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Abstract. A dynamical downscaling scheme is usually used
to provide a short range flood forecasting system with high-
resolved precipitation fields. Unfortunately, a single forecast
of this scheme has a high uncertainty concerning intensity
and location especially during extreme events. Alternatively,
statistical downscaling techniques like the analogue method
can be used which can supply a probabilistic forecasts. How-
ever, the performance of the analogue method is affected
by the similarity criterion, which is used to identify simi-
lar weather situations. To investigate this issue in this work,
three different similarity measures are tested: the euclidean
distance (1), the Pearson correlation (2) and a combination of
both measures (3). The predictor variables are geopotential
height at 1000 and 700 hPa-level and specific humidity fluxes
at 700 hPa-level derived from the NCEP/NCAR-reanalysis
project. The study is performed for three mesoscale catch-
ments located in the Rhine basin in Germany. It is validated
by a jackknife method for a period of 44 years (1958–2001).
The ranked probability skill score, the Brier Skill score, the
Heidke skill score and the confidence interval of the Cramer
association coefficient are calculated to evaluate the system
for extreme events. The results show that the combined sim-
ilarity measure yields the best results in predicting extreme
events. However, the confidence interval of the Cramer co-
efficient indicates that this improvement is only significant
compared to the Pearson correlation but not for the euclidean
distance. Furthermore, the performance of the presented
forecasting system is very low during the summer and new
predictors have to be tested to overcome this problem.
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1 Introduction

Short range flood forecasting systems are developed to pro-
vide early flood warnings in mesoscale catchments. One re-
quirement of a short range flood forecasting system are pre-
cipitation fields with a high resolution in time and space.
Precipitation fields provided by a global circulation model
cannot be used, because the resolution of these fields is too
coarse and the variability of the precipitation process cannot
be described sufficiently. To overcome this problem, a down-
scaling of precipitation is done. Usually, a high-resolved cir-
culation model (regional model) is nested within a global cir-
culation model. This downscaling technique is often referred
to dynamical downscaling (Xu, 1999). However, the investi-
gations ofJasper et al.(2002) have shown large deficiencies,
if a single forecast of a dynamical downscaling is used as in-
put for a short range flood forecasting system. In their study
five different regional models are combined with a hydrolog-
ical model to forecast several severe flood events in the Lagio
Maggiore basin. Finally, they conclude that a single precip-
itation forecast has to be as accurate as possible, if the flood
forecasting should be succesful.

Instead of a single forecast, also an ensemble based fore-
cast can be used to capture the high variability of the
precipitation process during extreme events. For exam-
ple, COSMO-LEPS presents an ensemble forecasting sys-
tem based on a dynamical downscaling approach (Marsigli
et al., 2004, 2005). It uses the ensembles of the global cir-
culation model of ECMWF (European Center For Medium-
Range Weather Forecasts) as boundary conditions to run a re-
gional model provided by the german weather service DWD.
The ensembles of COSMO-LEPS can be used to provide a
probabilistic forecasts. It has been shown, that a forecast
based on probabilistic has more potential to reduce economic
losses caused by extremes than a single forecast or the mean
of ensembles (Richardson, 2003).
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Beside a dynamical downscaling also statistical downscal-
ing approaches can be used to provide high-resolved precipi-
tation fields based on probabilities. They have the advantage
that they are easy to implement and not so time-consuming.
But the performance of a statistical downscaling depends
strongly on the available data.

Several approaches can be selected as statistical down-
scaling techniques.Bárdossy(2000) distinguishes three dif-
ferent kinds of approaches: regression approaches, resam-
pling methods and conditional probability approaches. All
approaches have in common, that a functional relationship
is assumed between large-scale variables (predictors) and a
local-scale variable (predictand).

A frequently used resampling method is the analogue
method, which has been successfully applied in operational
flood forecasting (Obled et al., 2002; Bontron and Obled,
2003). This method compares the weather situation of the
current day with weather situations of the past. To find simi-
lar weather situations, similarity measures like the euclidean
distance are used. However, it is not clear, how the perfor-
mance of a forecasting system of heavy rain events is af-
fected by the choice of similarity criterion. To investigate
this question in this work, three different similarity measures
are chosen: the euclidean distance, the Pearson correlation
and a combination of both criteria. They are applied for three
mesoscale catchments located in the Rhine basin using daily
areal precipitation from 1958 to 2001.

