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Abstract 

Often, organizational psychologists use methods of classification to group individual jobs 
into larger groups that are then used for personnel-related functions. In classifying jobs, 
researchers and practitioners make several important considerations, such as deciding on the 
type of data collected and choosing the appropriate quantitative clustering method. We high-
light some of these considerations with a dataset comprising three different types of ability 
data. Complementing previous research, these three ways of measuring ability requirements 
resulted in substantially different job clusters. Although these differences did not have clear 
implications for the practical purposes examined – test validation, job evaluation, and career 
exploration – it was evident that the differences influenced the final results obtained and 
therefore would influence personnel decisions made from them. 
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The Effects of Data Type on Job Classification and Its Purposes  
 
In organizational psychology, research and practice often require classifying individual 

positions or jobs into groups whose elements share similar characteristics. For example, 
individual positions may be grouped into jobs, or jobs may be grouped into larger “job fami-
lies” based on similarities in job requirements, such as having similar profiles of different 
abilities required for adequate job performance. This classification process is similar in spirit 
to factor analysis, in the sense that it results in a small yet sensible number of groups to sim-
plify and amplify relevant similarities and differences. Rather than serving as an end in itself, 
however, job classification is a tool that assists in other personnel-related functions 
(Pearlman, 1980). For example, classifying or clustering jobs into larger job families can 
play a critical role in activities such as appraising employees’ job performance (e.g., Corne-
lius, Hakel, & Sackett, 1979), validating employee selection tests (Arvey & Mossholder, 
1977), evaluating jobs (Pearlman, 1980), planning career paths (Harvey, 1986), and counsel-
ing individuals seeking vocational guidance (e.g., Peterson, Mumford, Borman, Jeanneret, & 
Fleishman, 1999).  

There are many benefits of clustering jobs effectively. For instance, rather than having to 
develop distinct measures to assess employee performance for each individual job in an 
organization, job clustering can justify developing measures for a smaller number of job 
groups. Clustering takes what would originally be a cumbersome, costly, and time-
consuming task and transforms it into a more manageable task that is less expensive and less 
time consuming, yet hopefully just as useful. Of course, the ability to reduce the total number 
of jobs to a manageable and appropriate number of job families assumes that (a) individual 
positions – and individual jobs – can be aggregated into job families on relevant characteris-
tics that apply across jobs, and (b) losing unique information about individual positions and 
individual jobs through job grouping does not adversely affect the purposes to which the job 
clusters are put. 

Researchers and practitioners classifying jobs end up addressing – either implicitly or 
explicitly – a number of important considerations that affect the resulting job clusters and, 
consequently, the decisions and outcomes that result from them. These include:  

 
(a) deciding on the set of constructs (and their related measures) on which jobs will be 

clustered, 
(b) paying attention to the characteristics of the sample and measurement methods to 

understand potential method variance and profile-irrelevant sample dependencies, 
(c) scaling the data within jobs and/or within variables (e.g., centering or standardiz-

ing),  
(d) selecting the metric used to reflect similarity between jobs, and  
(e) choosing the appropriate method for clustering jobs.  

 
The present study complements a substantial amount of research related to the advan-

tages and disadvantages of various quantitative clustering techniques (e.g., Colihan & Bur-
ger, 1995; Milligan, 1981; Milligan & Cooper, 1987) by focusing on issues related to the 
constructs or types of data used for job classification.  

Related research has examined the effects of different types of data on results when clus-
tering the same set of jobs based on data from different psychological domains (e.g., group-
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ing on ability requirements versus grouping on job tasks performed). The present study com-
plements and extends this research by focusing on the potential effects on results due to 
clustering different types of job characteristic data that come from a single domain, namely 
abilities. This study reflects an exploratory empirical approach, because it is often difficult to 
identify the strengths and weaknesses of clustering techniques a priori due to the complexity 
of clustering and its influence on desired purposes and outcomes. Specifically, we have three 
types of measures of the same abilities: (1) mean employee ability test scores, (2) expert job 
analyst ratings of required ability levels, and (3) regression-estimated ability scores. We then 
cluster the profiles of each of these different measures of abilities for the same set of jobs. In 
research and practice only one type of data is usually available for a particular construct of 
interest. The present study has the advantage of investigating separate cluster solutions using 
different types of data for the ability constructs of interest, allowing us to infer the extent to 
which results might have differed in a job clustering study had a different type of data been 
available.  

