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Abstract

In this paper, we propose a systematic search method for finding the impossible differential characteristic
for block cipher structures, better than the U-method introduced by Kim et al [6]. This method is referred
as unified impossible differential (UID) cryptanalysis. We give practical UID cryptanalysis on some popular
block ciphers and give the detailed impossible differential characteristics. On the generalized CAST-256 and
generalized MARS block cipher structure, our results are better than the U-method. On the Four-Cell, FOX64,
our results are the same as previous best manual works. Thus UID method can be used as a tool for examining
the security of a block cipher structure against impossible differential cryptanalysis.

1 Introduction

Impossible differential cryptanalysis was first proposed by Biham, et al. to attack Skipjack block cipher [1]. It is
known as one of the most powerful attacks on block ciphers. It has drawn wide attention in block cipher design
and analysis and many good results are achieved [1, 2, 14], just list a few.

Compared with ordinary differential cryptanalysis, impossible differential cryptanalysis considers the differ-
ences that are impossible at some intermediate state of the block cipher. Impossible differential characteristics is
the differential characteristics with probability of 0. Specifically, when a pair of plaintexts satisfy the input differ-
ence of the characteristics, it is impossible for the intermediate states decrypted from ciphertexts by the right subkey
to satisfy the output difference of characteristics. Thus the adversary can remove the wrong candidate subkey, and
recover the right subkey.

Impossible differential attack is composed of two steps: retrieving the longest characteristics and recovering
the subkeys. Retrieving the characteristics uses the idea of miss-in-the-middle, namely to find two differential
characteristics with probability 1 from encryption and decryption, and connect them together when there are some
inconsistencies. In the key recovering step, every candidate subkey is tested if there exists a pair of texts satisfying
the input and output difference of the characteristics by using the key to decrypt.

The key step of impossible differential cryptanalysis is to retrieve the longest impossible differential character-
istics. Impossible differential characteristics are in the form:

{x1, · · · , xn}n 9r {y1, · · · , yn}n

which means that when input difference is {x1, · · · , xn}n, the output difference after r rounds cannot be {y1, · · · , yn}n.
Suppose the block cipher has m rounds. Firstly, the adversaries choose several pairs of plaintexts which satisfy

the input of the characteristic, then guess the last m−r round subkeys and decrypt the corresponding ciphertexts to
r-th round, and verify if the decrypted texts meet the output of the characteristic. Since the impossible differential
characteristic holds with probability 1, one can conclude that the last m− r round subkey is wrong if the decrypted
texts meet the differences of characteristics. After selecting enough pairs of texts, only the right subkey remains.
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Usually, the characteristics are retrieved manually by observing the structure of the block ciphers. In [6],
Kim first introduced the U-method to find longest impossible differential characteristics of various block ciphers.
Although using U-method, we can find the impossible differential characteristics automatically, there are some
limitations of U-method when retrieving the longest impossible differential characteristics:

• The characteristic matrix of the block cipher must have 1-Property[6]. So this method only can be applied
some special block ciphers.

• Some information is lost during the calculating the impossible differential characteristics. so it might miss
some characteristics.

In this paper, we present a unify impossible differential(UID) cryptanalysis to find the longest impossible
differential characteristic which is automatically searched by computer. UID cryptanalysis has more flexible rep-
resentation of characteristic matrices and more accurate middle status, thus UID cryptanalysis performs better than
the original U-method. We give some practical cryptanalysis on popular block cipher structures using UID. With
UID cryptanalysis, we find the longer impossible differential characteristic on generalized CAST-256 [8] and gen-
eralized MARS [8] block cipher structures than the U-method. For the block ciphers Four-Cell [4], FOX64 [5], our
results are the same as previous best results obtained by case-by-case treatment. The detailed impossible differen-
tial characteristics are listed in Table 3. Our practical results show that UID cryptanalysis can be used as a tool to
test the security of a block cipher structure against impossible differential cryptanalysis.

The rest of the paper is organized as follows. A detailed description of UID cryptanalysis is presented in Section
2. In Section 3, we give practical cryptanalysis of some popular block ciphers. In Section 4, a comparison with the
U-method is discussed. Section 5 provides conclusions.

