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Abstract. The uncertainty of a calculated trajectory is de-
pendent on the uncertainty in the atmospheric analysis. Us-
ing the Ensemble Transform method (originally adapted for
ensemble forecasting) we sample the analysis uncertainty in
order to create an ensemble of analyses where a trajectory
is started from each perturbed analysis. This method, called
the Ensemble analysis method (EA), is compared to the Ini-
tial spread method (IS), where the trajectory receptor point is
perturbed in the horizontal and vertical direction to create a
set of trajectories used to estimate the trajectory uncertainty.
The deviation growth is examined for one summer and one
winter month and for 15 different geographical locations. We
find up to a 40% increase in trajectory deviation in the mid-
latitudes using the EA method. A simple model for trajectory
deviation growth speed is set up and validated. It is shown
that the EA method result in a faster error growth compared
to the IS method. In addition, two case studies are examined
to qualitatively illustrate how the flow dependent analysis un-
certainty can impact the trajectory calculations. We find a
more irregular behavior for the EA trajectories compared to
the IS trajectories and a significantly increased uncertainty
in the trajectory origin. We conclude that by perturbing the
analysis in agreement with the analysis uncertainties the error
in backward trajectory calculations can be more consistently
estimated.

1 Introduction

Atmospheric trajectory calculations is a widely used method
to determine the origin or fate of air parcels in the atmo-
sphere. For example, the use of back trajectories is com-
mon in atmospheric chemistry to determine source regions
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of sampled air at a particular site (see e.g.Verver et al.,
1999). Furthermore, it is an efficient way to couple indi-
vidual measurements, on e.g. aerosol composition, with the
general characteristics of a source region. Although trajec-
tory calculations is a powerful tool in atmospheric research,
the calculations contain errors that must be accounted for.
To this end, numerous studies have investigated the impact
from e.g. spatial and temporal interpolation errors, calcula-
tion method errors and wind field analysis differences (see
Stohl, 1998, and references therein). One of the largest er-
rors in trajectory calculations originate in differences in me-
teorological data sets.Harris et al.(2005) found, when com-
paring different contributions to trajectory uncertainty, that
using different reanalysis data sets resulted in an uncertainty
of 30–40% of the average distance traveled. However, it was
also concluded that no data set could be considered superior
to another despite that differences existed in the resulting tra-
jectories (Harris et al., 2005).

To calculate trajectories information on the atmospheric
motion is needed. In the case of forecast trajectories, infor-
mation from a numerical weather prediction model is used.
Errors in such trajectory calculations will to a large extent be
subject to uncertainties in the predicted wind field. To calcu-
late backward trajectories, one can instead use atmospheric
analysis data, for instance the two widely used re-analysis
data sets: the ECMWF ERA-40 Reanalysis Data Set (Up-
pala et al., 2005) or the NCEP/NCAR Reanalysis Data Set
(Kalnay et al., 1996). Even if an analysis is the best estimate
of the true state of the atmosphere it still contains errors. One
widely used method to account for such errors is to calculate
many trajectories, each with a perturbed receptor/emission
point to obtain an estimate of the uncertainty in the area of
origin (Merrill et al., 1985). However, this method may not
accurately sample the uncertainty in the analysis since it has
not been investigated whether an uncertainty in the atmo-
spheric analysis can be represented using this approach.
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The errors in meteorological analyses are partly due to ob-
servation errors and the fact that observations can include
local phenomena that are not representative for an entire
grid box. In order to produce a best estimate of the atmo-
spheric state, numerical weather prediction centers use ad-
vanced data assimilation systems. In data assimilation, the
information from observations combined with a background
(usually a short forecast valid at the time of the analysis) is
used to obtain an analysis. However, both of these com-
ponents contain uncertainties. Thus the resulting analysis
will not perfectly match the current atmosphere. Even if
one knows that errors are present, it is difficult to estimate
the error amplitude and to simulate the corresponding error
structures. For instance, one known property of the analy-
sis uncertainty is the existence of spatial correlations of, and
correlations between, meteorological variables. The error in
one grid point is related to the error in adjacent grid points.
Furthermore, the structure of the correlations and the ampli-
tude of the errors vary on a day-to-day basis due to the cur-
rent flow situation. In data assimilation, this error correlation
is obtained using differences between forecasts of different
length or with flow dependent covariance matrices obtained
from an ensemble of short forecasts (Bannister, 2008).