Clusters resulting from these three types of ability measures will be examined in terms of 
their effectiveness for three different purposes: selection test validation, job evaluation, and 
career exploration. In any practical situation, effective cluster solutions need to be internally 
consistent: all jobs are placed in only one cluster, each cluster contains similar jobs in terms 
of the relevant dimensions, and there are meaningful distinctions between different clusters 
(e.g., see Pearlman, 1980). Although these characteristics are desirable, they do not ensure 
effectiveness in light of a given purpose, and therefore relevant data external to the clustering 
process can be examined to determine the usefulness of a given cluster solution. How useful-
ness or effectiveness is determined depends on the particular context, but generally speaking 
this determination often relates to the extent to which a cluster solution assists in making 
accurate or appropriate decisions. For example, job clusters used in selection test validation 
are more useful if they allow for accurate decisions regarding the criterion-related validity of 
a given measure for all (or most) of the jobs in each cluster; less effective clusters are those 
leading to inappropriate conclusions regarding validity levels for many jobs. This will be 
discussed further in later sections. 

 
 

Same Jobs, Different Construct Domains 
 
Previous organizational research examining the effects of data type on job clustering sug-

gests that data from different construct domains can result in substantially different job clus-
ters (e.g., Cornelius, Carron, & Collins, 1979; Ghiselli, 1966; Pearlman, 1980). For instance, 
Cornelius et al. (1979) found that, in a sample of seven foreman jobs, different job clusters 
resulted depending on whether the data were ratings of the tasks performed on the job, Posi-
tion Analysis Questionnaire (PAQ) dimensions reflecting the behaviors required to perform 
the job, or measured worker abilities. Although the sample of jobs here is very small and not 
generalizable, the major implication of these findings is that the objective of classification 
should, first and foremost, determine which domain of variables is relevant for developing 
job characteristic profiles. If cluster solutions differ depending upon the type of data used, 
then the type of data should be chosen carefully according to the objective of clustering. 

However, a few studies report exceptions to this general finding of cluster differences 
(e.g., Baughman, Norris, Cooke, Peterson, & Mumford, 1999; Hartman, Mumford, & Muel-
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ler, 1992). For example, Hartman et al. (1992) compared job clusters resulting from data 
reflecting the types of tasks performed to those resulting from data reflecting the knowledge, 
skills, and abilities (KSAs) needed to perform the job. They found that more than half of the 
jobs were placed in the same family across the two data types, concluding that similar job 
classifications can be developed using these different job descriptors. Nonetheless, these 
studies do not report completely consistent classification results, suggesting there may well 
be important differences in the classifications produced by different data types. 

 
 

Same Jobs, Same Construct Domains 
 
Less research attention has focused on how even from within the same construct domain 

job groupings are affected by different types of profile data. Types of profile data can differ 
both in the specificity of the constructs measured as well as in how those constructs are 
measured. For example, within the abilities domain, different constructs such as verbal abil-
ity, numerical ability, or motor coordination can be measured, and each construct can be 
measured in different ways, such as by ability tests, from samples of employees’ work be-
havior reflecting ability, or via expert ratings of ability requirements of the job. 

