
Approximate Integer Common Divisor Problem relates

to Implicit Factorization

Santanu Sarkar and Subhamoy Maitra

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India
{santanu r, subho}@isical.ac.in

Abstract. In CaLC 2001, Howgrave-Graham presented a technique to calculate GCD (Greatest Com-
mon Divisor) of two large integers when the integers are not exactly known, but some approximation
of those integers are available. In this paper, we study the problem of finding out the GCD of k (≥ 2)
many large integers, given one of them exactly and the approximations of the rest k − 1. The PACDP
(Partially Approximate Common Divisor Problem, presented by Howgrave-Graham in CaLC 2001) is
a special case, of the problem we consider, when k = 2. Further we show that our general strategy to
calculate the GCD from the approximations can be immediately applied to the Implicit Factorization
problem proposed by May and Ritzenhofen in PKC 2009. We present new and improved theoretical as
well as experimental results in this direction.

Keywords: Greatest Common Divisor, Factorization, Integer Approximations, Implicit Fac-
torization, Lattice, LLL.

1 Introduction

It is known that given two large integers a, b (a > b), one can calculate the GCD efficiently in
O(log3 a) time. In [HOW01], Howgrave-Graham has shown that it is possible to calculate the
GCD efficiently when some approximations of a, b are available. This problem was referred as
“approximate common divisors”. Using the strategy of [HOW01], Coron and May [COR07]
proved the deterministic polynomial time equivalence of computing the RSA secret key and
factoring.

In a recent paper [MAY09], May and Ritzenhofen explained the problem of implicit
factorization. The motivation of this problem in the context of oracle complexity has nicely
been explained in [MAY09]. Thus we directly get into the problem description. Consider
N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk, where p1, p2, . . . , pk and q1, q2, . . . , qk are primes. It is
also considered that p1, p2, . . . , pk are of same bit size and so are q1, q2, . . . , qk; this is followed
throughout the paper unless otherwise mentioned. Given that certain portions of bit pattern
in p1, p2, . . . , pk are common, the question is under what conditions it is possible to factor
N1, N2, . . . , Nk efficiently. In [MAY09], the exact result was based under the assumption that
some amount of LSBs are same in p1, p2, . . . , pk. Later, in [SAR09], different cases, i.e., (i)
some portions of LSBs are same and/or some portions of MSBs are same, (ii) some portions
at the middle are same, have been considered. However, the technique of [SAR09] could only
be applied for k = 2 and it has been pointed out that the extension may not be achieved for
k > 2.



In this paper we concentrate on the implicit factorization problem considering some
amount of MSBs are same in p1, p2, . . . , pk. This is unlike the analysis in [MAY09], where
the LSBs were considered. Moreover, our study covers the generalized solution for k > 2 in
case of MSBs, which could not be done in [SAR09]. We generalize the ideas of [HOW01] for
the lattice based technique that we exploit in this paper and our strategy is different from
that of [MAY09,SAR09].

First consider k = 2. As p1, p2 share certain amount of MSBs, one can write p1−p2 = x0,
where x0 is of lesser bit size than p1 or p2. Hence N2 = (p1 − x0)q2. Therefore, gcd(N1, N2 +
x0q2) = p1. Since, N2 (known) is an approximation of N2 + x0q2 (unknown), we can use the
technique of [HOW01] to solve this problem efficiently and get p1 under certain conditions.
This gives factorization of N1. Additionally, when p1 > x0q2, then either bN2

p1
c or dN2

p1
e will

provide q2. This is explained in detail in Section 2.1.
In this paper we generalize the PACDP given in [HOW01]. Let a1, a2, . . . , ak are integers

with gcd(a1, a2, . . . , ak) = g. Suppose a
(0)
2 , . . . , a

(0)
k are given which are approximations of

a2, . . . , ak respectively. We like to find g from the knowledge of a1, a
(0)
2 , . . . , a

(0)
k . An immediate

application of our general version towards the implicit factorization is as follows. We can write
p1 = p1 + x1, . . . , pk = p1 + xk where x1 = 0. Hence p1 = gcd(N1, N2 − x2q2, . . . , Nk − xkqk)
and consequently, we can find x2q2, . . . , xkqk under certain conditions as described in our
technical results later.

For application of the results related to approximate integer common divisor to implicit
factorization, we need to generalize the PACDP [HOW01]. Let us describe the problem which
we name as Extended Partially Approximate Common Divisor Problem (EPACDP).

Definition 1. EPACDP.

Let a1, a2, . . . , ak be large integers of same bit size and g = gcd(a1, a2, . . . , ak). Consider that

a
(0)
2 , . . . , a

(0)
k are the approximations of a2, . . . , ak respectively and a

(0)
2 , . . . , a

(0)
k are of same

bit size too. Let a2 = a
(0)
2 + x

(0)
2 , . . . , ak = a

(0)
k + x

(0)
k . We need to find x

(0)
2 , . . . , x

(0)
k from the

knowledge of a1, a
(0)
2 , . . . , a

(0)
k .

The PACDP of [HOW01] considers only a1, a2. For application to implicit factorization,
we get one of the integers, denoted by a1 in Definition 1, exactly and the rest of the integers
a2, . . . , ak as approximations.

The problem when a1 is not available exactly, but an approximation of a1 is available,
is referred as General Approximate Common Divisor Problem (GACDP) in [HOW01]. One
can extend it as follows with the name Extended General Approximate Common Divisor
Problem (EGACDP).