The effect of the analysis error on the forecast uncertainty
is simulated in ensemble weather forecasting. Due to the
chaotic behavior of the atmosphere, small uncertainties in the
analysis will grow with increasing forecast length. In order
to simulate these analysis uncertainties several methods are
proposed in the literature. These are e.g. singular vectors
(Palmer, 1993), breeding vectors (Toth and Kalnay, 1997),
Ensemble Transform method (Wei et al., 2008) or the En-
semble Transform Kalman filer (Wang and Bishop, 2003).
The common purpose of these methods is to add perturba-
tions to the estimated analysis. Another viable alternative
is to perform multiple analyses, ensemble data assimilation
(Houtekamer and Mitchell, 1998; Buizza et al., 2008). In
Magnusson et al.(2009) the properties of the singular vec-
tor method and the Ensemble Transform method were com-
pared. It was shown that the Ensemble Transform pertur-
bations are closer to the expected properties of the analysis
error compared to singular vectors. The Ensemble Trans-
form method is a development of the breeding method (Toth
and Kalnay, 1997) and uses the previous ensemble to create
new perturbations with the purpose to sample perturbation
structures that have grown in the past due to a sensitive flow
situation. The perturbations are expected to have a spatial
and multivariate structure that is similar to correlations in the
analysis error and have uncertainties that are dependent on
the current flow situation.

In this study we will compare two different methods to
generate a set of trajectories that can be used to estimate the
spatial uncertainty, due to analysis errors, in a calculated tra-
jectory. The first method is the Ensemble analysis method
(EA) where all trajectories are initiated at the same point,
but each trajectory path is calculated from a perturbed anal-

ysis used in weather prediction to sample the analysis un-
certainty. The ensemble of analyses is created with the En-
semble Transform method that is used to perturb the analy-
sis from the ECMWF data assimilation system. The second
method is the Initial spread method (IS) where a set of trajec-
tories, each with an individual receptor point, is used to sam-
ple uncertainties in the atmospheric flow. This is the most
common method used in atmospheric chemistry applications
since it allows for a large number of trajectories to be com-
puted from a high-resolution analysis and still accounting for
errors by perturbing the receptor point.

The use of the ECMWF ensemble prediction system to es-
timate forecast trajectory uncertainty was studied inScheele
and Siegmund(2001) andStraume(2001) where a trajectory
was started from each member of the ensemble.Straume
(2001) found that the ensemble spread is mainly important
for long trajectory calculations (more than 24 h) and may not
be suitable for shorter estimates of trajectory uncertainties.
However, bothScheele and Siegmund(2001) andStraume
(2001) studied forecast trajectories based on the ensembles
created with the singular vector method. The singular vec-
tor method is aimed at finding structures that will grow most
rapidly during a period of optimization. However, as men-
tioned above, these structures might not necessarily resem-
ble the expected properties of the analysis error. Therefore,
in the case of backward trajectories where analysis data is
used, other methods might be more appropriate.

This paper is organized as follows. In Sect.2 we describe
the trajectory calculations and the two methods that we have
used in this study. In Sect.3 the results from two selected
case studies are presented together with statistics for several
different regions. Finally, in Sect.4 the conclusion are pre-
sented.

2 Methods

To investigate the difference between the two methods and to
study how the analysis error impacts on the calculated back
trajectory path, daily five-day back trajectories are calculated
for for 15 different locations around the globe. The period
selected in this study spans 29 subsequent days between July
and August 2005 and 25 subsequent days between December
2005 and January 2006. The start-point locations are 60◦ S,
30◦ S, 0◦ N, 30◦ N and 60◦ N for 120◦ W, 0◦E and 120◦ E.
By selecting these regions we can compare the two methods
subject to different meteorological conditions.

We use a kinematic three-dimensional trajectory model
available at the ECMWF where the trajectory path is deter-
mined by the full three-dimensional wind field (P. Kållberg,
personal communication, 2009). An analysis field (resolu-
tion 1.125◦×1.125◦ and 40 vertical levels) is provided every
6 h and the wind field is interpolated linearly between each
analysis. The provided analysis field is interpolated from the
operational analysis which uses a resolution of 0.5◦

×0.5◦
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and 60 vertical levels. The trajectory calculation time step
is 30 min. All trajectories are released at either the 850 hPa
or the 300 hPa level.