Little is known about the extent to which job profile data might yield different job group-
ings when there are differences in how the constructs in the profile are measured. Garwood, 
Anderson, and Greengart (1991) explored a similar issue by examining how the degree of 
task overlap across jobs, the number of tasks performed in jobs, and the number of people in 
each job affected different types of quantitative clustering methods. Their results, based on 
simulated job analysis data, indicated that clustering method effectiveness varied as a func-
tion of the properties of these data. Although this study examined the general issue of how 
clustering results are materially affected by the type of data used within a given construct 
domain, these data resulted from different job analysis situations (e.g., situations where there 
is no task overlap across jobs versus situations where there is substantial task overlap), rather 
than from different measurement methods. The present study therefore complements and 
extends Garwood et al. (1991) by (a) examining the effects of different types of data result-
ing from different measurement methods on job clustering and (b) examining the implica-
tions of these effects for a few major purposes to which clusters are put in organizational 
research and practice. 

The recent development of the Occupational Information Network (O*NET) Career Ex-
plorer tools (as described by McCloy, Campbell, & Oswald, 1999) provides an opportunity 
to examine this issue. O*NET is the U.S. Department of Labor’s computerized occupational 
information tool developed to replace and extend the Dictionary of Occupational Titles 
(DOT). The O*NET database is organized around an overarching “Content Model” that 
encompasses psychological and situational characteristics about work and the worker (Dye & 
Silver, 1999). Among the resources provided by O*NET (see www.onetcenter.org), the 
O*NET Ability Profiler helps individuals just entering careers or in career transition focus 
their career-search activities. The Ability Profiler uses subtests of the well established Gen-
eral Aptitude Test Battery (GATB; U.S. Department of Labor, 1979) to measure individuals’ 
ability levels on up to nine aptitudes: Verbal Ability, Arithmetic Reasoning, Computation, 
Spatial Ability, Form Perception, Clerical Perception, Motor Coordination, Finger Dexterity, 
and Manual Dexterity.1 The Profiler then uses statistical formulas to compare individuals’ 
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ability profiles with the profiles of ability requirements for jobs, presenting each individual 
with a subset of jobs that most closely fits his/her profile. 

In its development, the O*NET’s Ability Profiler used three types of ability data: actual 
GATB test score profiles, job analyst-rated GATB profiles, and regression-estimated GATB 
profiles, all of which are described in more detail below. Again, the present study examines 
how profiles of these different types of ability data affect job groupings. That is, although all 
three types of ability data represent measurements of the same nine GATB aptitudes, the data 
come from very different sources, and different processes give rise to these data. These sub-
stantive differences in these data may result in different ability profiles among the three types 
of data for the same jobs, which in turn may lead to different job groupings. Differences in 
job groupings may then have practical implications for the many purposes to which the 
groupings might be put.  

 
 

Three Types of Ability Data 
 
Actual GATB test score profiles. Actual GATB profiles were obtained from the test 

scores of workers with each of the nine GATB aptitudes: General Intelligence (G), Verbal 
Ability (V), Numerical Ability (N), Spatial Ability (S), Form Perception (P), Clerical Ability 
(Q), Motor Coordination (K), Finger Dexterity (F), and Manual Dexterity (M; cf. McCloy et 
al., 1999). Averaged ability test scores result in a profile of the average abilities needed to 
perform a job satisfactorily. Average employee test scores are assumed to reflect the ability 
levels actually required for satisfactory performance based on evidence indicating that over 
time individuals tend to select themselves into jobs commensurate with their ability levels 
(e.g., Wilk, Desmarais, & Sackett, 1995; Wilk & Sackett, 1996). Actual GATB ability pro-
files exist for 545 jobs where workers were tested with the GATB. 