Definition 2. EGACDP.

Let a1, a2, . . . , ak be large integers of same bit size and g = gcd(a1, a2, . . . , ak). Consider that

a
(0)
1 , a

(0)
2 , . . . , a

(0)
k are the approximations of a1, a2, . . . , ak respectively and a

(0)
1 , a

(0)
2 , . . . , a

(0)
k

are of same bit size too. Let a1 = a
(0)
1 + x

(0)
1 , a2 = a

(0)
2 + x

(0)
2 , . . . , ak = a

(0)
k + x

(0)
k . We need to

find x
(0)
1 , x

(0)
2 , . . . , x

(0)
k from the knowledge of a

(0)
1 , a

(0)
2 , . . . , a

(0)
k .



The GACDP of [HOW01] considers only a1, a2.
Since for the implicit factorization problem, we get a1 exactly, EPACDP maps directly

to it. That is the reason, we concentrate on EPACDP in this paper rather than EGADCP.
Solving EGADCP will also be an interesting problem, though this is not in the scope of this
paper.

Contribution and Roadmap:

– We generalize the partially approximate common divisor problem (PACDP) [HOW01]
in Section 2 and show how our generalized version applies to the implicit factorization
problem described in [MAY09].

– In Section 2.1, we apply our result for the case k = 2 and show when we can achieve better
theoretical result than that of [SAR09]. Note that, the implicit factorization problem while
the MSBs are equal could be handled in [SAR09] only for k = 2, which we generalize
here. We also explain the case for k = 3 in Section 2.2 to detail our technique.

– The results of Section 2 are approximated in a closed form expression using a sublattice
structure in Section 3. Based on this we present closed form bounds for the solution for
implicit factorization when p1, . . . , pk share some amount of MSBs, whereas the problem
has been tackled for LSBs in [MAY09]. Our results (requirements of MSBs to be equal)
are compared in detail with that of [MAY09] (requirements of LSBs to be equal).

– We also exploit another recently presented technique [DJK09] for calculation of approxi-
mate common divisor. Though the theoretical bound of this technique is worse than that
of our results in Section 3, we can utilize it for better experimental performance. This is
presented in Section 4.

2 The General Solution

Towards solving the EPACDP, consider the polynomials

h2(x2, . . . , xk) = a
(0)
2 + x2,

. . . . . . . . . ,

hk(x2, . . . , xk) = a
(0)
k + xk, (1)

where x2, . . . , xk are the variables. Clearly g (as in Definition 1) divides hi(x
(0)
2 , . . . , x

(0)
k ) for

2 ≤ i ≤ k.
Now let us define the shift polynomials

h0,...,0,j2,...,jk
(x2, . . . , xk) = h

j2
2 . . . h

jk

k a
m−j2−...−jk

1 , (2)

for non-negative integers ji, 2 ≤ i ≤ k such that j2 + . . .+ jk ≤ m where the integer m ≥ 0
is fixed.

Further, we define another set of shift polynomials

h0,...,0,in,0,...,0,j2,...,jk
(x2, . . . , xk) = xin

n h
j2
2 . . . h

jk

k , (3)



with the following: (i) 1 ≤ in ≤ t, for 2 ≤ n ≤ k and a positive integer t, and (ii) j2+. . .+jk =
m, when 0 ≤ j2, . . . , jn−1 < in, and 0 ≤ jn, . . . , jk ≤ m.

We also need the following heuristic assumption to proceed.

Assumption 1. Consider a set of polynomials {f2, f3, . . . , fk} on k− 1 variables having the

roots of the form (x
(0)
2 , . . . , x

(0)
k ). Then we will be able to collect the root efficiently using

resultants.
Let us now state the following result due to Howgrave-Graham [HOW97].

Lemma 1. Let h(x2, . . . , xk) ∈ Z[x] be the sum of at most ω monomials. Suppose that

h(x
(0)
2 , . . . , x

(0)
k ) ≡ 0 mod Nm where |x(0)

2 | ≤ X2, . . . , |x(0)
k | ≤ Xk and ||h(x2X2, . . . , xkXk)|| <

Nm
√

ω
. Then h(x

(0)
2 , . . . , x

(0)
k ) = 0.

We also note that the basis vectors of an LLL-reduced basis fulfill the following prop-
erty [LLL82,MAY03].

Lemma 2. Let L be an integer lattice of dimension ω. The LLL algorithm outputs a reduced
basis spanned by {v1, . . . , vω} with

||v1|| ≤ ||v2|| ≤ . . . ≤ ||vi|| ≤ 2
ω(ω−1)

4(ω+1−i)det(L)
1

ω+1−i , for i = 1, . . . , ω,

in polynomial time of dimension ω and the bit size of the entries of L.

Note that gm divides any shift polynomial h...(x
(0)
2 , . . . , x

(0)
k ). Let X2, . . . , Xk be the up-

per bounds of x
(0)
2 , . . . , x

(0)
k respectively. Now we define a lattice L using the coefficient

vectors of h...(x2X2, . . . , xkXk). Let the dimension of L be ω. One gets x
(0)
2 , . . . , x

(0)
k (un-

der Assumption 1 and following Lemma 1 and Lemma 2) using lattice reduction over L, if

2
ω(ω−1)

4(ω+2−k)det(L)
1

ω+2−k < gm
√

ω
. We get this following Lemma 2, putting i = k−1. Neglecting the

small constants and considering k << ω (in fact, we will show that ω is exponential in k in

our construction), we get the condition as if det(L)
1
ω < gm, i.e., when det(L) < gmω. This is

written formally in Theorem 1 later.
Before proceeding to the next discussion, we denote that

(

n

r

)

is considered in its usual
meaning when n ≥ r ≥ 0 and in all other cases we will consider the value of

(

n

r

)

as 0.