2 Methods

2.1 Analogue method

The analogue method was first proposed byLorenz(1969).
If the analogue method is applied as a downscaling approach
for precipitation, it can be divided into two steps (Obled et
al., 2002):

1. The weather situation of the current day is compared
with weather situations of the past.

2. If an analogue situation is identified, the precipitation
which occurred at that day is chosen as forecast.

To find analogue situations several similarity measures can
be chosen. A good overview about several similarity mea-
sures is given byDrosdowsky and Zhang(2003). For in-
stance, the S1-Score (also known as Teweles-Wobus-Score)
can be selected as similarity measure (Obled et al., 2002;
Bontron and Obled, 2003).

If the euclidean distancee1 is applied as similarity mea-
sure to compare two fields of a predictorx at time stept1 and
t2, it can be defined as follows:

e1(x(t1), x(t2)) =

√√√√ k∑
i=1

(xi(t1) − xi(t2))
2 (1)

wherexi presents the absolute value of one predictor ele-
ment at locationi. k is the number of elements. After Eq. (1)
the euclidean distance is the root of the quadratic sum of the
residuals between both fields. However, the euclidean dis-
tance is limited, because it measures only the closeness be-
tween two spatial fields but sometimes two fields are similar
according to their pattern. This property can be measured by
the Pearson correlationr:

r(x(t1), x(t2))=

1
n

∑k
i=1 (xi(t1)−x̄(t1)) (xi(t2)−x̄(t2))

s(t1)s(t2)
(2)

where x̄(t1) and x̄(t2) represents the arithmetic mean and
s(t1) ands(t2) the standard deviation of the predictor at cor-
responding time steps.

The combination of the euclidean distance and the corre-
lation is not straightforward. Therefore a distance related to
the correlation is first introduced. At first, the absolute values
of a predictor are standardized for a given day t:

x
′

(t) =

(
x(t) − x̄(t)

s(t)

)
(3)

The euclidean distancee2 of two predictors in the normed
space is

e2(x
′

(t1), x
′

(t2)) =

√√√√ k∑
i=1

(
x

′

i(t1) − x
′

i(t2)
)2

= (4)

which can be simplified to

=

√√√√ k∑
i=1

(
x

′

i(t1)
2 − 2x

′

i(t1)x
′

i(t2) + x
′

i(t2)
2
)

=

=

√√√√2K − 2
k∑

i=1

(
x

′

i(t1)x
′

i(t2)
)

(5)

Thus the following relationship exists between the euclidean
distance and the Pearson correlation in the transformed
space:

e2(x
′

(t1), x
′

(t2)) =

√
2K

(
1 − r(x′

(t1)x
′
(t2))

)
=

(6)

The two distancese1 ande2 can be be combined to a new
distanceen:

en(x(t1), x(t2)) = e1(x(t1), x(t2)) + αe2(x
′

(t1), x
′

(t2)) (7)

whereα>0 balance between closeness and pattern similarity.

2.2 Forecast verification

The performance of a probabilistic forecast system cannot
be expressed by common deterministic verification measures
like the Pearson correlation or the root mean square error. To
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Table 1. Possible outcomes of a binary forecasting system. yes =
event is forecast (observed), no = no event is forecast (observed).

Forecast Observation
Yes No 6

Yes Hita False alarmb a + b

No Missc Correct rejectiond c + d

6 a + c b + d n

verify a probabilistic forecasts, scores are needed which can
describe the cumulative distribution function of the predic-
tand.

Murphy (1973) proposed that the performance of a prob-
abilistic forecast depends on two attributes: reliability and
resolution. He defines that a forecast system is reliable if it
provides unbiased estimates of the predictand with different
forecast probabilities. If it is able to separate between situa-
tions under which an event occurs in the future or not, then it
has resolution. To determine both attributes, the Brier score
is a frequently used measure (Brier, 1950):

BS =
1

n

n∑
t=1

(pt − ot )
2 (8)

wherept presents the probability of the forecast at time
t andot the observed frequency at the same time. n is the
number of forecasts. If an event occurs than the observed
frequencyot=1, otherwiseot=0. The Brier score depends
on the selection of the threshold which is used to separate
whether an event occurs or not. For instance, daily precipita-
tion thresholds like 0 mm or 20 mm can be chosen. Then, the
probabilistic forecast is evaluated if it is either able to sepa-
rate among dry and wet days or to forecast extreme events.