Job analyst-rated profiles. Job analyst profiles of ability requirements come from the 
Dictionary of Occupational Titles (DOT). These rating data were gathered before the devel-
opment of the O*NET. Since its third edition (published in 1965), the DOT has included job 
analysts’ ratings of several important worker traits such as aptitudes, temperaments, and 
interests (Miller, Treiman, Cain, & Roos, 1980). We used job analyst ratings from the 1991 
revised fourth edition (the most recent edition of the DOT), although job analyst rating data 
are currently being collected for the O*NET database. To develop job aptitude profiles, 
expert job analysts first observed individual jobs and described the job’s tasks and purposes. 
On the basis of these descriptions and other observations, analysts then rated each job on 11 
aptitudes: the nine previously mentioned GATB aptitudes, plus Eye-Hand-Foot Coordination 
and Color Discrimination. For each job rated, analysts estimated on a 1-5 scale the level of 
each aptitude required of the worker for “average, satisfactory performance”: from 1 = ex-
tremely high aptitude ability (top 10%) to 5 = markedly low aptitude ability (bottom 10%; 
U.S. Department of Labor, 1991, p. 9-2). Aptitude profiles from similar jobs were then ag-
gregated to the level of the 12,000+ jobs described in the DOT such that each DOT job’s 
rating on each of the 11 aptitudes reflects the modal value of the ratings from its constituent 
jobs (Cain & Green, 1983). 

Regression-estimated profiles. Although actual GATB test score profiles existed for 545 
DOT-level jobs, these jobs did not cover the entire population of jobs in the O*NET. There-
fore, McCloy et al. (1999) used the actual GATB profiles, as well as data from the DOT, to 
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develop regression-estimated ability profiles for all 12,000+ DOT jobs. This required three 
steps. First, 48 predictor variables, constituting DOT job analysis information such as job 
analysts’ ratings of how much a given job deals with Data, People, and Things (see Table 1), 
were reduced to seven promax-rotated component scores. Second, actual GATB mean test 
scores, for the 545 jobs providing them, were regressed on these component scores (regress-
ing onto the original 48 variables would have capitalized on chance, leading to the regression 
model overfitting the data). Resulting regression weights were then used to develop predicted 
GATB scores for each DOT-level job – including those jobs without actual GATB test 
scores. 

 
 

Table 1: 
DOT Variables Used to Predict GATB Scores 

 
Data, People, Things 
 
Reasoning, Math, Language 
 
Specific Vocational Preparation 
 
Physical Demands 

• Strength  
• Climbing  
• Balance  
• Stooping  
• Kneeling  
• Crouching  
• Crawling  
• Reaching  
• Handling  
• Fingering  
• Feeling  
• Talking  
• Hearing  
• Tasting/Smelling  
• Near Acuity  
• Far Acuity  
• Depth Perception  
• Accommodation  
• Color Vision  
• Field of Vision 

Temperaments 
• Directing  
• Repetitive  
• Influencing  
• Variety  
• Expressing  
• Stress  
• Tolerances  
• Under  
• People  
• Judgments 

 
GATB Aptitude Ratings 

• G – General Intelligence  
• V – Verbal Ability 
• N – Numerical Ability 
• S – Spatial Ability 
• P – Form Perception 
• Q – Clerical Ability 
• K – Motor Coordination 
• F – Finger Dexterity 
• M – Manual Dexterity 
• E – Eye-Hand-Foot Coordination 
• C – Color Discrimination 
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To summarize, the O*NET Ability Profiler’s development involved three distinct types 
of ability profiles: actual test score profiles, expert job analyst-based profiles, and regression-
estimated profiles. Although the three types of profiles are intended to measure the same 
aptitudes, the different substantive processes that led to each type of profile may result in 
different profiles among the three types of data, even for the same job. Test-based data come 
from the responses of multiple employees who took an aptitude test battery, and within each 
job their scores were averaged to yield job-level estimates of aptitude requirements. Job 
analyst-based data reflect a process of cognitive estimation in which job analysts were re-
quired to observe, encode, store, retrieve, and integrate job relevant information. Regression-
based data come from job analysis information predicting required abilities. The regression 
data reflect the characteristics of rating data (and their measurement errors) along with the 
assumptions of the regression model (and their prediction errors). Each type of data thus has 
unique strengths and weaknesses in terms of providing accurate estimates of ability require-
ments for each job. For example, analyst ratings may have been influenced by the informa-
tion processing limitations and biases that can be present in any subjective judgment task 
(e.g., order and contrast effects; see Morgeson & Campion, 1997), whereas actual test scores 
may have been influenced by other biases related to test-taking situations (e.g., test-taker 
motivation), and regression-estimated scores may have been influenced by still other biases 
(e.g., the types of predictor variables used). 

