc ⋅O 1N −

OM-MCP is said to be hard if the success probability ( )OM MCPAdv k−
A is negligible for any 

polynomial time algorithm . Obviously, if One-more matching conjugacy problem can be 
solved efficiently, so does MCSP. 

A

2.3 Notations 
In this paper, denotes a random choice of an element from the setRa∈ A a A . 

And means holds if holds. 1P P⇒ 2

n

2P 1P

3 The Blind Signature Scheme over Braid Groups 

Verma proposed two blind signature schemes[11] and one proxy blind signature scheme[15], 
which are claimed to be secure. But analysis shows that none of them withstands against the 
linkability vulnerability[22, 23]. In this section we are giving the new blind signature scheme over 
braid groups.  
3.1 The Scheme 

Let 1 , 2 , 3 , 4n n nB B B B be the subgroups of nB generated by 1 2 2 /3 1{ , , , }nσ σ σ −⎢ ⎥⎣ ⎦
" ，

/3 1 /3 2{ , , , }nn nσ σ σ+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
" 1 2 /3 1, , }n，{ ,σ σ σ −⎢ ⎥⎣ ⎦

" } and 2 /3 1 /3 2{ , , , nn nσ σ+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
" σ , respectively. 

The system parameters and l are positive integers large enough. Let n

( ) { | 0 inf( ) sup( ) }n nB l b B b b l= ∈ ≤ ≤ ≤  

( ) { | 0 inf( ) sup( ) }( 1,2,3,4)n nBi l b Bi b b l i= ∈ ≤ ≤ ≤ =  

| ( ) | ( !)l
nB l l n≤ and ( )nB l is finite set[12]. Then 1 ( ), 2 ( ), 3 ( ), 4 ( )n n n nB l B l B l B l are finite set, too. 

:{0,1} ( )nH B l∗ → is a collision resistant one way hash function. is the 
message to be signed. 

{0,1}m ∗∈

Key Generation: The signer chooses 1 ( )R nu B l∈ , 2 ( )R na B l∈ and computes 1u aua−′ = . 



Then is the secret key and is the public key.  a ( , )u u′
Blinding: The user chooses , 3 (R nB l) 4 ( )R nb B l∈α β ∈ , satisfying 1β α−≠ and 

computes 1t bybα β−= and sends t to the signer, where ( )y H m= . 

Signing: The signer computes 1ataσ −′ = and sends it back to the user. 
Unblinding: The user computes 1 1σ α σ β− −′= and displays ( , )mσ as the blind signature. 
Verification: The verifier computes ( )y H m= and accepts the signature if and only if 

yσ ∼ and u yuσ ′ ∼ . 
3.2 Security Analysis 

(1)Completeness 
If the user and the signer perform honestly in the signature scheme, the generated blind 

signature can pass the verification. The completeness can be proved by the following equations.  
1 1

1 1 1 1 1 1

2 ( ), , 3 ( ) ,

                                           
                                           

R n R na B l B l a a a a

a a a byb a abyb a
y

α β α α β β

σ σ α α β β
σ

− −

1− − − − − −

∈ ∈ ⇒ = =

′⇒ = = =
⇒ ∼

−  

1 1

1 1 1 1 1 1 1

1 ( ), 4 ( )

                                     
                                     

R n R nu B l b B l b u ub

u abyb a aua abyb ua abyub a
u yu

σ
σ

− −

− − − − − −

∈ ∈ ⇒ =

′⇒ = = =
′⇒ ∼

−  

(2)Blindness 
In the scheme, tσ ′ ∼ and yσ ∼ hold. Butσ ′ is not conjugate toσ . And t is not conjugate to 

. So the signer can not link ( ,y )tσ ′ with ( , )yσ without the knowledge of blinding factors. Hence, 
the signature scheme is a strong blind scheme. 

(3)Unforgeability 
Theorem. In the random oracle model, the proposed blind signature scheme 

is ( , , , )h st q q ε -secure against the existential forgery under adaptively chosen-message attack.  