The Brier score can be decomposed into three terms (Mur-
phy, 1973):

BS =
1

n

k∑
i=1

Ni (pi − ōi)
2
−

1

n

k∑
i=1

Ni (ōi − ō)2
+ ō (1 − ō) (9)

After Eq. (9) forecasts are divided according to the fore-
cast probabilitiespi into k classes and for each class the
arithmetic mean of the observed frequenciesōi is calculated.
Ni presents the number of forecasts in class i andō is the
arithmetic mean of the observations expressed by binary ele-
ments. The first term of Eq. (9) describes the reliability and
the second term the resolution of a probabilistic forecast. The
third term determines the uncertainty, which is not influenced
by the forecast. It depends only on the variability of the ob-
servations. For a perfect reliable system, the reliability term
is zero. The larger the second term, the larger the resolution
of a forecast system is.

Table 2. Catchment properties of Pruen, Sieg and Nahe. Arithmetic
meanPm, 95%-quantileP95 and the 99.5%-quantileP99.5 of daily
areal precipitation are shown.

Property Pruen Sieg Nahe

Size [ km2] 600 750 2500
Pm [mm/d] 2.74 3.01 2.12
P95 [mm/d] 12.7 14.2 11.0
P99.5 [mm/d] 29.4 30.7 24.5

Beside the Brier score also the ranked probability score
RPS can be chosen to verify a probabilistic forecast (Epstein,
1969):

RPS=
1

k

1

n

k∑
i=1

n∑
t=1

(pt − ot )
2

=
1

k

k∑
i=k

BSk (10)

Therefore, the ranked probability score represents the mean
of Brier scores fork selected precipitation thresholds. How-
ever, both RPS and BS, cannot be used to decide whether the
forecast system has more skill compared to a reference fore-
cast or not. For instance, the arithmetic mean of the obser-
vation (climatological mean) represents a reference forecast,
which is a simple way to forecast the precipitation amount
of future days. To solve this problem the corresponding skill
scores, the Brier skill score BSS (Wilks, 1995):

BSS= 1 −
BS

BS0
(11)

and the ranked probability skill score RPSS are selected:

RPSS= 1 −
RPS

RPS0
(12)

BS0 and RPS0 represent the scores of a reference forecast.
Both skill scores range between minus infinity and 1. A skill
score lower than zero indicates, that the forecast system is
not better than the chosen reference forecast. The forecast is
perfect, if the skill score is 1. The RPSS has the disadvantage
that the skill is sensitive to the number and choice of thresh-
olds. But it has also the nice property that it focuses more on
extreme events, if corresponding thresholds are selected.

It is also possible to create relative measures of the reliabil-
ity and the resolution term of Eq. (9), if each term is divided
by the uncertainty. To get negatively oriented measures the
relative measure of the resolution term is subtracted from one
(Toth et al., 2003):

Brel =

1
n

∑k
i=1 Ni (pi − ōi)

2

ō (1 − ō)
(13)

Bres = 1 −

1
n

∑k
i=1 Ni (ōi − ō)2

ō (1 − ō)
(14)
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Table 3. Downscaling performance of the analogue method using three different similarity measures (euclidean distanceE, Pearson corre-
lationP , combined criterionEP ). In addition, the Pearson correlationr, the Heidke Skill Score for the summer and winter half year (HSSs

andHSSw) and the contingency table of the binary forecast for the 80 largest rain events (f a = false alarm,ih = inverse hit) is given. Note
that bold indicates the best results for each catchment.

Catchment criterion r BSS Brel Bres RPSS HSS HSSs HSSw hit f a miss ih

E 0.67 0.22 0.010 0.77 0.23 0.34 0.24 0.43 27 52 53 15937
Pruen P 0.65 0.22 0.010 0.77 0.17 0.18 0.12 0.24 24 157 56 15832

EP 0.68 0.23 0.011 0.76 0.25 0.34 0.25 0.43 27 50 47 15949

E 0.67 0.21 0.012 0.76 0.23 0.24 0.18 0.30 26 83 54 15906
Sieg P 0.65 0.17 0.015 0.82 0.18 0.17 0.09 0.25 20 108 60 15881

EP 0.68 0.22 0.006 0.76 0.24 0.25 0.16 0.33 28 82 50 15906

E 0.66 0.20 0.014 0.79 0.23 0.24 0.15 0.34 17 42 63 15947
Nahe P 0.64 0.14 0.015 0.85 0.16 0.13 0.08 0.19 12 92 68 15897