 
 

Implications for Personnel-Related Functions 
 
The brief discussion of the three data types suggests that ability estimates that result from 

these different methods may well differ. Consequently, these three types of data may not 
result in the same (or even similar) profiles or job clusters, which in turn has practical impli-
cations given the particular purpose for job clustering, such as test validation or job evalua-
tion. Thus, creating job clusters requires not only choosing the broad psychological domain 
and quantitative method with care, according to the objective of classification; it also re-
quires choosing, or at least being mindful of, the type of data within a given domain so that 
the cluster analysis can yield useful job clusters. 

Job clustering serves a wide variety of important purposes in organizations, as Table 2 
shows. However, job clusters based on ability requirements are only appropriate for some of 
these purposes. Specifically, ability-based job clusters may tend to be appropriate when jobs 
are classified for test validation, vocational and educational guidance, job placement, person-
nel classification, internal job classification, and job evaluation. Ability-based job families 
might be useful in vocational guidance situations, for instance, because job seekers can take 
ability tests and then focus their searches within clusters of jobs that match their ability test 
score profiles. In addition, it may be desirable to cluster jobs according to ability require-
ments in order to validate ability-based employee selection tests. The present study evaluates 
relative strengths and weaknesses of test-based, analyst-based, and regression-based ability 
data by examining the effectiveness of clustering solutions resulting from these data for three 
major purposes for which criteria are available: test validation (personnel selection), job 
evaluation, and career exploration with O*NET’s Ability Profiler. 
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Table 2: 
Objectives of Clustering Jobs 

 
• Test validation (personnel selection; Arvey & Mossholder, 1977) 
• Job evaluation (for setting pay structures, wage and salary administration; Pearlman, 

1980) 
• Vocational and educational guidance (Pearlman, 1980) 
• Job placement (Pearlman, 1980) 
• Personnel classification (Pearlman, 1980) 
• Establishing career promotion ladders (career-path planning) and lines of job transfer 

(Pearlman, 1980) 
• Internal job classification (Pearlman, 1980) 
• Exploratory research, theory development, and methodological research objectives 

(Pearlman, 1980) 
• Performance appraisal (e.g., Cornelius, Hakel, & Sackett, 1979) 
• Establishing vocational training curricula (Pearlman, 1980) 
• Developing training programs (Pearlman, 1980) 
• Population-level occupational data collection and analysis for economic and social 

purposes (Pearlman, 1980) 
 
 
Test validation. Ability-based job clusters can be useful when seeking to establish the cri-

terion-related validity of an employment test (Arvey & Mossholder, 1977). For example, 
clustering several jobs with similar ability requirements may be required to yield a large 
enough sample for statistically powerful validation. Even when sample size is not a concern, 
combining jobs with similar ability requirements may still be desirable. For instance, instead 
of developing and validating several distinct selection tests for superficially different jobs, 
organizations can validate a smaller number of ability tests for job clusters, thereby simplify-
ing the test validation process. 