2.1 Ensemble analysis method (EA)

In order to simulate the day-to-day variations in the anal-
ysis uncertainty, we have adopted the Ensemble Transform
method from ensemble forecasting (Bishop and Toth, 1999;
Wei et al., 2008). In ensemble forecasting, the aim is to sam-
ple analysis uncertainty in order to simulate their impact on
the forecast. In this study, the aim is to simulate the im-
pact from the analysis uncertainties on backward trajectories.
One difference between the two purposes is that in ensemble
forecasting, the dynamical model can simulate the develop-
ment of the perturbation properties (e.g. the amplitude rela-
tive to the forecast error and spatial correlations) during the
first hours of integration which is the case, for example, with
singular vectors starting with a low initial perturbation am-
plitude (Magnusson et al., 2009). Since no forward integra-
tion of the model takes place for the trajectory calculations,
the above described difference is the rationale for using En-
semble Transform perturbations in the present study since
the Ensemble Transform initial perturbations are closer to the
expected properties of the analysis error (Magnusson et al.,
2009).

The Ensemble Transform perturbations are calculated by
orthonormalizing the ensemble of perturbations every six
hours (for more details on how the perturbations are obtained
seeWei et al., 2008; McLay et al., 2008). This procedure
is undertaken in order to sample fast growing error struc-
tures. The Ensemble Transform method is a further develop-
ment of the breeding technique (Toth and Kalnay, 1997) and
yields perturbations orthonormal to the inverse analysis error
norm. The procedure generates perturbation structures that
have spatial correlations dependent on the current flow situa-
tion and are normalized by the estimated analysis error. The
ability for breeding vectors (and also applicable for Ensem-
ble Transform perturbations) to sample the flow dependent
error is further discussed inCorazza et al.(2003).

Our data set consists of 20 perturbed analyses, obtained
every 6 h. The ensemble of analyses is generated by adding
perturbations to the original analysis, the same methodol-
ogy as in ensemble weather forecasting. By using a simplex
transformation (described in e.g.Wei et al., 2008), the mean
of all perturbed analyses equal to the unperturbed analysis is
obtained. Each perturbed analysis will be a realization of the
analysis error. The differences between the perturbed analy-
ses is for instance small changes in the magnitude and direc-
tion of the wind and differences in the temperature field (i.e.
geopotential). The unperturbed analysis is used to calculate a
control trajectory. One additional trajectory is calculated for
each perturbed analysis. This means that for each receptor
point 21 trajectories are calculated. Note that when referring
to the method used to create an ensemble of analyses we use
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Fig. 1. Initial ensemble standard deviation (black line), ensemble standard deviation after 48
hours (red, solid) and the RMS error of the ensemble-mean forecast at 48 hours (red, dashed)
for the zonal wind speed during a) the northern hemisphere winter period and b) the northern
hemisphere summer period.
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Fig. 1. Initial ensemble standard deviation (black line), ensemble
standard deviation after 48 h (red, solid) and the RMS error of the
ensemble-mean forecast at 48 h (red, dashed) for the zonal wind
speed during(a) the winter period and(b) the summer period.

the terminology Ensemble Transform method. The terminol-
ogy Ensemble analysis method (EA) is used when referring
to the trajectory calculations based on this ensemble of anal-
yses.