EP 0.66 0.21 0.013 0.78 0.23 0.26 0.14 0.38 17 36 63 15953

Brel is the relative measure of reliability andBres of resolu-
tion. Both measures ranges between 0 and 1. If both scores
are zero, a probabilistic forecast is perfect. They are re-
lated to the Brier skill score in the following way (Toth et
al., 2003):

BSS= 1 − Brel − Bres (15)

However, a forecast system for extreme events cannot only
be verified by using RPSS and BSS. If an extreme event is
forecast, someone has to decide whether an alarm is given or
not. Such a decision causes always two right and false deci-
sions (Table1). Then, a probabilistic forecast is reduced to a
simple binary (yes = 1, no = 0) forecast and verification mea-
sures are needed which are able to describe a binary forecast.
For example, the Heidke skill score HSS represents a widely
used measure (Murphy and Daan, 1985):

HSS=
PC − PC0

1 − PC0
(16)

PC is the proportion correct, which is the number of correct
forecasts (hit and correct rejection) divided by the number of
forecasts.PC0 is the proportion correct of a reference fore-
cast, which here is the random forecast. The Heidke skill
score ranges between−1 and 1, where a skill score of 1 indi-
cates a perfect forecast. A forecast system is not better than
a reference forecast, if the skill score is 0 or less.

As second binary verification measure the Cramer coef-
ficient V is chosen. It is aχ2-based association measure,
which is defined for a 2-by-2 contingency table as (Hartung,
1999):

V =

√
χ2

n
(17)

with χ2 as:

χ2
=

n (a · b − c · d)2

(a + b) (c + d) (a + c) (b + d)
(18)

The Cramer coefficient is not a skill score. It ranges from 0
to 1, where a value of one indicates a perfect forecast. The
coefficient decreases, if the number of correct forecasts also
decreases. If the number of correct forecast is equal to the
number of false forecast, the score is zero. Note that a num-
ber of false forecast higher than a number of correct forecast
would also yield a score larger than zero.

Compared to the other scores the Cramer coefficient has
the advantage that a confidence interval can be derived in a
simple way. To determine the confidence intervals the stan-
dard deviation of the coefficientσV is calculated at first. A
detailed description of this estimation is given byHartung
(1999). Due to the large sample size, it is assumed that the
distribution of the Cramer association coefficient can be ap-
proximated by a normal distribution. Thus, the lower bound-
ary Vu and the upper boundaryVo of a 1 − α confidence
interval is estimated by

Vu = V − σV · u1−α/2 (19)

Vo = V + σV · u1−α/2 (20)

The quantityu1−α/2 presents the corresponding 1−
α
2 quan-

tile of the standard normal distribution.

2.3 Application

Three mesoscale catchments located in the Rhine basin
(Pruen, Sieg and Nahe) are selected. External drift kriging is
used to calculate daily areal precipitation from 1958 to 2001
in a spatial resolution of 5 km×5 km. The daily areal pre-
cipitation is selected for the validation of the forecast system
for the same period. It is defined as the sum of the precipi-
tation amount of each grid point within a catchment divided
by the number of these grid points. A short overview about
the catchment characteristics is given by Table2.

Three predictors are chosen to describe a weather sit-
uation at a certain time step: geopotential height at 700
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Fig. 1. Probabilistic forecast of an advective(a) and a convective rain event(b) occurred in the Pruen catchment.

and 1000 hPa-level (GPH 700 and GPH 1000) and west-
erly moisture flux at 700 hPa-level (MFLUX). If is defined
that MFLUX is the product between the specific humidity
(SHUM) at 700 hPa-level and westerly wind (UWND) at the
same level. The selected predictors (GPH 700, GPH 1000,
SHUM and UWND) are delivered by the NCEP/NCAR-
Reanalysis project (Kalnay et al., 1996). The use of re-
analysis data has the advantage that possible candidates for
a downscaling can be tested over a long time period (1948
to present), if the predictand covers the same period. The
spatial resolution of the reanalysis data is 2.5◦

×2.5◦. Fur-
thermore, the predictors can be selected for each day at four
different time steps (00:00 UTC, 06:00 UTC, 12:00 UTC and
18:00 UTC). Therefore, the optimal settings of the space and
time domain of each predictor is determined. The optimal
domain size of GPH 700 and GPH 1000 is 20◦

×15◦. The
center of both domains is 5◦ E and 47.5◦ N. The space do-
main of MFLUX has also the same center but a different do-
main size (20◦×10◦). The optimal time step is 12:00 UTC
for all predictors.