 Comparing the criterion-related validity coefficients associated with the jobs in 
each cluster is one way to examine the relative strengths and weaknesses of clusters resulting 
from test-based, analyst-based, and regression-based data for use in test validation. Specifi-
cally, for test validation purposes, it would be desirable to have job clusters consisting of 
jobs with relatively homogeneous criterion-related validities. Conversely, if validity coeffi-
cients were heterogeneous, then job clusters would mask important between-job differences 
in predictor-criterion relationships, and one might reach the undesirable conclusion that a 
predictor is valid (or not valid) for all the jobs in a cluster, when in fact the magnitudes of the 
validity coefficients differ across jobs. For this reason, more useful clusters in this context 
are not necessarily those with the highest mean criterion-related validity coefficients, but 
rather those with meaningful between-cluster yet little within-cluster variability in validity 
coefficients. Therefore, we compare the utility of test-based, analyst-based, and regression-
based job clusters for test validation by examining the amount of between-cluster variability 
relative to within-cluster variability in criterion-related validity coefficients across cluster 
solutions. Higher within-cluster variability indicates more heterogeneity and relatively less 
utility. 
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Job evaluation. Job evaluation is “a systematic procedure designed to aid in establishing 
pay differentials among jobs” (Milkovich & Newman, 1990, p. 595). Many types of informa-
tion might be appropriate and useful for determining occupational pay levels. For instance, it 
may be appropriate for an organization to determine salary, in part, based on ability require-
ment levels such that individuals in jobs requiring higher ability levels tend to receive higher 
pay (Milkovich & Newman, 1990). Therefore, jobs might be clustered according to ability 
requirements, and the jobs within each cluster are paid similarly because they require similar 
levels of abilities. In this case, sensible and useful ability-based job clusters are those with 
little within-cluster variability in pay rates. The usefulness of job clusters based on test-
based, analyst-based, and regression-based data for job evaluation can therefore be compared 
by examining variability in pay levels across cluster solutions, where less within-cluster 
variability in pay levels indicates a more useful cluster solution for job evaluation purposes. 

Career exploration. Finally, differences in job clusters based on these three types of abil-
ity data may have implications for career exploration with O*NET’s Ability Profiler. If job 
clusters obtained from the actual GATB profiles are substantially different from those ob-
tained from the regression-estimated profiles, this indicates that the types of jobs that the 
Ability Profiler encourages clients to pursue may be somewhat data-dependent. Although 
this would not necessarily mean that the O*NET Ability Profiler is generating inappropriate 
suggestions for clients, it is worthwhile to know whether the Profiler might function differ-
ently if it were based on a different type of ability data, meaning that the type of ability data 
used is important and not interchangeable. 

 
 

Summary 
 
The present analysis will reveal differences and similarities in job clusters using three 

different types of ability data: employee test score data, job analyst data, and regression-
estimated data. Analyses will examine the within- versus between-cluster variability in pro-
files of criterion-related validity coefficients and in pay rates, for test validation and for job 
evaluation purposes respectively. Large between-cluster and little within-cluster variability 
indicates relatively useful job clusters. Note that this criterion does not necessarily determine 
the effectiveness of a particular clustering method a priori, as it is not clear which method 
would produce these outcomes given that ability profiles are used to cluster jobs rather than 
the criteria themselves. For instance, a clustering method that minimizes within-cluster vari-
ability in abilities will not necessarily minimize within-cluster variability in pay rates. Addi-
tionally, similarities and differences in clusters resulting from these three data types are 
examined to reveal potential implications for career exploration with O*NET’s relatively 
new Ability Profiler. Clearly there are no tidy prescriptions for profile matching, but past 
research informs an appropriate analytic approach that was taken in the present study. Other 
types of analyses would certainly be possible, but our particular approach is detailed below. 
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Method 
 
Job clustering requires not only deciding how to cluster jobs, but also how to determine 

the number of job clusters supported in the dataset. Research on quantitative clustering meth-
ods indicates that no single technique for grouping jobs or determining the number of clus-
ters present is superior in all situations, although a few tend to perform well under many 
circumstances (e.g., see Colihan & Burger, 1995; Harvey, 1986; Milligan & Cooper, 1987; 
Milligan, 1981; Milligan & Cooper, 1985). In particular, in terms of how individuals (or 
jobs) are grouped, Ward’s (1963) minimum variance technique is recommended (e.g., 
Milligan & Cooper, 1987). The present study uses Ward’s method in forming clusters by 
minimizing the total within-group or within-cluster sum of squares (i.e., the sum of the 
squared deviations of the scores about their mean). Alternatively, Ward’s method can be 
employed using correlations, where minimizing within-cluster sum of squares is replaced by 
minimizing 1-R2. 