The amplitude of the analysis perturbations created with
the Ensemble Transform method is a measure of the expected
uncertainty in the analysis and forecast. If the ensemble stan-
dard deviation is large then it is likely that the unperturbed
analysis is an unreliable estimate of the true state of the at-
mosphere, or if it is small it is likely a reliable estimate.
However, what is the desired ensemble standard deviation
that correspond to the true uncertainties? To verify whether
the perturbation amplitude (in the mean) corresponds to the
true uncertainties in an analysis or forecast, one can com-
pare the ensemble standard deviation and the RMS error of
the ensemble-mean forecast, averaged over time. These two
quantities should be equal if the ensemble samples the un-
certainties correctly in the mean (seePalmer et al., 2006).
In Fig. 1 the standard deviation of the analysis perturbations
for the zonal wind as a mean for the two included periods is
shown (the meridional wind component behave very similar
and is therefore not shown). The ensemble standard devia-
tion is lower in the tropical band compared with the extra-
tropics, mainly due to a lower variability in the wind field
over the tropics compared to the mid-latitudes. In order to
estimate if the perturbation amplitude corresponds to the true
uncertainties for the winter period, we compare the ensem-
ble standard deviation (Fig.1a, red, solid) and the RMS error
of the ensemble-mean forecast (Fig.1a, red, dashed) after
two days. The reason for not comparing the two quantities
at the initial time is because it is difficult to obtain indepen-
dent estimates of the RMS error. The ensemble is somewhat
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Fig. 2. 12Z wind at 850 hPa (arrows) and the wind speed standard deviation in ms−1 (gray
shading) between the ensemble members for four subsequent days included in the North At-
lantic case study. a) 24th, b) 23th, c) 22th and d) 21th of December, 2005. Markers show
the corresponding location of the EA method trajectories (red) and the IS method trajectories
(green).
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Fig. 2. 12Z wind at 850 hPa (arrows) and the wind speed standard deviation in ms−1 (gray shading) between the ensemble members for four
subsequent days included in the North Atlantic case study.(a) 24th,(b) 23th,(c) 22th and(d) 21th of December, 2005. Markers show the
corresponding location of the EA method trajectories (red) and the IS method trajectories (green).

over-dispersive (i.e. the analysis error is somewhat over-
estimated) in the northern extra-tropics and under-dispersive
(the error is somewhat under-estimated) in the tropics. In
the southern extra-tropics the two quantities agree well. In
Fig. 1b the corresponding information is shown for the sum-
mer period included in this study. We see that the ensemble
is still under-dispersive in the tropics and over dispersive in
the northern-extra tropics. Independent of season the analy-
sis error appears slightly over-estimated in the northern extra
tropics. The lower forecast error in the northern extra-tropics
could be explained by the fact the the Northern Hemisphere
is well observed in terms of meteorological observations, re-
ducing the uncertainty in the 48-hour forecast. The general
characteristics of the analysis error is however similar dur-
ing both the winter and summer period. We can also see that
the initial perturbations (Fig. 1a,b, black lines) are slightly
higher in the winter hemisphere of each period, reflecting the
more dynamically active winter season.

2.2 Initial spread method (IS)

A widely used method to obtain an estimate of the uncer-
tainty in the calculated trajectory path is to slightly change

the receptor point of the trajectory. The logical basis behind
this method is to see how small uncertainties in the trajec-
tory start point grow with time, thus giving an estimate of
the uncertainty in the region of origin. This method to gen-
erate a set of trajectories has been used in previous studies
to estimate such uncertainties (Merrill et al., 1985; Draxler,
2002). Using this approach we create a set of 26 trajectories
with a receptor point displaced by at most±1◦ and 10 hPa
relative to the control trajectory start point. This initializa-
tion does introduce a latitude dependent bias. We have how-
ever accounted for this bias in an extra set of simulations and
found no significant difference in the presented result. The
trajectories are evenly distributed within the±1◦ box and the
distribution is the same for all geographical locations. For
reference, we also create a set of trajectories only perturbed
in the horizontal plane. This set is not used in the case stud-
ies in section 3. However, when considering the statistical
behavior of the EA and IS methods we show results from
both variations of the IS method.
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3 Results

3.1 Case studies

To qualitatively illustrate the evolution of the uncertainties
in the trajectory calculations, due to a high analysis uncer-
tainty, we have selected two case studies. We compare tra-
jectories calculated with the EA method and the IS method.
For the first case the trajectories are released at 60◦ N, 0◦ E
(North Atlantic) and for the other case at 0◦ N, 120◦ E (trop-
ics). Five-day backward trajectories are calculated using the
two different methods. In total 21 trajectories are calculated
for the EA method and 26 trajectories for the IS method for
each case study.

3.1.1 North Atlantic case study

The North Atlantic is characterized by low-pressure systems
and corresponding areas with strong wind speeds originating
from baroclinic instability. When calculating backward tra-
jectories in such regions the location of, for instance, high
and low pressure systems could significantly change the cal-
culated trajectory path. Furthermore, due to saddle points
in the flow between troughs and ridges, small differences
between trajectory locations can change which flow regime
they follow. If a trajectory enters the centre of a low-pressure
system, fast changes in the vertical level can occur due to the
strong vertical wind speeds.