Lemma 3.

ω =

m
∑

r=0

(

k + r − 2

r

)

+

k
∑

n=2

t
∑

in=1

n−2
∑

r=0

(−1)r

(

n− 2

r

)(

k +m− rin − 2

m− rin

)

.

Proof. Let j2 + . . . + jk = r where ji ≥ 0 for 2 ≤ i ≤ k. The number of such solutions is
(

k+r−2
r

)

. Hence the number of shift polynomials in Equation 2 is ω1 =

m
∑

r=0

(

k + r − 2

r

)

.

For fixed n, in, the number of shift polynomials in Equation 3 is the number of all possible
solutions of j2 + . . . + jk = m for 0 ≤ j2, . . . , jn−1 < in, and 0 ≤ jn, . . . , jk ≤ m. Now



the number of all possible solutions of j2 + . . . + jk = m for 0 ≤ j2, . . . , jn−1 < in, and
0 ≤ jn, . . . , jk ≤ m is the co-efficient of xm in (1 + x + . . . + xin−1)n−2(1 + x + . . . +
xm)k−n+1 and we denote the coefficient by c(n, in), as we have fixed n, in. Now (1+x+ . . .+

xin−1)n−2(1+x+. . .+xm)k−n+1 = (1−xin

1−x
)n−2(1−xm+1

1−x
)k−n+1 = (1−xin)n−2(1−xm+1)k−n+1(1−

x)−k+1. Hence c(n, in) will be the co-efficient of xm in (1 − xin)n−2(1 − x)−k+1. We have

(1 − xin)n−2 =

n−2
∑

r=0

(−1)r

(

n− 2

r

)

xinr and (1 − x)−k+1 =

∞
∑

r=0

(

k + r − 2

r

)

xr. So, c(n, in) =

n−2
∑

r=0

(−1)r

(

n− 2

r

)(

k +m− rin − 2

m− rin

)

. Hence the number of shift polynomials in Equation 3

is ω2 =
k

∑

n=2

t
∑

in=1

c(n, in). Finally, ω = ω1 + ω2 provides the result. ut

Lemma 4. The determinant of L, det(L) = P1P2 where P1 =
∏

X
j2
2 X

j3
3 . . .X

jk

k a
m−j2−...−jk

1

for non-negative integers ji, 2 ≤ i ≤ k such that j2 + . . .+ jk ≤ m, and

P2 =
∏

X in
n X

j2
2 X

j3
3 . . .X

jk

k with the following: (i) 1 ≤ in ≤ t, for 2 ≤ n ≤ k and

a positive integer t, and (ii) j2 + j3 + . . . + jk = m, when 0 ≤ j2, . . . , jn−1 < in, and
0 ≤ jn, . . . , jk ≤ m.

Proof. The matrix (corresponding to the lattice L) containing the basis vectors is triangular
and has the following two kinds of diagonal entries:

X
j2
2 X

j3
3 . . .X

jk

k a
m−j2−...−jk

1 , (4)

for non-negative integers ji, 2 ≤ i ≤ k such that j2 + . . .+ jk ≤ m where the integer m ≥ 0
fixed and

X in
n X

j2
2 X

j3
3 . . .X

jk

k , (5)

with the following: (i) 1 ≤ in ≤ t, for 2 ≤ n ≤ k and a positive integer t, and (ii) j2 + j3 +
. . .+ jk = m, when 0 ≤ j2, . . . , jn−1 < in, and 0 ≤ jn, . . . , jk ≤ m.

Clearly P1 is the product of the elements from (4) and P2 is the product of the elements
from (5). Hence det(L) = P1P2. ut

The running time of our algorithm is dominated by the LLL algorithm, which is polyno-
mial in the dimension of the lattice and in the bitsize of the entries. Since the lattice dimension
in our case is exponential in k so the running time of our strategy is poly{log a1, exp(k)}.
Thus, for small fixed k our algorithm is polynomial in log a1. Thus we get the following main
result.

Theorem 1. Under Assumption 1, the EPACDP (as in Definition 1) can be solved in
poly{log a1, exp(k)} time when det(L) < gmω, where det(L) is as in Lemma 4 and ω is
as in Lemma 3.

One may also consider the same upper bound on the errors x
(0)
2 , . . . , x

(0)
k . In that case we

get the following result.



Corollary 1. Considering the same upper bound X on the errors x
(0)
2 , . . . , x

(0)
k , we have

det(L) = P1P2 where

P1 =X
Pm

r=0 r(k+r−2
r )a

Pm
r=0(m−r)(k+r−2

r )
1 ,

P2 =X

k
∑

n=2

t
∑

in=1

(in +m)
n−2
∑

r=0

(−1)r

(

n− 2

r

)(

k +m− rin − 2

m− rin

)

.