2 Unified Impossible Differential Cryptanalysis

2.1 UID-identity

Impossible differential cryptanalysis is a chosen plaintext/ciphertext attack. The attacker knows the chosen differ-
ence variables during calculating the characteristics. In the impossible differential cryptanalysis, the plaintext of a
block cipher can be divided into subblocks. Accordingly the differences of the input, output and internal status are
treated as subblocks.

Many block ciphers use a small nonlinear bijection transform as the subblock (S-box) to implement confusion.
There are some criteria established for S-box’s properties [9]. Most block ciphers’ S-boxes are designed under these
criteria, so it becomes more and more difficult to find weaknesses in S-box. Impossible differential cryptanalysis
tries to ignore weaknesses of the S-box. We usually discard the structure information of S-box and treat it as an
ideal black box. Given an input difference, the output difference is uniformly distributed and cannot be determined.
However, any permutation has the property that a non-zero difference input has a non-zero output difference.

We represents each subblock as a triple group, called a UID-identity.

Definition 1 A UID-identity is a triple group denoted as < L, M, R >, where L, M and R are three sets of
variables. We denote L, M or R as ∅ when it is an empty set for simplicity. The set L consists of known difference
variables, that is, we know the exact difference of the variable in L. The set M consists of unknown non-zero
difference variables, that is, the difference in every variable in M can be any non-zero value. The R is the set of
unknown difference variables, i.e., the difference of the variable in R can be any value including zero.

In the UID cryptanalysis, we denote those non-zero unknown difference variables in the M component, those
completely unknown difference variables are denoted in the R component.

In Fig.1, we give an example to demonstrate how to use UID-identity to denote the intermediate difference of
the Feistel structure. There are two subblocks (the left and the right) in the Feistel structure. Assume the difference
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Figure 1: Intermediate difference state of Feistel structure and their UID-identity. l, mi and r are known difference,
unknown non-zero difference and unknown difference respectively. Here we assume S is a bijection.

of the inputs at the first round is (l, 0) where l is a known non-zero variable, that is the difference of the left is l and
the difference of the right is 0, then the UID-identity of the left subblock will be < {l}, ∅, ∅ > and the UID-identity
of the right subblock will be < ∅, ∅, ∅ >.

1. After the first round, the difference becomes (0, l), then the UID-identity of the left subblock becomes <
∅, ∅, ∅ > and the right subblock becomes < {l}, ∅, ∅ >.

2. After the second round, the difference becomes (l,m1) where m1 is a new non-zero variable, since two
inputs with non-zero difference l to a bijection S will result in two outputs with non-zero difference m1.
Then the UID-identity of the left becomes < {l}, ∅, ∅ > and the right becomes < ∅, {m1}, ∅ >.

3. After the third round, the difference becomes (m1, l + m2) where m2 is a new non-zero variable. Then the
UID-identity of the left part becomes < ∅, {m1}, ∅ > and the right part will be < {l}, {m2}, ∅ > since we
know the difference of the right is l + m2 where l is a known and m2 is a non-zero unknown variable.

4. After the fourth round, the difference becomes (l + m2,m1 + r1) where r1 is a unknown variable. r1 can be
zero since l + m2 can be zero. Then the UID-identity of the left part becomes < {l}, {m2}, ∅ > and right
part becomes < ∅, {m1}, {r1} >

Any intermediate difference in the block cipher can be represented as a UID-identity. The value of the difference
is calculated by sum (xor) the variables of three components. For example, in Fig.1, the UID-identity of the left
subblock after the fourth round is < {l}, {m2}, ∅ >, then the difference here will be l + m2.

In the following, we will define some operations on UID-identity.

Definition 2 Let S1 and S2 are two sets, the symmetric difference of S1 and S2 is:

S1 � S2 = (S1 \ S2) ∪ (S2 \ S1)

Definition 3 The addition of two UID identities u =< L1,M1, R1 > and v =< L2,M2, R2 > is defined as:

u + v =< L1 � L2,M1 � M2, R1 � R2 >
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Note that the addition on UID-identities is commutative.
Since the difference is calculated by xor the variables of three components in the UID-identity, if a variable

occurs even times in the three components, it will not affect the addition of the differences.
Besides the addition operation, we define four kinds of transformations over UID-identity, which are listed in

Table 1.

Table 1: Four Transformations over UID-identity
Trans. Input Output Note
0 < L, M, R > < ∅, ∅, ∅ > Zero trans.
1 < L, M, R > < L, M, R > Identical trans.

