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Abstract. As a contribution to deterministic investigations
into extreme fluid surface waves, in this paper wave profiles
of prescribed period that have maximal crest height will be
investigated. As constraints the values of the momentum and
energy integrals are used in a simplified description with the
KdV model. The result is that at the boundary of the feasi-
ble region in the momentum-energy plane, the only possible
profiles are the well known cnoidal wave profiles. Inside the
feasible region the extremal profiles of maximal crest height
are “cornered” cnoidal profiles: cnoidal profiles of larger pe-
riod, cut-off and periodically continued with the prescribed
period so that at the maximal crest height a corner results.

1 Introduction

This paper deals with uni-directional spatially periodic waves
of maximal crest height. The maximization property is spec-
ified by describing the constraints that should be satisfied. As
constraints we take the momentum integralM and the Hamil-
tonian integralH (the energy) since these are dynamically in-
variant integrals for conservative (Hamiltonian) wave equa-
tions with translation symmetry. This research is a continua-
tion of a recent paper on finite energy solutions of maximal
crest height,Van Groesen and Andonowati(2006a), and con-
tributes to the investigation of mathematical-physical proper-
ties of “extreme waves”, also called rogue or freak waves.
The extremal wave profiles we obtain will provide upper
bounds on the maximal wave crest that can be obtained, de-
pending on the initial data (which specify the values of mo-
mentum and energy).

Such mathematical-physical investigations are different
from complementary interest in statistical properties of rogue
waves that determine the probability of occurrence of waves
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of a specified crest (or wave) height, which height may be ar-
bitrarily large; see for instance recent proceeding reports and
references therein for contributions in both areasOlagnon
and Prevosto(2004); Rogue Waves(2005). In the follow-
ing we will first consider a simple linear problem which re-
sults when the constraint integrals are quadratic; this can be
seen as approximating the Hamiltonian by a quadratic ex-
pression as is custom for small amplitude waves described
by linear dispersive wave equations. Then we will inves-
tigate waves described by the Korteweg-de Vries equation.
In each case we find a special curve in the parameter space
(m, h) of values of the constraintsM, H . For points on this
curve, for whichh=H (m), the (only possible) profiles of
maximal crest height are smooth, and given by harmonic and
by KdV cnoidal wave profiles respectively. This curve is the
boundary of the feasible region; for points above this curve,
(m, h) with h>H (m), the periodic profiles of extremal crest
height are non-smooth: they are cornered profiles which con-
sist of parts of harmonic or catenray profiles and of cnoidal
profiles, respectively, that meet at an angle at the point of
highest crest.

The smooth harmonic and cnoidal profiles evolve under
the dynamics in a special way as Hamiltonian relative equi-
libria: pure translations at constant speed. The dynamics
of the cornered profiles is more complicated; although dis-
persion will initially smoothen the corner, (near-) recurrence
cannot be excluded.

In Sect. 2 we briefly describe the general methodology to
formulate and describe profiles of extremal periodic waves,
and summarise the KdV model. In Sect. 3 we consider the
linearised model by neglecting cubic contributions in the
Hamiltonian; in Sect. 4 for the nonlinear KdV model the
cornered cnoidal waves are presented. Section 5 provides
conclusions and some comments.
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2 Methodology

We denote byη (x, t) real valued wave fields depending on
the spatial and temporal variablesx, t ; since we are mainly
concerned with the profiles we will simply writeη (x). The
interest will be in uni-directional spatially periodic solutions,
with periodL, that are governed by a Hamiltonian system
with HamiltonianH and a momentum integralM. For defi-
niteness we take as governing evolution equation the Hamil-
tonian system that describes waves running mainly in one
direction

∂tη = −∂xδH (η) . (1)

Here the HamiltonianH is a translation invariant integral
which is linearly independent from the momentum functional

M =

∫
1

2
η2dx,

which itself is an integral of the motion, with translation as
its Hamiltonian flow.

2.1 Extremal crest formulation

Denote the maximal crest height functional for functionsη

by

C (η) := max
x

η (x) .