Proof. Let X2 = X3 = . . . = Xk = X. Then from (4), we have
X

j2
2 X

j3
3 . . .X

jk

k a
m−j2−...−jk

1 = Xj2+...+jka
m−j2−...−jk

1 , for non-negative integers ji, 2 ≤ i ≤ k

such that j2 + . . . + jk ≤ m. Let j2 + . . . + jk = r where 0 ≤ r ≤ m. The total number of
such representation is

(

k+r−2
r

)

. Hence

P1 =

m
∏

r=0

(Xram−r
1 )(

k+r−2
r ) = X

Pm
r=0 r(k+r−2

r )a
Pm

r=0(m−r)(k+r−2
r )

1 .

For calculating P2, we have the following constraints: (i) 1 ≤ in ≤ t, for 2 ≤ n ≤ k and
a positive integer t, and (ii) j2 + j3 + . . . + jk = m, when 0 ≤ j2, . . . , jn−1 < in, and
0 ≤ jn, . . . , jk ≤ m. Thus,

P2 =

k
∏

n=2

t
∏

in=1

X in
n X

j2
2 X

j3
3 . . .X

jk

k =

k
∏

n=2

t
∏

in=1

X inc(n,in)Xmc(n,in)

= X
Pk

n=2

Pt
in=1(in+m)

Pn−2
r=0 (−1)r(n−2

r )(k+m−rin−2
m−rin

).

ut

As the results in this section are quite involved, we present below a few cases for better
understanding and comparison with existing results.

2.1 Analysis for k = 2

We write the proof of this special case in detail as it shows that this special case is in line
of the proof of [COR07, Theorem 3] where the strategy to solve the partially approximate
common divisor problem (PACDP) [HOW01] has been exploited. As described in [COP97],
after applying LLL, if the output polynomials are of more than one variable, then to collect
the roots from these polynomials we need Assumption 1, which is not required when the
polynomials are of only one variable. In this case, Assumption 1 is not required since there
is only one variable in the polynomial that we will consider. However, Assumption 1 will be
required for the cases k > 2.

Theorem 2. Let N1 = p1q1 and N2 = p2q2, where p1, p2, q1, q2 are primes. Let N ≈ N1 ≈
N2, q1, q2 ≈ Nα and |p1 − p2| < Nβ. Then one can factor N1 and N2 deterministically in
poly(logN) time when β < 1 − 3α+ α2, provided 2α + β ≤ 1.



Proof. Let x0 = p1 − p2. We have N1 = p1q1 and N2 = p2q2 = (p1 − x0)q2. Our goal is to
recover x0q2 from N1 and N2. Since |x0| < Nβ and q2 = Nα, we can take X = Nα+β as an
upper bound of x0q2. Now we consider the shift polynomials

gij(x) = xi(N2 + x)jN
m−j
1 (6)

for i = 0, 0 ≤ j ≤ m and j = m, 1 ≤ i ≤ t,

where m, t are fixed non-negative integers. Clearly, gij(x0q2) ≡ 0 mod (pm
1 ).

We construct the lattice L spanned by the coefficient vectors of the polynomials gij(xX)
in (6). One can check that the dimension of the lattice L is ω = m+t+1 and the determinant
of L is

det(L) = X
(m+t)(m+t+1)

2 N
m(m+1)

2
1 ≈ X

(m+t)(m+t+1)
2 N

m(m+1)
2 . (7)

Here, P1 = X
m(m+1)

2 N
m(m+1)

2 and P2 = Xmt+
t(t+1)

2 (the general expressions of P1, P2 are
presented in Lemma 4). Using Lattice reduction on L by LLL algorithm [LLL82], one can

find a non-zero vector b whose norm ||b|| satisfies ||b|| ≤ 2
ω−1

4 (det(L))
1
ω . The vector b is

the coefficient vector of the polynomial h(xX) with ||h(xX)|| = ||b||, where h(x) is the
integer linear combination of the polynomials gij(x). Hence h(x0q2) ≡ 0 mod (pm

1 ). To apply
Lemma 1 and Lemma 2 for finding the integer root of h(x), we need

2
ω−1

4 (det(L))
1
ω <

pm
1√
ω
. (8)

Neglecting small constant terms, we can rewrite (8) as det(L) < pmω
1 . Substituting the

expression of det(L) from (7) and using X = Nα+β, p1 ≈ N1−α we get

(m + t)(m+ t + 1)

2
(α + β) < m((1 − α)(m+ t+ 1) − m + 1

2
). (9)

Let t = τm. Then neglecting the terms of o(m2) we can rewrite (9) as

ψ(α, β, τ) = (−α− β)
τ 2

2
+ (−2α− β + 1)τ + (−3α

2
− β

2
+

1

2
) > 0. (10)

The optimal value of τ , to maximize β for a fixed α is τ = 1−β−2α

α+β
. Since τ ≥ 0 we need

1 − β − 2α ≥ 0. (11)

Putting the optimal value of τ in (10), we get

α2 − 3α− β + 1 > 0. (12)

Once x0q2, the integer root of h(x), is known, we get p1 by calculating the GCD of N1, N2 +
x0q2. As long as |x0q2| < p1, we get q2 by calculating the floor or ceiling of N2

p1
. As |x0q2| ≤

Nα+β and p1 ≈ N1−α, to satisfy |x0q2| ≤ p1 we need 2α + β ≤ 1 which is incidentally same
as (11).