< ∅, ∅, ∅ > < ∅, ∅, ∅ >
ϕ < L, ∅, ∅ > < ∅, {mnew}, ∅ > Nonlinear trans.

< ∅,M, ∅ >, |M | = 1 < ∅, {mnew}, ∅ >
< L, M, R >,otherwise < ∅, ∅, {rnew} >

ρ < L, M, R > < {lnew}, {mnew}, {rnew} > Linear trans.

In the Fig.1, the bijection S is a nonlinear transform. If the UID-identity of the input is < {l}, ∅, ∅ >, the
UID-identity of the output of S will be < ∅, {mnew}, ∅ > where mnew represents a new variable not previous
used. Since the UID-identity represents the difference between texts, two pairs of texts with same difference may
have a different output difference, thus a new variable is needed.

In fact, most block cipher structures can be described as a composition of different transforms. In the next
subsection we will show how to convert a block cipher in terms of the transformations defined above.

2.2 Matrice Representation of Block Ciphers

Most block ciphers are iterated by round functions. In UID cryptanalysis, we denote the round function in matrix
form, then calculate the difference by multiplying those characteristics matrices.

Suppose there are n subblocks in the input and output of the round function, which are denoted by (X1, . . . , Xn)
and (Y1, . . . , Yn) respectively.

F21 F22 F2n Fn1 Fn2 Fnn...F1 1 F12 F1n... ...

...

...

X 1 X 2
X n

Y1 Y2 Yn

Figure 2: UID structure. The function Fi,j are one of four UID Transformations
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Definition 4 (UID-Structure) A round function can be transformed to a UID-Structure if the output (Y1, . . . , Yn)
can be expressed in terms of (X1, . . . , Xn) in the following form:

Y1 = F11(X1)⊕ F12(X2)⊕ . . .⊕ F1n(Xn)
Y2 = F21(X1)⊕ F22(X2)⊕ . . .⊕ F2n(Xn)

...
...

Yn = Fn1(X1)⊕ Fn2(X2)⊕ . . .⊕ Fnn(Xn)

where F11, . . . , Fnn are transformations defined in Table 1.

The computational graph of a UID structure is shown in Fig.2. If a round function can be transformed to a
UID structure, we can find the impossible differential characteristics with UID method. In the following parts, we
assume the block cipher has already been transformed into the UID structure.

Definition 5 Assume a round function has n data subblocks, and denote the input and output of the a UID structure
as (X1, · · · , Xn) and (Y1, · · · , Yn). The encryption characteristic matrix E is an n× n matrix defined as:

E =


F11 F21 · · · Fn1

F12 F22 · · · Fn2

. . . . . . . . . . . . . . . . . . .
F1n F2n · · · Fnn


Similarly, the decryption characteristic matrix D is defined by the round function of decryption.

For example, the round function of Feistel structure can be transformed to a UID structure, where the E and D
of Feistel structure are:

E =
(

0 1

1 ϕ

)
,D =

(
ϕ 1

1 0

)
The characteristic matrix describes the relations between input difference variables and output difference vari-

ables. As the definition above, there are totally four kinds of transformations in the matrix. It is unknown whether
these four kinds of transformations are sufficient to describe any round function, but most current block cipher
structures can be transformed to a UID structure.

The first step for converting the characteristic matrix is to define the subblock size. Usually, the size of subblock
is the same as the size of ‘S-Box’ in the round function.

When analyze the structure of a round function, we usually transform the round function into a composition of
several UID structures, and for each structure a characteristic matrix is formed. For example, we design a simple
round function as Fig.3:

The characteristic matrices of this example is:

E1 · E2 =
(

1 0

1 1

) (
ϕ ϕ
0 1

)
In the example, we divide the round function into the composition of two functions. The first function is

(Y 1, Y 2) = (X1 ⊕ X2, X2) and the second function is (Y 1, Y 2) = (F (X1), F (X1) ⊕ X2). Consequently the
UID structure of the first and second function are E1 and E2, defined as above. Note that we cannot multiply the
two matrices together since the multiplication of transformation is not defined.
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X 1 X 2

F

Y1 Y2

Figure 3: A round function can be divided into 2 UID structures

2.3 Searching Impossible Differential Characteristics

The meaning of three sets L, M and R in the UID-identities are known difference, unknown non-zero difference and
unknown difference respectively. Given an input or output difference structure ∆ = (x1, · · ·xn), the corresponding
UID vector U can be written as {u1, · · · , un} where ui =< {li}, 0, 0 >.