In Fig. 2 the 850 hPa level wind and wind speed standard
deviation between the ensemble members (obtained with the
Ensemble Transform method) are shown for four subsequent
days. In this case we examine trajectories released on the
25th of December, 2005 at 60◦ N, 0◦ E just north of a high-
pressure centre located over the British Isles. Two low pres-
sure systems are located over Greenland and Scandinavia.
The wind in the region is governed by a relatively weak west-
erly flow and the location of the receptor point represents a
saddle point in the flow. East of the receptor point the wind
direction shifts to more northerly winds and to the west the
winds are more southerly. The trajectory locations (exclud-
ing the first day of the five day period) are shown in Fig.2
for the EA and IS method, respectively. The region shown
in Fig. 2 is characterized by a relatively high standard devi-
ation in wind speed between the ensemble members. This is
related to uncertainty in the position of two developing low
pressure systems, one over the Atlantic and one over the Nor-
wegian Sea. The main difference found between the EA and
IS method is the more irregular behavior of the EA trajecto-
ries. For the first day, both methods place the trajectories in
the same area. However, after about two days the trajecto-
ries enter the circulation of the low-pressure systems. This
results in a fast-growing difference between the EA trajec-
tories since the simulated analysis uncertainty determines if
the trajectories follow the circulation of the Norwegian Sea
low pressure system or the Atlantic low pressure system or

if they end up in the high pressure system over western Eu-
rope. Thus, the result is three significantly different, but all
plausible, regions of origin that are not sampled by the IS
method. The more chaotic behavior of the EA trajectories
can also be studied in the vertical displacement (not shown)
where the IS method trajectories are significantly more co-
herent in their behavior. The trajectories originating from the
same pressure level all follow the same general vertical path.

Both methods sample the error growth due to differences
in the atmospheric flow. Once an error in the trajectory loca-
tion has been introduced, this error will grow due to differ-
ences in the atmospheric flow. However, the EA method adds
an additional error due to the sampling of the analysis error.
This in turn results in a faster error growth. This illustrates
that with the IS method one initially mainly sample a slow-
growing error related to the position of the trajectories. The
error related to the uncertainty in the atmospheric analysis is
not sampled with this method.

3.1.2 Tropical case study

The Ensemble Transform method is mainly aimed at cap-
turing dynamically unstable parts of the analysis error, not
observation errors. In tropical regions the analysis error may
not be dominated by dynamically growing error structures
and, as discussed in Section2.1, the Ensemble Transform
perturbations generally underestimate the analysis error in
the tropical region. Figure3 shows the 850 hPa level wind
and wind speed standard deviation between the ensemble
members for four subsequent days over the Indo-Asian re-
gion. Compared to the North Atlantic case, there are smaller
differences between the ensemble members when consider-
ing the wind speed. This is due to the smaller initial per-
turbations in the tropical region. However, if the trajecto-
ries were to pass through a region where the analysis uncer-
tainty is increased due to dynamically growing error struc-
tures, one would expect differences between the two meth-
ods used, similar to the previous case study. Such regions are
for instance visible within, and near, the circulation patterns
found around 10◦ N and 10◦ S, which is probably related to
equatorial wave activity. In this case we examine trajecto-
ries released on the 19th of December, 2005 at 0◦ N, 120◦ E.
The trajectory locations (excluding the first day of the five
day period) are shown in Fig.3. As expected, both methods
initially display similar characteristics. However, in Fig.3b
the current flow situation increases the analysis uncertainty
at the location of the trajectories. This results in a split be-
tween the EA trajectories dividing them into two different
source regions, one where the air originated from the east
over the Indian Ocean and one where the air originated from
the north, south of Taiwan. This is to some extent captured
with the IS method as two IS trajectories also indicate the
Indian Ocean source region.

Since analysis perturbations using the Ensemble Trans-
form method are generally small in the tropics (cf. Fig. 1),
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Fig. 3. 12Z wind at 850 hPa (arrows) and the wind speed standard deviation in ms−1 (gray
shading) between the ensemble members for four subsequent days included in the Tropical
case study. a) 18, b) 17th, c) 16th and d) 15th of December, 2005. Markers show the corre-
sponding location of the EA method trajectories (red) and the IS method trajectories (green).
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Fig. 3. 12Z wind at 850 hPa (arrows) and the wind speed standard deviation in ms−1 (gray shading) between the ensemble members for
four subsequent days included in the Tropical case study.(a) 18, (b) 17th, (c) 16th and(d) 15th of December, 2005. Markers show the
corresponding location of the EA method trajectories (red) and the IS method trajectories (green).