Our strategy uses LLL [LLL82] algorithm to find h(x) and then calculates the integer root
of h(x). Both these steps are deterministic polynomial time in logN . Thus the result. ut



The relation presented in (9) provides the bound when the lattice parameters m, t are spec-
ified. The asymptotic relation independent of the lattice parameters has been presented
in (12). This is the theoretical bound and may not be reached in practice as we work with
low lattice dimensions. Now let us compare our results with that of [SAR09].

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

α →

Up
pe

r b
ou

nd
 o

f β
 →

 

 
case(i)
case(ii)
case(iii)

Fig. 1. Comparison of our theoretical result [case (i)] with that of [MAY09] [case (ii)] and [SAR09] [case (iii)].

1. In [SAR09, Theorem 2.1] it has been explained that factorization will be successful when
Ψ(α, β) = 4α2 + 2αβ + 1

4
β2 − 4α − 5

3
β + 1 > 0 provided 1 − 3

2
β − 2α ≥ 0. In our case,

the upper bound of β is α2 − 3α + 1. Putting this upper bound of β in Ψ we get Ψ < 0
when α ≤ 0.33. Hence upper bound of β in our case will be greater than of [SAR09] when
α ≤ 0.33.

2. The algorithm presented in [SAR09] is probabilistic polynomial time in logN (based on
Assumption 1 in [SAR09, Introduction]), while our result is deterministic polynomial
time in logN .

3. The result of [SAR09] could not be extended for k > 2, but our result can be extended
for general k.

4. We get similar quality of experimental results as in [SAR09] and both the experimental
results (i.e., our and that of [SAR09]) almost coincide with our theoretical results. Our
experimental results are same as our theoretical results following (9) for specific lattice
dimensions, whereas the experimental results of [SAR09] are better than the theoretical
results of [SAR09] as explained in [SAR09, Remark 2].

We also like to compare our result with that of [MAY09]. The strategy of [MAY09] considers
equality in some LSBs of p1, p2 and we consider the equality in some MSBs. The strategy
of [MAY09] works when β ≤ 1−3α. In our case, β < 1−3α+α2. It is thus immediate to see



that our upper bound is better than that of [MAY09]. Given α, the amount of bit sharing
is (1 − α − β) log2N . Thus, for k = 2, we need smaller number of bit sharing in MSBs for
implicit factorization than the number of bit sharing in LSBs achieved in [MAY09]. Later in
Section 3, we will compare our results with that of [MAY09] for all k ≥ 2.

One may refer to Figure 1 for the comparison of the theoretical results.

2.2 Analysis for k = 3

As we have already pointed out, the idea of [SAR09] could not be extended for k > 2.
However, our technique works in the general case. We now explain the case for k = 3 in
detail.

Theorem 3. Let N1 = p1q1, N2 = p2q2 and N3 = p3q3, where p1, p2, p3, and q1, q2, q3 are
primes. Let N,N1, N2, N3 be of same bit size and q1, q2, q3 ≈ Nα, |p1 − p2| < Nβ, |p1 − p3| <
Nβ. Then, under Assumption 1, one can factor N1, N2 and N3 in poly(logN) time when

β < (1 − α)
3
2 − α, provided 2α + β ≤ 1.

Proof. Let x0 = p2 − p1 and y0 = p3 − p1. We have N1 = p1q1, N2 = p2q2 = (x0 + p1)q2, N3 =
(y0 + p1)q3. Our goal is to recover x0q2, y0q3 from N1, N2 and N3. Let X = Nα+β. Clearly
X is an upper bound of x0q2, y0q3. Also we have p1 ≈ N1−α. When k = 3 then P1 =

X
m3

3
+o(m3)N

m3

6
+o(m3).

Let t = τm. To have a manageable formula for P2, we need to assume t ≤ m + 1. Then

P2 = Xm3τ2+m3τ+ m3τ3

3
+o(m3) and ω = m2

2
+m2τ + m2τ2

2
+ o(m2).

Neglecting the o(m3) terms, the required condition det(L) < pmω
1 implies (1

3
+ τ 2 + τ +

τ3

3
)(α+ β) + 1

6
< (1 − α)(1

2
+ τ + τ2

2
), i.e.,

−1

3
τ 3α− 1

3
τ 3β − 3

2
τ 2α− τ 2β +

1

2
τ 2 − 2τα− τβ + τ − 5

6
α− 1

3
β +

1

3
> 0. (13)

To maximize β for a fixed α, the optimal value of τ is 1−2α−β

α+β
. Putting this optimal value

of τ in (13), we get the required condition as −α3 + 2α2 − 2αβ − β2 − 3α + 1 > 0, i.e.,
β <

√
1 − 3α + 3α2 − α3 −α. As τ ≥ 0, we also need the constraint 2α+β ≤ 1. Then under

Assumption 1 (as the polynomials are of two variables), we can collect the roots successfully.
ut

3 Sublattice and Generalized Bound

In this section, we study a sublattice L′ of the lattice L explained in the previous section.
This helps in two ways as follows.

– The dimension of the sublattice L′ is less than that of L and this helps in actual experi-
ments.

– The theoretical analysis helps us to get a generalized bound for β.



We need the following technical result that will be used later.

Lemma 5. For any positive integer r ≥ 1,
m

∑

t=1

tr =
mr+1

r + 1
+ o(mr+1).