Then the extremal problem can be written as

max
η

{ C (η) | η ∈ C } ,

where the constraint setC = C (h, m) consists of functionsη
that areL-periodic and satisfy

A (η) = 0, H (η) = h, M (η) = m.

Here the average is defined asA (η) =
∫ L

0 η (x) dx. By defin-
ing the value function as the extremal crest height for given
constraint values(m, h):

V (h, m) := max
η

{ C (η) | η ∈ C (h, m) } ,

we get from the time invariance ofM andH the dynamic
result that at each position and time the evolution from an
initial valueη0 (x) will be such that

η (x, t) ≤ V (m0, h0) wherem0 = M (η0) , h0 = H (η0) .

For the maximal rest formulation to be sensibly defined, it
is necessary that the constraint set is non-empty. This will
depend very much on the energy and momentum functional.
In the KdV model that we will consider in this paper, the
Hamiltonian will be bounded above for given value of mo-
mentum. (The reduced Hamiltonian to be defined later will
be bounded below.) That means that then the constraint set
is nonempty only if the values(m, h) are “feasible” by satis-
fying certain conditions, namely thath is not larger than its
maximal value for givenm.

For the KdV model we can nicely define the boundary of
the feasibility set, as is described in the next subsection.

2.2 Relative Equilibrium solutions

The boundary in the parameter space of the feasible set
is given by a curve that can be obtained from a separate
extremal formulation. Namely, by the extremizers of the
Hamiltonian on level sets of the momentum. If we define
this optimization problem1 and its value function by

H (m) := max
η

{ H (η) | A (η) = 0, M (η) ≡ m } , (2)

the condition of feasibility is that the pair(m, h) satisfiesh ≤

H (m), which specifies in theM, H -plane the points below
the graph of the value functionm→H (m).

This last variational problem is special for Hamiltonian
systems; the extremals are profiles for which the Hamiltonian
H -dynamics is the same as the HamiltonianM-dynamics (up
to some scaling in time), which means a pure translation
whenM is momentum. Such solutions are known in Clas-
sical Mechanics as “Relative Equilibria” (RE) solutions; see
Van Groesen and De Jager(1994) for the generalizations to
wave problems. For instance, for KdV the resulting solutions
are the well known cnoidal-wave solutions, as we will see in
Sect. 2.5 and Sect. 4.

For this reason we will call the parameter curve
(m,H (m)) the RE-curve.

In more detail, a RE profile satisfies the Lagrange multi-
plier rule (LMR): for some multipliers

λH δH (η) + λMδM + µ = 0. (3)

This can be simplified somewhat when the constraint set is
not singular, which means thatm is such thatλMδM+µ=0
only if λM=µ=0. In that case we have thatλH 6=0, and there-
fore we can normalise its value to be−1 without restriction.
Then we get as equation:

δH (η) = λMδM + µ.

In the next subsection we will show that these RE are the
profiles of maximal crest height for parameter values(m, h)

on the RE-curve.

2.3 Cornered RE profiles

Now we consider the extremal problem of interest:

max
η

{ C (η) | η ∈ C (h, m) } .

In order to write down the governing equation, we need the
variational derivative of the crest height functionalC (η) :

= maxx η (x). Assuming that the maximal value is attained at
isolated points, the variational derivative is given by Dirac’s

1We here assume that the momentum is coercive, in functional
analytic sense, with respect to the Hamiltonian. Roughly speaking
this means that the maximization problem is well-posed: there is a
finite largest value that is attained for certain maximizers, while the
minimization problem is ill-posed.
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delta function centered at the position of maximal crest
height, say atxmax

δC (η) = δDirac (x − xmax) .

Then Lagrange’s multiplier rule leads to the equation

σδDirac (x − xmax) = λH δH (η) + λMδM (η) + µ. (4)

It is to be noted that whenσ=0, we arrive at the equation
of RE treated above. Indeed, we can distinguish two cases,
depending on whether the constraint set is singular or not.
We briefly recall the basic definitions here.