Table 1. Estimates ofα (in 1/s) andβ atD = 0 (in m/s) in Eq. (1) for deviations up to 400 km.

60 S 30 S 0 N 30 N 60 N

December 2005 α 7.6·10−3 8.3·10−3 7.4·10−3 9.7·10−3 8.8·10−3

850 hPa β 0.65 0.36 0.33 0.49 0.66

July 2005 α 9.3·10−3 9.9·10−3 7.7·10−3 9.8·10−3 8.3·10−3

850 hPa β 0.77 0.38 0.30 0.41 0.65

December 2005 α 7.1·10−3 6.5·10−3 8.3·10−3 6.8·10−3 8.3·10−3

300 hPa β 0.91 0.64 0.58 0.66 1.13

using other methods, aimed at capturing the non-growing
part of the analysis error (i.e. the effects of observational er-
rors and the lack of observations) could improve the sam-
pling of the analysis uncertainties in tropical regions. Ad-
ditional errors related to convective transport or turbulence,
which is not included in the trajectory model, could also add
to the trajectory uncertainty in this region. However, the EA
method does show that the two suggested source regions are
equally plausible and that the uncertainty in the calculated

area of origin is higher than using the IS method, albeit not
as high as in the mid-latitudes.

3.2 Statistics

Even if the Ensemble Transform method is mainly aimed at
sampling flow-situations, where high analysis uncertainty re-
sults from dynamically growing error structures, statistics
of the main behavior of the trajectory spread is of inter-
est. In order to obtain statistics of the deviation between the
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Fig. 4. Trajectory mean deviation for the EA and the IS method as a function of the trajectory
length for 60◦N, 30◦N, 0◦N, 30◦S and 60◦S. Calculated as the difference between one per-
turbed trajectory (either using the EA method or the IS method) and the unperturbed (control)
trajectory. The mean deviation is calculated as the mean of both the summer and winter period.
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Fig. 4. Trajectory mean deviation for the EA and the IS method as a function of the trajectory length for 60◦ N, 30◦ N, 0◦ N, 30◦ S and 60◦ S.
Calculated as the difference between one perturbed trajectory (either using the EA method or the IS method) and the unperturbed (control)
trajectory. The mean deviation is calculated as the mean of both the summer and winter period.

trajectories, the mean deviation for the summer and winter
period trajectories released at 850 hPa is calculated. Statis-
tics are obtained for 5 different latitude bands (60◦ N, 30◦ N,
0◦ N, 30◦ S, 60◦ S) expressed as the mean for the longitudes
120◦ S, 0◦ N and 120◦ N. The deviation is calculated as the
spherical distance at each time step between one perturbed
trajectory (either using the EA method or the IS method) and
the unperturbed (control) trajectory. The mean deviation as a
function of trajectory time is plotted for 60◦ N, 30◦ N, 0◦ N,
30◦ S and 60◦ S in Fig.4. We see that the EA method start

from zero deviation, as expected as there is no perturbation in
the start point using the EA method. This is different to the IS
method, which has an initial spread by definition. However,
we see that for all latitudes, the EA method obtains a larger
deviation with time due to a faster growth of the spread. This
is most prominent for 60◦ N and 60◦ S, where the mean devi-
ation is increased with 40% after five days. We also see that
the IS cluster perturbed in both the horizontal and vertical
direction obtains a larger deviation compared with the set of
trajectories only perturbed in the horizontal plane.
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Fig. 5. Trajectory mean deviation speed for the EA and the IS method as a function of the
mean deviation for 60◦N, 30◦N, 0◦N, 30◦S and 60◦S. Calculated as the time derivative of the
deviation shown in Figure 4. The mean deviation speed is calculated as the mean of both the
summer and winter period.

25

Fig. 5. Trajectory mean deviation speed for the EA and the IS method as a function of the mean deviation for 60◦ N, 30◦ N, 0◦ N, 30◦ S and
60◦ S. Calculated as the time derivative of the deviation shown in Fig.4. The mean deviation speed is calculated as the mean of both the
summer and winter period.