Proof. We have S = 1r+2r+. . .+mr >

∫ m

0

xr dx =
mr+1

r + 1
. Also,

∫ m+1

1

xr dx =
(m + 1)r+1

r + 1
>

1r + 2r + . . .+mr. Hence S = mr+1

r+1
+ o(mr+1). ut

Now we present the main result describing the bound on β.

Theorem 4. Consider EPACDP with g ≈ a1−α
1 and x

(0)
2 ≈ x

(0)
k ≈ a

α+β
1 . Then, under

Assumption 1, one can solve EPACDP in poly{log a, exp(k)} time when

β <
k2 + 5αk − 2αk2 − 2α− 2k + 1 −

√
k2 + 2α2k − α2k2 − 2k + 1

k2 − 3k + 2
for k > 2 and

< 1 − 3α+ α2, for k = 2,

with the constraint 2α + β ≤ 1.

Proof. We start by explaining the shift polynomials. First we consider the following ones
which are same as given in (2) in the previous section.

h0,...,0,j2,...,jk
(x2, . . . , xk) = h

j2
2 . . . h

jk

k a
m−j2−...−jk

1 , (14)

for non-negative integers ji, 2 ≤ i ≤ k such that j2 + . . .+ jk ≤ m where the integer m ≥ 0
fixed.

Further, we define another set of shift polynomials which is a sub-collection of the poly-
nomials presented in the last section in (3).

hi2,0,...,0,0,...,0,j2,...,jk
(x2, . . . , xk) = xi2

2 h
j2
2 . . . h

jk

k , (15)

with the following: (i) 1 ≤ i2 ≤ t, for a positive integer t, and (ii) j2 + . . .+jk = m, and ji ≥ 0
for 2 ≤ i ≤ k. Next we define a lattice L′ using the coefficient vectors of h...(x2X2, . . . , xkXk).

LetX2 = X3 = . . . = Xk = X, the common upper bound. The shift polynomials from (14)

contribute P ′
1 =

m
∏

r=0

(Xram−r
1 )(

k+r−2
r ) = X

Pm
r=0 r(k+r−2

r )a
Pm

r=0(m−r)(k+r−2
r )

1 to the determinant of

L′. (This P ′
1 is same as P1 in Corollary 1.) The shift polynomials from (15) contribute P ′

2 =

t
∏

i2=1

(X i2Xm)(
k+m−2

m ) = X

t
∑

i2=1

(i2 +m)

(

k +m− 2

m

)

to the determinant of L′. The dimension

of L′ is ω′ =
m

∑

r=0

(

k + r − 2

r

)

+ t

(

m+ k − 2

m

)

.



Now,
(

k+r−2
r

)

= (r+1)...(r+k−2)
(k−2)!

= rk−2

(k−2)!
+ o(rk−2). Then,

P1 ≈ X
Pm

r=0 r rk−2

(k−2)!a

Pm
r=0(m−r) rk−2

(k−2)!

1 ≈ X
1

(k−2)!
mk

k a
1

(k−2)!
mk

k−1
− 1

(k−2)!
mk

k

1 , using Lemma 5 and
neglecting the lower order terms. Moreover,

P2 = X
Pt

i2=1(i2+m) mk−2

(k−2)! ≈ X
1

(k−2)!
( t2mk−2

2
+tmk−1), (neglecting the lower order terms). Fur-

ther,
ω′ ≈ ∑m

r=0
rk−2

(k−2)!
+ t mk−2

(k−2)!
≈ mk−1

(k−1)(k−2)!
+ t mk−2

(k−2)!
, (using Lemma 5 and neglecting the

lower order terms). Following Lemma 1, the required condition is det(L′) = P ′
1P

′
2 < gmω′

,
where g is the common divisor. Let g = a1−α

1 , X = a
α+β
1 . Then putting the values of g,X in

det(L′) = P ′
1P

′
2 < gmω′

, we get,

(
mk

k
+
mk−2t2

2
+mk−1t)(α + β) +

mk

k − 1
− mk

k
< (1 − α)(mk−1t+

mk

k − 1
). (16)

Now putting t = τm, (τ ≥ 0 is a real number) in (16), we get the condition as

(
1

k
+
τ 2

2
+ τ)(α + β) +

1

(k − 1)k
< (1 − α)(τ +

1

k − 1
). (17)

To maximize β for a fixed α, the optimal value of τ is τ = 1−2α−β

α+β
. Putting this optimal value

in (17), we get the condition as 4α2k2 +4αβk2 +β2k2−8α2k−10αβk−3β2k−4αk2−2βk2 +
2α2+4αβ+2β2+6αk+4βk+k2−2α−2β−k > 0. From which we get the required condition
as β < k2+5αk−2αk2−2α−2k+1−

√
k2+2α2k−α2k2−2k+1

k2−3k+2
when k > 2 and β < 1− 3α+α2 when k = 2.

Since τ ≥ 0, we also need the constraint 1 − 2α− β ≥ 0. Then under Assumption 1 (as the
polynomials are of more than one variable), we can collect the roots successfully. ut

3.1 Comparison with the work of [MAY09]

Let us now compare our result with that of [MAY09] for the general case. The strategy
of [MAY09] considers equality in some LSBs of p1, p2, . . . , pk and we consider the equality in
some MSBs. The strategy of [MAY09] works when β ≤ 1−α− k

k−1
α = 1− 2k−1

k−1
α. As β > 0,

one may note α < k−1
2k−1

, i.e, α < 1
2
.