Proof. Assume that an algorithm is ( ,F , , )h st q q ε -successful in attacking the proposed 
blind signature scheme, i.e., produces, within polynomial time and with non-negligible 
success probability not less than

F t
ε , a valid blind signatureσ ∗of the message , such that he has 

asked queries to the random oracle and
m∗

hq sq  queries ( 1, ,im i q )s= " to the signing oracle 

and . We design a solver algorithm that uses as a subroutine and 
solves OM-MCP within time with success probability not less than

* { ( 1, , )}im m i q∉ = " s A F
t′ ε ′ ,where ε ε′ = , 

( 1 )s s h h mc st t t q t q t N q′ = + + + − − ht, , st and are the time consumed in one query to the 
random oracle, the signing oracle and the matching conjugacy oracle, respectively. 

mct

Let ( , be an input of the OM-MCP, in whichu u)u u′ ′ ∼ . sendsA ( )sN N q> requests to the 

challenge oracle ( )ch ⋅O and obtains . has to output1, , Ny y" A 1, , Nσ σ" satisfying i yiσ ∼ and 

iu y uiσ ′ ∼ on the condition that the requests he sends to the matching conjugacy oracle are 
not more than . must simulate the environment of ; that is, it must provide consistent 
answers to all the queries that is allowed to make to the random oracle and the signing oracle. 
In order to maintain the consistency and to avoid collision, keeps lists and

( )mc ⋅O
1N − A F

F
A hL sL to store the 

answers used.  
When makes theF 'j th (1 )hj q≤ ≤  query to the random oracle, checks the 

corresponding list . If an entry for the query is found, the same answer will be retuned; 

otherwise, answers with

A

hL
A jy and stores the query and the answer in the list . hL

A simulates the signing oracle to any query in the following way. Firstly checks the m A



list . If is found in , there existshL m hL {1, , }i N∈ " satisfying ( )iy H m= ; otherwise,  

chooses  which has not appeared in as the corresponding answer and stores them in . Then 

checks the list

A

iy hL hL
A sL . If is found in iy sL , the corresponding answer is returned to ; 

otherwise, sends the request to the matching conjugacy oracle

F
A iy ( )mc ⋅O and returns the obtained 

answer iσ to . Then andF iy iσ  will be stored in the list sL . 

If successfully forge a blind signatureF σ ∗of message m∗ , m∗ and the corresponding hash 
value must satisfy that exists in buty∗ m∗

hL y∗ can not be found in sL and 1{ , , }Ny y y∗ ∈ " . 

Assume that . For(1 )y y Nτ τ∗ = ≤ ≤ 1, , 1, 1, ,i Nτ τ= − +" " , if does not exist in iy

sL , sends the request to the oracleA iy ( )mc ⋅O and stores and the answeriy iσ in sL . 

Finally, outputsA 1( , , )Nσ σ" as the solution of OM-MCP. For 1, ,i N= " , i yiσ ∼ and 

iu y uiσ ′ ∼ hold. And the requests send by toA ( )mc ⋅O are not more than . That 
is, successfully solve the OM-MCP. The success probability equals to the success probability 
of , which means

1N −
A
F ε ε′ = . The time needs is the sum of the time needs in the forgery and 

the time consumed in the interactions with all oracles. The queries can ask to the hash and the 
signing oracles are not more than and

A F
A

hq sq respectively. Then the requests sends to the 

matching conjugacy oracle are not more

A
1 sN q− − . Hence, 

( 1 )s s h h mc st t t q t q t N q′ = + + + − − . 
（４）Non-determinability and free of simultaneous conjugacy weakness 
In the signature , the introduction of the random factor ensures that 

signatures of the same message are different. That is to say the signature is not determinable. In 
addition, avoids the existences of conjugate pairs with the same conjugate . Hence, the 
scheme does not have the weakness of simultaneous conjugating. 

1 1abyb aσ − −= b

b a

4 Conclusion 

In this paper, a new blind signature scheme is proposed based on the difficulty of the 
conjugacy search problem and the multiple conjugacy search problem. Security analysis shows 
that the proposed scheme satisfies the security requirements of blind signature. 
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