The shape of the evolution of the trajectory deviation ap-
pears to be exponential for the IS method. This behavior
could be related to chaotic advection which is discussed in
e.g.Bofetta et al.(2000). We propose a simple model of the
deviation growth which is set up as

dD

dt
= αD+β, (1)

whereD is the deviation andαD represents the dispersion
due to chaotic advection which is related to the Lagrangian

Lyapunov exponent of the system. The parameterβ repre-
sents the effect of the uncertainty in the analysis and is also
a function of the distance. To verify this model the deviation
speed is plotted as a function of deviation (Fig.5). Since one
deviation speed is obtained for each mid time step for each
trajectory, a large amount of data points are obtained. There-
fore the data is grouped in bins populated with 5000 data
points. For short deviations, the deviation speed is higher for
the EA trajectories, due to the effect of the perturbed anal-
ysis. One can view this as a displacement byβ in Eq. (1).
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The difference is approximately 0.5 ms−1 (cf. Table1) and
is of the same order of magnitude as the analysis perturba-
tions (see Fig.1). As the deviation grows, the relative effect
of the EA method decreases and all methods have approx-
imately the same deviation speed for deviations larger than
400 km. For the IS method, the deviation speed increases
linearly, where the slope of the curve can be estimated asα,
with the deviation distance for deviations up to 400 km. This
indicates that the model is a reasonable approximation of the
deviation growth. For larger deviations (>1000 km) the devi-
ation speed saturates. This property of the deviation growth
is discussed inBofetta et al.(2000), and it can be viewed
as two different regimes. One early regime with exponential
deviation growth (for deviations shorter than a certain length
scale) and normal diffusion for larger deviations. The length
scale is dependent on the distance for which the wind field
is correlated. A typical approximation of this length scale
would be the Rossby radius of deformation. If the trajecto-
ries are located in different cyclone systems and separated
by a distance larger than the Rossby radius, the error growth
will be independent of the deviation.

In Table1 the parametersα, obtained by linear regression,
andβ atD = 0 is presented for the winter and summer month
separately, as well as for the trajectories released at 300 hPa.
We can see a small seasonal dependence inβ with slightly
higher values in the winter hemispheres. This is probably
related to the seasonal change in the position of the storm
tracks and the higher uncertainty in the atmospheric analysis
with more dynamic instability. This is also reflected in Fig. 1
where the initial perturbations are higher in the winter hemi-
spheres. At 300 hPa the effect ofβ is higher compared to
the 850 hPa level. However, in addition to a higher analysis
uncertainty, the wind speeds at 300 hPa is also higher. The
resulting relative difference in mean deviation between the
EA and IS trajectories is therefore similar to the lower alti-
tude cases. Note also that the highestβ is found for the mid-
latitudes during both the summer and winter period. This
is probably related to that the Ensemble Transform method
generally underestimate the analysis error between 30◦ N and
30◦ S. The seasonal dependence can also be seen, to some
extent, inα with the higher values found in the winter hemi-
sphere of each period. This indicates a stronger influence
from chaotic advection in the winter hemispheres while the
advection is more laminar in the summer hemispheres and in
the tropics.

4 Conclusions

The uncertainty in trajectory calculations due to errors in the
atmospheric analysis is estimated by simulating uncertainties
in the atmospheric flow. Errors in the analysis are unavoid-
able and these errors vary from day to day and is dependent
on the number of available atmospheric observations and on
the current flow situation. Two different methods to generate

a set of trajectories have been compared. These are the Initial
spread method (IS) and the Ensemble analysis method (EA).

To simulate analysis errors, the Ensemble Transform
method from ensemble forecasting has been adopted. In en-
semble forecasting the aim is to simulate the effect of anal-
ysis errors on forecast errors. In this study we simulate the
effect on backward trajectories. By perturbing the analysis
with perturbations of the same order of magnitude as the
analysis uncertainties, we obtain (in our case) 20 equally
plausible atmospheric states that are used for the trajectory
calculations using the EA method. Each backward trajectory
is using each one of these new states for each one of the lo-
cations. Every 6 hours a new set of perturbed analyses is
obtained and used in the calculations.