We have already discussed in Section 2.1 that for the case k = 2 our result is better than
that of [MAY09]. That will follow here as the results of Theorem 4 for k = 2 and Theorem 2
are same, since L, L′ are same for k = 2. However, L, L′ become different from k > 2.

For k > 2, k2+5αk−2αk2−2α−2k+1−
√

k2+2α2k−α2k2−2k+1
k2−3k+2

> 1 − 2k−1
k−1

α. Thus, for any k, k ≥ 2,
we need smaller amount of bit sharing in MSBs for implicit factorization than the number of
bit sharing in LSBs achieved in [MAY09]. Our upper bound on β is k−1−

√
k2+2α2k−α2k2−2k+1

k2−3k+2

more than the upper bound on β in [MAY09]. Thus, the gap between our bound and that
of [MAY09] reduces as k increases. In summary, we have the following observations.

1. Our theoretical result is better than that of [MAY09] from the point that it requires less
MSBs to be equal than the number of LSBs in case of [MAY09].



2. Both our result and that of [MAY09, Theorem 7] are of time complexity
poly{logN, exp(k)}. However, the lattice dimension in the formulation of [MAY09] is
much smaller (exactly k) than the lattice dimension following our approach (exponential
in k). Further, the experimental results can be achieved for k ≤ 100 in case of [MAY09,
Section 6.2] as only LLL reduction was sufficient. Experiments for large k is not possible
in our case. However, experimentally our results provide superior outcome for k = 3 and
similar kind of outcome for k = 4, though we need more time than that of [MAY09].

3. Later in Section 4, following [DJK09, Sections 5.1, 5.2], we present a technique, that
helps in terms of experimentation. The results of 4 are slightly worse than our theoretical
results in this section, but exactly same as that of [MAY09]. Using this strategy, we get
similar quality experimental performance for implicit factorization when MSBs are same
compared to the case when LSBs are same in [MAY09].

4. The strategy of [MAY09] could be extended for balanced RSA moduli, which we could
not achieve in our case.

5. Except the analysis in this paper, there is no other strategy that solves the implicit factor-
ization problem in general, considering the MSBs are same. Indeed our lattice dimension
is exponential in k, which does not allow us to implement the algorithm for large k.
However, there are other interesting works where problems are solved using exponential
lattice dimensions, e.g., the work of [HER08], which considers factorization given any bits
of one prime.

No. of shared LSBs [MAY09] in pi No. of shared MSBs (our) in pi

k Bitsize of pi, qi Theory Expt. LD Time (sec) Theory Expt. LD Time (sec)

(1 − α) log
2

N, α log
2

N k

k−1
α log

2
N

3 750, 250 375 378 3 < 10 352 367 56 48.63
* 3 700, 300 450 452 3 < 1 416 431 56 69.48
* 3 650, 350 525 527 3 < 1 478 499 56 87.51
# 3 600, 400 600 - - - 539 562 56 116.77

* 4 750, 250 334 336 4 < 1 320 334 65 34.94
* 4 700, 300 400 402 4 < 1 380 400 65 38.01
* 4 650, 350 467 469 4 < 1 439 471 65 52.75
* 4 600, 400 534 535 4 < 1 497 528 65 84.15

10 650, 350 389 391 10 < 10 381 - - -

50 560, 440 449 453 50 < 10 446 - - -

100 600, 400 405 410 100 < 10 403 - - -
100 520, 480 485 492 100 < 10 483 - - -

Table 1. For 1000 bits N , theoretical and experimental data of the number of shared LSBs in [MAY09] and
shared MSBs in our case. LD means Lattice Dimension. In the * marked rows, experimental data is not avail-
able from [MAY09], and we perform the experiments following the method of [MAY09]. The ‘-’ mark means that we
could not perform the experiments due to large lattice dimension. In the # marked row, the method of [MAY09] does
not work as all the bits of the primes p1, p2, p3 need to be same.

Let us now present some numerical values (both theoretical as well as experimental) for
comparison with [MAY09] in Table 1. We have implemented the programs in SAGE 4.1 over
Linux Ubuntu 8.10 on a laptop with Dual CORE Intel(R) Pentium(R) D CPU 1.83 GHz, 2
GB RAM and 2 MB Cache.

Once more we like to point out that the “problem of implicit factoring with MSBs equal”
(as in our case) is different from the “problem of implicit factoring with LSBs equal” (as



in [MAY09]). Still, we present the comparison as our problem is not studied for general k
earlier and the only related work has been presented in [MAY09]. For k = 2, we have indeed
provided the comparison in Section 2.1 with that of [SAR09] where the problems are similar.

4 Method for Improved Experimental Results

In [DJK09, Section 5.2], the authors studied the EPACDP for analysing the security of their
scheme. Based on the idea presented in [DJK09], we get Theorem 5. The result in Theorem 5
below is not exactly presented in a similar form in [DJK09].

One can write,

a1 = gq1,

a
(0)
2 = gq2 − x

(0)
2 ,

. . . ,

a
(0)
k = gqk − x

(0)
k .

Let M =









2ρ a
(0)
2 a

(0)
3 . . . a

(0)
k

0 −a1 0 0 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . .−a1,









where 2ρ ≈ x
(0)
2 . One can note that (q1, q2, . . . , qk) ·M =

(2ρq1,−q1x(0)
2 , . . . , q1x

(0)
k ) = b, say.