A “singular point” of the constraint set is a point̄η
for which the functionals are dependent, i.e. for which
λH δH (η̄) +λMδM (η̄) +µ=0 for some non vanishing vec-
tor (λH , λM , µ). Such a point satisfies the above multiplier
equation forσ=0. In that case the constraint set is called
singular, and the specific values(m, h) are called singular
values. If there are no singular points, the constraint set is
called regular.

Hence, with the description above, we get that the bound-
ary of the feasible region is the RE-curve, and the extremal
profiles are the RE. Since these RE are the only functions for
these parameters on the RE-curve, these RE profiles have ex-
tremal crest height because there are no competing functions
to be considered.

On the other hand, for a regular constraint set, a critical
point will satisfy the LMR for some nonzeroσ , which can
then be normalised to one,σ=1, and we have

δDirac (x − xmax) = λH δH (η) + λMδM (η) + µ.

The effect of the appearance of the Dirac delta function will
be that the optimal profile has a corner at the extremal po-
sition xmax. But we can conclude even more from the local
character of the delta function: outside the extremal posi-
tion, the profile satisfies the equation satisfied by RE pro-
files. Therefore, a cornered solution will consist of a suitable
composition of parts of RE-profiles (with different values of
momentumm than the prescribed value).

2.4 Summary

Although various technical aspects have to be verified
and specialised, the above general reasoning leads to the
following conclusions about extremal wave profiles in the
setting we have sketched above.

Proposition. For an autonomous Hamiltonian wave
equation with momentum conservation, the RE profiles are
the only profiles (and hence have maximal crest height)
for values of Hamiltonian and momentum that are on
the RE-curve. For feasible values of Hamiltonian and
momentum outside the RE-curve, cornered RE profiles are
the maximizing profiles.

Remark. The results can in principle be extended to other
cases for which there are other, or more, integrals in involu-
tion. However, the two integrals that we use, the Hamiltonian
(energy) and the momentum, seem to be the most relevant
ones to consider, since they are the basic integrals which ex-
ist in any realistic model of surface gravity waves above a
horizontal bottom.

2.5 Korteweg – de Vries model

In the rest of this paper we will illustrate the methodology for
the case of surface water waves on a layer of depthD above a
flat bottom, in the approximation of rather long, rather small
amplitude waves. Unidirectional waves are then well de-
scribed by the Korteweg – de Vries (KdV) type of equations,
which are of the form (1).

Taking exact dispersion properties, but simplified nonlin-
earity, would provide the Hamiltonian for surface waves

H =

∫ [
1

2
ηCpη +

c0

4D
η3

]
dx,

where the pseudo-differential operatorCp has as symbol the
phase velocity of dispersive infinitesimal waves on a layer of
depthD:

cp = c0
√

tanh(kD) / (kD)with c0 =
√

gD.

Here c0 is the (largest) speed of long waves, andg is the
gravitational acceleration. The first term in the integrand of
the Hamiltonian produces the linear part of the equation and
describes the dispersion for small waves; the cubic term in
the integrand provides the lowest order nonlinear effects. The
governing equation reads

∂tη = −∂x

[
Cpη +

3c0

4D
η2

]
.

To simplify the description somewhat, we write the Hamilto-
nian as a deviation from a multiple of the momentum func-
tional by introducing the reduced Hamiltonian as follows

H = c0M − c0Hred

with

Hred =

∫ [
1

2
η

[
1 − Cp/c0

]
η −

1

4D
η3

]
dx.

The extremal formulation for the relative equilibria forH and
these ofHred are similar, except that the constrained maxi-
mization ofH turns into a constrained minimization problem
for Hred:

max
η

{ H | M = m, A (η) = 0}

= c0m − c0 min
η

{ Hred | M = m, A (η) = 0}
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The corresponding multipliers that determine the translation
speed of the relative equilibrium solutions are related, ac-
cording to

δH = λMδM + µ

and

δHred = λredδM + µred

with

λM = c0 (1 − λred) , µ = −c0µred.