Definition 6 Suppose U = {u1, · · ·un} is an n-dimension vector of UID-identity. The multiplication of U and an
encryption (decryption) characteristic matrix E(D) is define as:

U · E = (
n∑

i=1

ui · Ei1,

n∑
i=1

ui · Ei2, . . . ,

n∑
i=1

ui · Ein)

For example, the input difference of the Feistel round function is (l, 0), then U = (< {l}, ∅, ∅ >,< ∅, ∅, ∅ >).

U · E = (< {l}, ∅, ∅ >,< ∅, ∅, ∅ >) ·
(

0 1

1 ϕ

)
= (< ∅, ∅, ∅ >,< {l}, ∅, ∅ >)

After the encryption function and decryption function are converted into matrices, denoted as E1 · · · Ei and
D1 · · · Dj , we can compute the UID vectors of the intermediate differences after i-round encryption from the input
difference vector U0

X :
U i

X = (U0
X · E1) · · · · Ei)

and the UID vector of the intermediate difference after j-round decryption from the out difference vector U0
Y :

U j
Y = (U0

Y · D1) · · · · Dj)

Note that the multiplication between UID vectors and characteristic matrix has not association laws,

U · E1 · E2 6= U · (E1 · E2)

The last step of finding impossible differential characteristics is detecting the inconsistency of UID vectors
from encrypt and decrypt processes. The inconsistency of two UID vectors is defined as follows.

Definition 7 Two UID vectors U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) are inconsistent if and only if there
exists a subset I ⊆ {1, 2, . . . , n} , such that the sum of UID-identities in the subset are inconsistent:∑

i∈I

ui 6=inconsist

∑
i∈I

vi

Two UID-identities, denoted as < L1,M1, R1 > and < L2,M2, R2 >, are inconsistent if and only if one of
following condition satisfied:

•|L1| 6= |L2|, |M1| = |M2|, |R1| = |R2|. The known difference is inequal.
•|L1| = |L2|, |M1 � M2| = 1, |R1| = |R2|. There exists a unknown non-zero variable equals to zero.
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In the UID cryptanalysis, firstly we choose an input UID vector U0
X and an output UID vector U0

Y , then we cal-
culate U i

X from U0
X forwardly and U j

Y from U0
Y inversely, if U i

X and U j
Y are inconsistent then we get an impossible

differential characteristic.
After achieving a maximum i + j such that U i

X and U j
Y are inconsistent, we find the longest impossible differ-

ential characteristic based on given input difference U0
X and output difference U0

Y . To find the longest impossible
difference of a block cipher, we enumerate every possible UID vector of input UX and output UY , and find the
maximum i + j. Since the adversary knows the input and output difference of block cipher, UID-identities in the
input and output of the encryption algorithm contain L component only. Take the 2-subblock Feistel structure as
an example, the possible input/output UID vectors are listed in Table 2.

Table 2: Possible input/output UID vectors
UID vector difference

(< ∅, ∅, ∅ >,< ∅, ∅, ∅ >) (0, 0)
(< {l1}, ∅, ∅ >,< ∅, ∅, ∅ >) (∆1, 0)
(< ∅, ∅, ∅ >,< {l1}, ∅, ∅ >) (0,∆1)

(< {l1}, ∅, ∅ >,< {l1}, ∅, ∅ >) (∆1,∆1)
(< {l1}, ∅, ∅ >,< {l2}, ∅, ∅ >) (∆1,∆2)

It is easy to know that the total number N of possible input-output UID-vectors has the relation N ≤ (2n +
2)!. Since n is small, it is feasible to search by the computer. We also remove trivial impossible differential
characteristics:

{0, · · · , x, · · · , 0} 9∞ {0, · · · , 0}
{0, · · · , 0} 9∞ {0, · · · , x, · · · , 0}

3 Practical Results on Block Ciphers

In this section, we will give a detailed analysis of block cipher Four-Cell with UID cryptanalysis, and list our
results for some popular block cipher structures, such as Gen-CAST, Gen-MARS, Gen-RC6 [8], SMS4 [13] and
FOX64 [5].

f ...