It can be checked that

||b|| <
√
ka2α+β . (18)

Moreover, |det(M)| = 2ρak−1
1 ≈ aα+β+k−1. We know that there is a vector v in the lattice

L corresponding to M such that

||v|| <
√
ka

α+β+k−1
k , (19)

following Minkowski’s theorem (see [RGV04] for more details). Now we consider the following
assumption.

Assumption 2. The vector b is a shortest vector and the next shortest vector is significantly
larger than ||b||.

Under this assumption, and from (18), (19), we get b from L if

a2α+β < a
α+β+k−1

k .

From which we get β < k−1+α−2αk
k−1

. The running time is determined by the time to calculate
a shortest vector in L which is polynomial in log a but exponential in k.

Thus, we get the following result.



Theorem 5. Consider EPACDP with g ≈ a1−α
1 and x

(0)
2 ≈ x

(0)
k ≈ a

α+β
1 . Then, under

Assumption 2, one can solve EPACDP in poly{log a, exp(k)} time when,

β < 1 − 2k − 1

k − 1
α. (20)

The formula presented in (20) for the MSB case is exactly same as that of [MAY09,
Theorem 7] in LSB case. Further, from the analysis presented in Section 3.1, it is clear that
this bound is worse than the bound presented in Theorem 4 in Section 3. However, this result
helps us to provide much better experimental performance for larger values of k, that could
not be achieved by the method in Section 3.

The statement of Theorem 4 states that the time complexity is poly{log a, exp(k)}. How-
ever, under the assumption that “the shortest vector of the lattice L can be found by the
LLL algorithm”, the complexity becomes poly{log a, k}. This happens in practice as observed
in [MAY09] too. Below we present the experimental results and compare that with the re-
sults presented in [MAY09, Table 1, Section 6.2]. One may note that both our results and
the results of [MAY09] are of similar quality. This we have lacked with our earlier method
presented in Section 3. Now we present the experimental results, which is also of same quality
as described in [MAY09, Table 1]. The running time of all our experiments are less than 50
seconds in our platform described in the previous section.

α k Theoretical bound Experiments ( [MAY09]) Experiments (our)

0.25 3 375 378 377

0.35 10 389 391 390

0.40 100 405 410 408

0.44 50 449 453 452

0.48 100 485 492 489

Table 2. For 1000 bits N , theoretical (same bound for [MAY09] and in our case) and experimental data of the
number of shared LSBs in [MAY09] and shared MSBs in our case.

5 Conclusion

In this paper we present a generalization of the partially approximate common divisor prob-
lem (PACDP) [HOW01] which we term as Extended Partially Approximate Common Divisor
Problem (EPACDP). This problem immediately relates to the implicit factorization problem
introduced in [MAY09]. We consider the case when some MSBs of the primes p1, p2, . . . , pk

are equal (but unknown) as opposed to the case when the LSBs are equal (but unknown)
in [MAY09]. Our strategy provides new and improved theoretical as well as experimental
results.



References

[COP97] D. Coppersmith. Small Solutions to Polynomial Equations and Low Exponent Vulnerabilities. Journal of
Cryptology, 10(4):223–260, 1997.

[COR07] J. -S. Coron and A. May. Deterministic polynomial-time equivalence of computing the RSA secret key and
factoring. Journal of Cryptology, 20(1):39–50, 2007.

[DJK09] M. v. Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan. Fully Homomorphic Encryption over the Integers.
Cryptology ePrint Archive, Report 2009/616, Available at http://eprint.iacr.org/2009/616.

[HER08] M. Herrmann and A. May. Solving Linear Equations Modulo Divisors: On Factoring Given Any Bits.
Proceedings of ASIACRYPT 2008, Lecture Notes in Computer Science, Volume 5350, pages 406–424,
Springer, 2008.

[HOW97] N. Howgrave-Graham. Finding Small Roots of Univariate Modular Equations Revisited. Proceedings of
Cryptography and Coding, Lecture Notes in Computer Science, Volume 1355, pages 131–142, Springer,
1997.

[HOW01] N. Howgrave-Graham. Approximate integer common divisors. Proceedings of CALC 2001, Lecture Notes
in Computer Science, Volume 2146, pages 51–66, Springer, 2001.

[LLL82] A. K. Lenstra, H. W. Lenstra and L. Lovász. Factoring Polynomials with Rational Coefficients. Mathe-
matische Annalen, 261:513–534, 1982.

[MAY03] A. May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis, University of Paderborn,
2003.

[MAY09] A. May and M. Ritzenhofen. Implicit factoring: on polynomial time factoring given only an implicit hint.
Proceedings of PKC 2009, Lecture Notes in Computer Science, Volume 5443, pages 1–14, Springer, 2009.

[RGV04] O. Regev. Lattices in Computer Science (Lecture Notes), 2004. Available at:
http://www.cs.tau.ac.il/˜ odedr/teaching/lattices fall 2004/index.html [last accessed December 19, 2009].

[RSA78] R. L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key
Cryptosystems. Communications of ACM, 21(2):158–164, February 1978.

[SAR09] S. Sarkar and S. Maitra. Further Results on Implicit Factoring in Polynomial Time. Advances in Mathe-
matics of Communications, 3(2):205–217, 2009.