The result for the multiplierλM indicates thatHred essen-
tially describes the waves in a frame moving with the speed
c0.

To simplify matters, and to arrive at the classical KdV
equation, we now approximate the pseudo-differential oper-
ator by its lowest order differential operator, leading to the
approximation forH by the HamiltonianHKdV :

H ≈ HKdV = c0

∫ [
1

2
η2

−
D2

12
(∂xη)2

+
1

4D
η3

]
dx (5)

The governing equation reads

∂tη = −c0∂x

[
η +

D2

6
∂2
xη +

3

4D
η2

]
. (6)

Apart from a convenient scaling, we will consider the max-
imal crest problem forHKdV in Sect. 4. For later reference
we note that waves that travel undisturbed at speedV are of
the formη (x − V t) and satisfy the equation

µ1 + V η = c0

[
η +

D2

6
∂2
xη +

3

4D
η2

]
This is precisely the equation for relative equilibria (3), with
λM=V ; periodic solutions are the cnoidal wave profiles that
we will investigate in detail in Sect. 4.

To simplify the formulas somewhat, we scale the spa-
tial variable and the wave height with the water dept,
x̃=x/D, η̃ = 9η/(2D), leading to the normalised equation

− ∂2
x̃ η̃ − η̃2

= λη̃ + µ (7)

with µ=−27µ1/ (Dc0) and

λ = 6(c0 − V ) /c0. (8)

The above equation will be investigated in the following; the
corresponding Hamiltonian is the scaled version of the devi-
ationHred and is given by (omitting the tildes)

H =

∫ [
1

2
(∂xη)2

−
1

3
η3

]
dx. (9)

This will be the Hamiltonian we will consider in the rest of
the paper. In the next section we will first consider the linear
problem, neglecting the cubic term in this Hamitonian; in
Sect. 4 we will investigate the full problem.

3 Harmonics and cornered harmonic profiles

We now investigate the case of a quadratic Hamiltonian. This
corresponds to an approximation of the energy for systems
that are linearised. This may serve as an approximation of
more realistic nonlinear Hamiltonian systems such as the one
above and in the next section. Any definite quadratic func-
tional could be taken, but we will take the lowest order cor-
rection to surface gravity dispersion

H (η) =

∫ (
1

2
∂xη

)2

dx. (10)

The Eq. (4) for the extremal profiles becomes

σδDirac (x − xmax) =

(
λM − λH ∂2

x

)
η + µ. (11)

To simplify the formulas somewhat, we take the length of the
basic intervalL=2π . According to the Poincare-Friedrichs
inequality, the valueh has to satisfyh≥H (m) with H (m) :

=m in order that the values(m, h) are feasible, i.e. in order
that the constraint set is nonempty. Actually, because of the
homogeneity of the functionals, it is possible to choosem=1.
The constraint set is singular forh=H (m) and then the solu-
tions are simply the harmonic functions that can be smoothly
continued periodically. In detail, forh=H (m) : =m we get

σ = µ = 0, λM = 1, λH = −1, η̄(x) =

√
m

2π
cos(x + φ)

These profiles are the RE profiles for this case: they are the
solutions of the optimization problem

η̄ ∈ min
η

{ H (η) | A (η) = 0, M (η) = m } = H (m) . (12)

This is precisely the formulation of the eigenvalue problem
related to the functionalsH andM. The RE curve is here
the straight lineh = H (m). The constraint set is regular for
all values ofh>H (m). Then the profiles of the optimal so-
lutions will have corners. These profiles are of trigonometric
or hyperbolic shape, depending on the value ofh/m. Since
they can be shifted over an arbitrary distance, we choose to
take the origin in the through, and let the corner appear at
x=±π .