X1 X2 X3 Xn

Y 1 Y 2 Y (n-1) Y n

Figure 4: Round function of n-Cell GF-NLFSR

Choy et al. proposed a new structure called generalized feistel non-linear feedback shift register (GF-NLFSR) [4].
A new block cipher called Four-Cell was designed based on the 4-cell GF-NLFSR. The round function of n-cell
GF-NLFSR is depicted in Fig.4.
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The E and D of Four-Cell are:

E =


0 0 0 ϕ
1 0 0 1

0 1 0 1

0 0 1 1

 ,D1D2 =


1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0




ϕ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


With UID cryptanalysis, we found one 18-round impossible differential characteristic: {x, 0, 0, 0} 918 {y, y, 0, 0}.

The UID-identities of the middle states of the characteristic are shown in Table 3. In these states, the 4th component

Table 3: UID Method on Four-Cell
R X1 X2 X3 X4

0 {l1}, ∅, ∅ ∅, ∅, ∅ ∅, ∅, ∅ ∅, ∅, ∅
1 ∅, ∅, ∅ ∅, ∅, ∅ ∅, ∅, ∅ ∅, {m1}, ∅
2 ∅, ∅, ∅ ∅, ∅, ∅ ∅, {m1}, ∅ ∅, {m1}, ∅
3 ∅, ∅, ∅ ∅, {m1}, ∅ ∅, {m1}, ∅ ∅, ∅, ∅
4 ∅, {m1}, ∅ ∅, {m1}, ∅ ∅, ∅, ∅ ∅, ∅, ∅
5 ∅, {m1}, ∅ ∅, ∅, ∅ ∅, ∅, ∅ ∅, {m1, m3}, ∅
6 ∅, ∅, ∅ ∅, ∅, ∅ ∅, {m1, m3}, ∅ ∅, {m1, m3, m5}, ∅
7 ∅, ∅, ∅ ∅, {m1, m3}, ∅ ∅, {m1, m3, m5}, ∅ ∅, {m5}, ∅
8 ∅, {m1, m3}, ∅ ∅, {m1, m3, m5}, ∅ ∅, {m5}, ∅ ∅, ∅, ∅
9 ∅, {m1, m3, m5}, ∅ ∅, {m5}, ∅ ∅, ∅, ∅ ∅, {m1, m3}, {r4}
10 ∅, {m5}, ∅ ∅, ∅, ∅ ∅, {m1, m3}, {r4} ∅, {m1, m3, m5}, {r4, r6}
11 ∅, ∅, ∅ ∅, {m1, m3}, {r4} ∅, {m1, m3, m5}, {r4, r6} ∅, {m5, m6}, {r6}
12 ∅, {m1, m3}, {r4} ∅, {m1, m3, m5}, {r4, r6} ∅, {m5, m6}, {r6} ∅, {m6}, ∅
12 ∅, ∅, {r1} ∅, {m4}, ∅ ∅, {m2}, ∅ ∅, ∅, ∅
13 ∅, {m4}, ∅ ∅, {m2}, ∅ ∅, ∅, ∅ ∅, ∅, ∅
14 ∅, {m2}, ∅ ∅, ∅, ∅ ∅, ∅, ∅ ∅, ∅, ∅
15 ∅, ∅, ∅ ∅, ∅, ∅ ∅, ∅, ∅ {l2}, ∅, ∅
16 ∅, ∅, ∅ ∅, ∅, ∅ {l2}, ∅, ∅ {l2}, ∅, ∅
17 ∅, ∅, ∅ {l2}, ∅, ∅ {l2}, ∅, ∅ ∅, ∅, ∅
18 {l2}, ∅, ∅ {l2}, ∅, ∅ ∅, ∅, ∅ ∅, ∅, ∅

of U12
X =< ∅, {m6}, ∅ > and U6

Y =< ∅, ∅, ∅ > are inconsistent. Thus an impossible differential characteristic is
found. The result is the same as the best impossible differential cryptanalysis of Four-Cell. [12, 12]

Besides the Four-Cell cipher, we also give the UID cryptanalysis results to some popular block cipher structures,
as listed in Table 4.