The effect of performing trajectory calculations while
sampling the uncertainty in the atmospheric analysis has
been compared with the effect of running a set of trajecto-
ries, each with a perturbed receptor point (IS method). By
studying a number of cases, we find that a large difference
between the two methods appears under certain atmospheric
situations. This occurs when the trajectories pass an area
where the current flow situation results in analysis uncertain-
ties. This is especially present in a saddle point of the flow,
where small changes in the flow situation could lead to large
differences in the trajectory paths.

We have also compared mean statistics calculated for 25
successive days during December 2005 and for 29 successive
days during July 2005 for five latitudes, 60◦ S, 30◦ S, 0◦ N,
30◦ N and 60◦ N, expressed as the average of 120 W, 0◦ E
and 120◦ E. For a short trajectory time length we see that the
deviation of the set of trajectories is larger due to the pertur-
bations in the initial point (IS method). The set of trajectories
using different analyses (EA method) start at the same point
and therefore the initial spread is zero. But after a certain
time, the mean deviation becomes larger for the EA method.
To investigate the dynamics of the deviation growth in more
detail, the growth rate has been studied as a function of the
deviation distance. We found a linear dependence between
the growth rate of the deviation and the deviation itself for
small deviations between trajectories for the IS method. This
is expected due to chaotic advection and implies an exponen-
tial growth of the deviation with time. For the EA method,
the growth rate is much higher for small deviations compared
to the IS method. This effect is due to the perturbation added
to the analysis. When the deviation becomes large, the effect
of the differences in the flow between the trajectory loca-
tions is more important than the analysis perturbations, and
the growth rate becomes equal for both methods.

The fact that both methods have the same asymptotic prop-
erties in the error growth rate suggest that it should be pos-
sible to find an amplitude of the initial point disturbances
yielding the same dispersion for long trajectories as the
EA method. But that procedure has several disadvantages.
Firstly, one overestimates the deviation for short trajecto-
ries. Secondly, but not less important, one will only sample
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uncertainties in the mean and may not capture cases where
the analysis uncertainty plays a dominant role.

In this study we have used one analysis perturbation
method and we cannot conclude that this method is supe-
rior to any of the other available methods. For this more
research is needed. For example, the Ensemble Transform
perturbations are designed to mainly catch the dynamically
growing part of the analysis uncertainties, which is of inter-
est for ensemble forecasting. But for the application of tra-
jectory calculations, also the non-growing part is of interest.
How to include this part needs further studies. The Ensemble
Transform method does not include direct effects from ob-
servation uncertainties. Therefore one could expect a more
reliable sampling of the uncertainties from analyses obtained
from an ensemble data assimilation system using perturbed
observations (Houtekamer and Mitchell, 1998; Buizza et al.,
2008). Furthermore, we have only studied trajectories in the
troposphere, where the analysis error is dominated by dy-
namically growing error structures. Trajectories calculated
at higher altitudes could behave differently if the analysis er-
ror is not dominating the uncertainty in the trajectories. The
stratosphere, for instance, is less chaotic than the troposphere
which would decrease the error growth, but the number of
observations in the stratosphere is at the same time fewer. For
the same reasons as discussed above, a different sampling
of the uncertainties in the stratosphere could help to better
understand the effect of the analysis uncertainty on trajec-
tories at these altitudes. Ensemble data assimilation, which
add stochastic components to observations, could therefore
also be a viable option in future studies of trajectories in the
stratosphere.

The overall error in trajectory calculations due to uncer-
tainties atmospheric motion will depend on many different
factors and we have here studied one of these. Adding e.g. a
chaotic component related to turbulence or convection would
probably introduce an additional uncertainty, especially in
the tropics. However, these errors act on a different scale than
the analysis error and depend on parameterizations within the
trajectory model. How this would impact the error growth
speed needs to be studied further before any conclusions can
be drawn. One could also imagine an ensemble with differ-
ent variations of these parameterizations to estimate the un-
certainty in a trajectory. How to construct such an ensemble
would also need to be studied further.

The main conclusion from this study is that by perturbing
the analysis consistent with the analysis uncertainties, both
regarding perturbation amplitude and correlation length, the
uncertainties in trajectory calculations can be more consis-
tently estimated. Therefore we suggest that a set of analysis
perturbations should be constructed for the reanalysis data
sets used for dispersion calculations to obtain reliable esti-
mates of transport trajectory uncertainty. This is especially
necessary when performing case studies where the current
flow situation could significantly increase the uncertainty in
the trajectory calculations.
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