The solutions on thetrigonometric branchexist for
H (m) <h<hcr where hcr=(15/π2)H (m). Introducing a
parameterq, these solutions are on the interval[−π, π] given
for −1<q<0 anda>0 by

ηtri = a

[
1

qπ
sin(qπ) − cos(qx)

]
(13)

Solutions on the so-called “catenary2 branch” are defined for
h>hcr with profiles given on the interval[−π, π] for any
q>0 and forA>0 by

ηcat = A

[
−

1

qπ
sinh(qπ) + cosh(qx)

]
. (14)

2The name catenary is used since these solutions have similar
form than the shape of a hanging chain which has cosh description.
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Fig. 1. Plot of one period of the extremal profiles forL=2π

and for the normalised valueM=1. At the left are shown three
profiles of increasing amplitude on the trigonometric branch for
q=−1, −2/3, 0 (q=−1 corresponds to the smooth harmonic), at
the right three profiles with increasing amplitude on the catenary
branch forq=0, 1, 2.

Note that by defining the trigonometric branch for−1<q<0
(although the sign is irrelevant for the solutions on that
branch), we are able to connect the two branches, as we will
see. The parametersa andq can be chosen to satisfy the con-
straint values. On the trigonometric branch the maximal crest
height and the steepness at the corner is bounded, while on
the catenary branch the maximal crest height and the steep-
ness at the corner monotonically increase to infinity for in-
creasing values ofh/m. In fact, defining the (half-corner
angle)φ by

tan(φ) =

[
dη

dx

]
x=π

(15)

we get for the two branches

φtri = arctan(aq sin(qπ)) , φcat = arctan(aq sinh(qπ))

For q→0 the branches singularly meet through a parabolic
profileηsing = a0

(
x2

− π2/3
)
.

Plots of some characteristic profiles on each branch are
given in Fig. 1. Plots of the Hamiltonian, of the maximal
crest height and of the half-corner angle as function ofq are
given in Fig. 2.

4 KdV cnoidal waves and cornered cnoidals

As we detailed in Sect. 2.5, the periodic nonlinear KdV
model, after normalization, leads us to consider the crest
problem for the Hamiltonian Eq. (9):

H (η) =

∫ L/2

−L/2

[
1

2
(∂xη)2

−
1

3
η3

]
dx (16)

whereL denotes the period. First we consider the smooth
periodic profiles, the cnoidal wave profiles, after which we

q

21,510,50-0,5-1

3

2,5

2

1,5

1

0,5

80

60

40

20

0

q

6543210-1

Fig. 2. The left figure shows plots of the Hamiltonian (upper curve)
and of the maximal crest height (lower curve) as function ofq. Here
the trigonometric branch is plotted for−1≤q<0 and the catenary
branch forq>0. In the same way for the catenary and the trigono-
metric branch, the half-cornerφ is plotted in degrees in the right
figure.

apply the methodology to obtain cornered cnoidal wave pro-
files.

4.1 Cnoidal wave profiles

The normalised equation for relative equilibrium profiles
reads

δH = λδM + µ, i.e. − ∂2
xη − η2

= λη + µ, (17)

for two multipliers that are such that the momentum con-
straint is satisfied and that the average of the function van-
ishes. Periodic functions satisfying Eq. (17) are the so called
cnoidal wave profiles; the dynamic solutions are the trans-
lation of the profile with fixed speedλ, which are the well
known cnoidal waves, called like this because they can be ex-
pressed with Jacobi’s elliptic function CN. We now present
details of these RE profiles, and of the cornered cnoidal pro-
files.

Beforehand we note the following expressions for the mul-
tipliers. By integrating over a period there results thatµ is
related to the momentum like

µ = −

∫ L/2

−L/2
η2dx = −2M (η) . (18)

After multiplying the Eq. (17) by η and integrating by parts
there results

λ =

∫ L/2
−L/2

[
η2

x − η3
]
dx∫ L/2

−L/2 η2dx
. (19)

The JacobiCN elliptic function is defined for 0≤k<1 by

cn(z, k) = cosφ, z =

∫ φ

0

dθ√
1 − k2 sin2 θ

The functioncn has periodicity 4K (k) andcn2 has period-
icity 2K (k), where

K (k) =

∫ π/2

0

dθ√
1 − k2 sin2 θ
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Fig. 3. At the left, plots of the cnoidal wave profiles in one period
L=2π , for k=0.5, 0.9, 0, 95 for increasing amplitude. At the right,
plots of momentum (monotonically increasing) and Hamiltonian of
the cnoidal waves as function ofk. Note the non-monotone behavior
of the Hamiltonian fork close to 1.