Table 4: UID method on popular block cipher structures
Block Cipher Subblock UID method Characteristic comment
Four-Cell[4] 4 18 round {x, 0, 0, 0} 918 {y, y, 0, 0} the same as[12]

Gen CAST-256[8] 4 16 round {0, 0, 0, x} 916 {y, 0, 0, x} this paper
Gen MARS[8] 4 9 round {0, 0, 0, x} 99 {x, y, 0, 0} this paper
Gen RC6[8] 4 9 round {0, 0, x, 0} 99 {0, y, 0, 0} [6]
SMS4[13] 4 11 round {x, x, x, 0} 911 {0, x, x, x} [7]

FOX64[5] 8 4 round
{0, x, 0, x, 0, x, 0, x} 94

{y1, y2, y1, y3, y1, y2, y1, y3}
the same as [11]

In Table 4, the UID result on Four-Cell is the same as [12] and the UID result on FOX64 is the same as [11].
In [6], Kim et al. present a 15-round impossible differential characteristics on Gen CAST-256 and 7-round im-
possible differential characteristics on Gen MARs. As in Table 4, we found a 16-round impossible differential
characteristics on Gen CAST-256 and 9-round differential characteristics on Gen MARS, which are better than
Kim et al.’s results. On the Gen RC6 block cipher structure, Kim et al. present a 17-round impossible differential
characteristics which is better than ours. We doubt this result since we can not reproduce it, both by Kim et al.’s
U-method and manual work. For the block cipher SMS4, we found a 11-round impossible differential character-
istics, which is shorter than Lu’s result. This is because Lu used the details of the S-Box to exhaustive search the
impossible differential, while our method consider only the block cipher structures.
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4 A Comparison with U-method

There are several limitations of U-method:
a). The characteristic matrix of block cipher must have 1-Property.
If the number of entry 1 in each column of the characteristics matrix is zero or one, then the matrix is a 1-

property matrix. U-method can not determine the result of addition of two known differences, thus the method
works only on those block ciphers whose characteristics matrices have 1-property. In our method, we express the
intermediate states directly by variables. And the round function can be decomposed into several stages, and the
characteristic matrix is generated for each stage; hence our method is flexible when representing the round function.

b). Some information is lost during the calculating the impossible differential characteristics in the U-method.
For example, denote li as a known difference, and mj as a unknown non-zero difference. Assume the difference

in a intermediate state is s1 = l1 + m1 and difference in another intermediate state is s2 = m1. In U-method, s1

is denoted as ‘2∗’ and s2 is denoted as ‘1’; the sum of them is 2∗ + 1 = 3, which means unknown difference.
Comparied with the U-method, our method denotes s1 as < {l1}, {m1}, ∅ > and s2 as < {0}, {m1}, ∅ >, the sum
of these UID-identities is < {l1}, ∅, ∅ >, which means a known difference.

c). U-method can not determine some kinds of inconsistencies.
U-method considers only the inconsistency by the corresponding component of vectors. Our method considers

the inconsistency of the sum of several corresponding components, which has more capability to detect the conflict.
For example, the difference of input after a rounds is Ua

X = (m1,m1) and the difference of output before b rounds
is U b

Y = (l1 + m2,m2). In the U-method, Ua
X is denoted as {1, 1} while U b

XX is denoted as {2∗, 1}. There is no
conflict. In our method, Ua

X and U b
Y are denoted as {< ∅, {m1}, ∅ >,< ∅, {m1}, ∅ >} and {< {l1}, {m2}, ∅ >

,< ∅, {m2}, ∅ >} respectively, thus an inconsistency of these two vectors is found:

< ∅, {m1}, ∅ > + < ∅, {m1}, ∅ >6=< {l1}, {m2}, ∅ > + < ∅, {m2}, ∅ > .

UID cryptanalysis is suitable for those block ciphers whose nonlinear transformation is a permutation and
especially use for the Feistel or extended Feistel structure. Since in the UID cryptanalysis, we assume that for
nonlinear transformation in the block cipher, non-zero input difference results in non-zero output difference. There
exist some S-boxes of block ciphers are not permutations, such as the S-box in DES. Thus both U-method and UID
method are useless in this case.

5 Conclusion

Inspired by the work [6] of automatically retrieving the impossible differential characteristics, we made some
improvement based on U-method and proposed unified impossible differential cryptanalysis on block cipher struc-
tures. By UID cryptanalysis, we found improved impossible differential cryptanalysis characteristics with the
generalized CAST-256 and generalized MARS block cipher structure, which are better than Kim et al.’s U method.
On the block cipher Four-Cell and FOX64, our results are just the same as previous’ manual work. Thus, UID
cryptanalysis can be used as a unify tool to evaluate the vulnerability of new block ciphers against impossible
differential cryptanalysis.
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