The jackknife method is chosen as technique to validate
the forecast system. It presents the most extreme form of a
cross-validation. It allows to incorporate nearly all data into
the calibration and validation procedure. The predictor set-
tings are optimised for the Pruen catchment and transferred
with the same settings to the other catchments. 30 analogue
situations are selected for each forecast day.

To verify the forecast, the 95%-quantile of the observed
frequency is chosen as precipitation threshold to determine
the Brier skill score, the resolution and the reliability. The
ranked probability skill score is calculated by using six
thresholds. Similar toWetterhall(2005) theα-quantiles 0.90,

Table 4. Cramer association coefficientV and the 95% confidence
intervals[Vu; Vo] derived by using the values of the contingency
table of Table3. Note that bold indicates the best results for each
catchment.

Catchment criterion V Vu Vo

E 0.34 0.24 0.43
Pruen P 0.19 0.13 0.26

EP 0.35 0.26 0.45

E 0.27 0.19 0.36
Sieg P 0.19 0.12 0.27

EP 0.30 0.21 0.38

E 0.24 0.15 0.34
Nahe P 0.13 0.06 0.19

EP 0.26 0.16 0.36

0.925, 0.95, 0.975, 0.99 and 0.995 of the observed frequen-
cies are chosen to focus more on extreme events. To calculate
the Heidke skill score, the 99.5%-quantile of the observed
frequencies and the 85%-quantile of the forecast probabili-
ties is chosen. Therefore the forecast system is evaluated,
whether it is able to forecast the 80 largest rain events of the
past (1958 and 2001) or not.

3 Results and discussion

The comparison of the skill scores and the Cramer coefficient
shows, that the highest performance is achieved, if the com-
bined similarity measure is chosen (Tables3 and4). Then,
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the presented forecast system is able to predict more extreme
events. Also the resolution and and the reliability of the
probabilistic forecast increases indicated by the decreasing
relative measures. However, the improvement in predicting
extreme events using the combined criteria is not very large
compared to the euclidean distance. An example showing the
robustness of the estimation of a verification measure is given
in Table4. The confidence interval of the Cramer coefficient
indicates, that the improvement compared to the euclidean
distance could be also caused by random.

The skill scores also show that the forecast system is more
successful in predicting rare extreme events than a simple
reference forecast. Both probabilistic and binary forecasts
provide valuable information for a forecaster. How large
the benefit is cannot be decided yet and economic decision
model have to be introduced to determine the economic ben-
efit. Furthermore, the presented forecast system has to be
tested using forecast data instead of reanalysis data. How-
ever,Obled et al.(2002) have shown, that the use of oper-
ational forecast data produces only a minor decrease in the
performance.

The results show also a significantly weakness of the fore-
cast system. It fails in more than 60 percent of the cases,
which cannot be significantly reduced by using the combined
similarity measures. The cause of the high failure rate is
that convective rainfall events like local thunderstorms can-
not be simulated correctly (Fig.1). Only rainfall events with
a more advective character are described fairly well. There-
fore, the selected predictors are not sufficient to describe the
variability of the rainfall process. To overcome this prob-
lem, other meteorological variables have to be included in
the downscaling method. For instance,Harpham and Wilby
(2005) have shown that also vorticity is an important down-
scaling variable for heavy rain events. Furthermore, predic-
tors of other reanalysis-projects, like the reanalysis project of
ECMWF (ERA 40), can be used instead of the corresponding
NCEP/NCAR-variable.

4 Conclusions

The analogue method can be used to provide high-resolved
daily precipitation fields for a short-range flood forecasting
system. The performance of the downscaling method is af-
fected by the similarity criterion, which is used to identify
similar weather situations. It has been shown, that a combi-
nation of euclidean distance and Pearson correlation yields
the best performance in predicting heavy rain events. How-
ever, this improvement is only significant compared to the
Pearson correlation but not for the euclidean distance. This
combined measure can also not increase the downscaling
performance of convective rainfall processes. To solve this
problem, other predictor variables will be tested. Future re-
search will also focus on economic value showing which end

user gets an economic benefit from the presented forecast
system.
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