For k=0, K (0) =π/2, while K (k) →∞ monotonically for
k→1. In the following we will usek as a convenient param-
eter to characterise the profiles; it is in a one-to-one relation
with the momentum used in the formulation of the optimiza-
tion problem.

KdV cnoidal profiles are then given by

η = 6(kβ)2 . cn2(β(x − x0), k) − b

whereb is such that the average ofη vanishes, andx0 is
a shift that makes it possible to get the minimum atx=0.
The periodicity of thecn-function implies that the spatial
period of this profile function is 2K (k) /β. For a given
spatial period̀ , we haveβ=2K (k) /`, and hence we get
η=W (x, k; `) −b with

W (x, k; `) = 24

(
k.K(k)

`

)2

. cn2(2K (k) (
x

`
−

1

2
), k).

This is the expression for profiles for suitable values ofb and
k for given`.

Now we fix the value of the period of the periodic solutions
we are after to beL. In this subsection devoted to cnoidal
waves we takè=L:

ηcn = W (x, k; L) −

∫ L/2

−L/2
W (x, k; L) dx. (20)

Plots of these (smooth) cnoidal profiles for various values of
k are given in Fig. 3 at the left. Observe that for increasing
values ofk→1 the profiles deviate more and more from the

7

5

1

6

4

0
160 124

2

3

8

Fig. 4. The plot shows the value function of the cnoidal waves in the
momentum (horizontal) - Hamiltonian (vertical) plane. Any cnoidal
profile corresponds to a point on this curve, and, visa versa, any
other profile will have values of the integrals above this curve. The
nearly straight dotted line provides the information for the cornered
cnoidal profiles forq=0.9.

harmonic function that corresponds tok=0. The values of
M andH for cnoidal waves as functions ofk are also plot-
ted in Fig. 3 at the right. Note that fork close to its limiting
value 1, the value of the Hamiltonian starts to decrease, and
tends to−∞ as a consequence of the dominating cubic con-
tribution for large amplitude functions in the Hamiltonian.
The RE curveH=H (m) of H versusM shown in Fig. 4
therefore has a turning point: its derivative, which is equal to
the multiplierλ=dH/dm, vanishes, changing from positive
to negative. Sinceλ is related to the speed of the physical
cnoidal wave according to the formula (8), zero crossing ofλ
on this curve, corresponds to increase of the physical velocity
above the maximal phase speedc0. Obviously, for such too
large values ofM the KdV-approximation looses its meaning
as reliable model.

4.2 Cornered cnoidal wave profiles

Employing the methodology explained in Sect. 2, cornered
cnoidal (ccn) profiles are obtained for`=L/q, for 0<q<1.
They are given after adjusting the value ofb to guarantee that∫

ηdx=0 over one period[−L/2, L/2] by

ηccn = W (x, k; `) −

∫ L/2

−L/2
W (x, k; `) dx.

Plots of some characteristic cornered cnoidal profiles are
shown in Fig. 5.
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Fig. 5. Extremal profiles are shown in one periodL=2π and for
the valuek=0.9. For q=1 the smooth cnoidal profile, and for
q=0.9, 0.7 two cornered cnoidals. It must be noticed that for these
parameter values all these profiles correspond to different values of
M andH .

The value of the maximal crest height of the (cornered)
cnoidal waves, and of the half corner are shown in Fig. 6 for
various values ofq as function ofk. Note that for givenk the
smooth cnoidal has the largest crest height.

5 Conclusions

We have shown that for the KdV model the underlying as-
sumptions described in Sect. 2 of the methodology to ob-
tain extremal periodic wave profiles are satisfied. As a con-
sequence, wave profiles of given period that have maximal
crest height are given by the smooth cnoidal profiles when
the value of the momentum and energy lie on the boundary
of the feasible region. For values of these integrals inside
the feasible region, cornered cnoidal profiles are found with
corners at the maximal crest. Taking into account the re-
stricted validity of the KdV model, for not too large values
of momentum the results will be realistic. Similar results
can be obtained for wave groups modelled by the NLS equa-
tion. In Van Groesen and Andonowati(2006a) this was done
for finite energy solutions. The methods here can be applied
for periodic wave groups. Conversely, the results for peri-
odic KdV profiles can be extended to finite energy profiles
of maximal crest height; the KdV solitons are found at the
boundary of the feasible region, and cornered solitons in the
interior region.

In all the cases mentioned above, the profiles at the bound-
ary of the feasible region are smooth coherent structures.
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the value k = 0.9. For q = 1 the smooth cnoidal profile, and for
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Fig. 6. The plot at the left shows the maximal crest height as func-
tion of k for q = 1 (the smooth cnoidal, dotted), and for cornered
cnoidal profiles with q = 0.8 and q = 0.6 (lowest). The plot in
the middle shows the half corner as function of k for q = 0.6 and
q = 0.9 (highest). The plot at the right is the half corner as func-
tion of q for various values of k: increasing curves correspond to
k = 0.5, k = 0.7 and k = 0.9. For increasing k, the value of q for
which the sharpest corner is obtained shifts to q = 1, approaching
a vertical tangent (half corner π/2) for increasing k.

mentum the results will be realistic. Similar results can be
obtained for wave groups modelled by the NLS equation. In
Van Groesen & Andonowati (2006a) this was done for finite
energy solutions, the methods here can be applied for peri-
odic wave groups. Conversely, the results for periodic KdV
profiles can be extended to finite energy profiles of maximal
crest height; the KdV solitons are found at the boundary of
the feasible region, and cornered solitons in the interior re-

gion.
In all these cases, the profiles at the boundary of the fea-

sible region are smooth coherent structures, the Hamiltonian
Relative Equilibria: soliton and cnoidal wave (group) pro-
files. Their dynamics is simple: a translation at constant
speed (action of the momentum flow) with speed determined
by the values of the multipliers. Besides that, at this bound-
ary, except from an arbitrary shift, these are the only profiles
that are found for these values of the integrals. The situation
is very different inside the feasibility region. Then for each
pair (m, h) there are infinitely many independent profiles sat-
isfying the integral constraints. Among these the cornered
coherent structures have the maximal crest height; their dy-
namics will be more complicated.

It should be noted that the results obtained here depend
strongly on the approximation that is taken for the physi-
cal wave energy. Here the usual expression within the KdV
model has been used. In a forthcoming paper Van Groe-
sen & Andonowati (2006b) other expressions for the energy
(Hamiltonian) of uni-directional waves are derived that in-
clude higher order terms; also an expression for the energy
of waves on infinite depth are given. Extremal waves for
these models will be published elsewhere.
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These are the Hamiltonian Relative Equilibria: soliton and
cnoidal wave (group) profiles. Their dynamics is simple: a
translation at constant speed (action of the momentum flow)
with the speed determined by the values of the multipliers.
Besides that, at this boundary, except from an arbitrary shift,
these are the only profiles that are found for these values of
the integrals. The situation is very different inside the feasi-
bility region. Then for each pair(m, h) there are infinitely
many independent profiles satisfying the integral constraints.
Among those the cornered coherent structures have the max-
imal crest height; their dynamics will be more complicated.

It should be noted that the results obtained here depend
strongly on the approximation that is taken for the physi-
cal wave energy. Here the usual expression within the KdV
model has been used. In a forthcoming paper?3 other
expressions for the energy (Hamiltonian) of uni-directional
waves are derived that include higher order terms; also an ex-
pression for the energy of waves on infinite depth are given.
Extremal waves for these models will be published else-
where.
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