Similarly, in determining the appropriate number of clusters present in the data, there are 
reasonable alternatives but no prescriptions. Research by Milligan and Cooper (1985) sug-
gests three criteria: the cubic clustering criterion (CCC; see Sarle, 1983), the variance ratio 
criterion or pseudo F statistic (Calinski & Harabasz, 1974), and the pseudo t2 statistic (see 
Duda & Hart, 1973). Each index of adequacy for the number of clusters incorporates several 
types of statistics for each step in the clustering process using Ward’s method. Generally 
speaking, the indices reflect whether two clusters joined at a given step in the clustering 
process should in fact be combined. Examining these values as the number of clusters in the 
clustering process gets smaller helps one decide on the number of clusters present in a given 
dataset: There should not be too few clusters that the data are not well represented, but there 
should not be so many clusters that the cluster solution is too complex and overfits the data. 
Others have suggested that convergence across these three statistics helps determine the 
number of clusters present (e.g., SAS Institute, 1999). Specifically, local peaks in the CCC 
and pseudo F statistic, along with a small value for the pseudo t2 followed by a larger t2 at the 
next clustering step, suggest that the appropriate number of clusters has been identified. 

 
 

Data 
 
All three types of ability data describe jobs at the level of the Dictionary of Occupational 

Titles (DOT). Currently, however, all U.S. government agencies collecting occupational 
information are moving over to the Standard Occupational Classification (SOC) system. The 
DOT and SOC systems of organizing jobs differ in several ways, but in the present context a 
primary difference is that the SOC is a broader classification system containing approxi-
mately 820 classifications that subsumes the DOT system, which contains over 12,000 job 
classifications. Given that the SOC system will be used by U.S. government agencies for all 
future job-related data collection, we aggregated DOT data up to the SOC level. The SOC 
contains hundreds of classifications and is likely to be refined enough to warrant useful job 
classification, but in exercising caution, we clustered and analyzed jobs at both levels.  

Missing data reduced the working data set from 545 to 518 DOT-level jobs. We did not 
impute missing data because (a) 518 jobs constituted 95% of the jobs as well as a sufficiently 
large sample for our purposes, and (b) our focus in this article is on comparing different 
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types of data in job clustering, and therefore we felt it was more appropriate to include only 
the raw data, as inclusion of missing-data estimates could lead to less accurate results and 
conclusions. In addition, aptitude G (General Intelligence) was excluded from analyses be-
cause it is redundant with GATB aptitudes V, N, and S. Analyses were conducted on test-
score, job analyst-based, and regression-estimated ability profiles consisting of the eight 
remaining GATB aptitudes: V, N, S, P, Q, K, F, and M (see Table 1). 

To conduct SOC-level analyses, the 518 DOT-level jobs were placed into their 264 cor-
responding SOC categories. We then averaged DOT-level ability scores within each SOC 
classification, yielding test-score, job analyst-based, and regression-estimated ability pro-
files, with each type of profile comprising the same eight aptitudes. Profiles were then ana-
lyzed separately at both the DOT and SOC level. 

 
 

Table 3: 
Number of SOCs within Each Major Group 

 

Major Group Description f 

11-0000 Management Occupations 6 

13-0000 Business and Financial Operations Occupations 8 

15-0000 Computer and Mathematical Occupations 5 

17-0000 Architecture and Engineering Occupations 12 

19-0000 Life, Physical, and Social Science Occupations 8 

21-0000 Community and Social Services Occupations 5 

23-0000 Legal Occupations 3 

25-0000 Education, Training, and Library Occupations 4 

27-0000 Arts, Design, Entertainment, Sports, and Media Occupations 4 

29-0000 Healthcare Practitioners and Technical Occupations 18 

31-0000 Healthcare Support Occupations 5 

33-0000 Protective Service Occupations 8 

35-0000 Food Preparation and Serving Related Occupations 8 

37-0000 Building and Grounds Cleaning and Maintenance Occupations 2 

39-0000 Personal Care and Service Occupations 7 

41-0000 Sales and Related Occupations 9 

43-0000 Office and Administrative Support Occupations 27 

45-0000 Farming, Fishing, and Forestry Occupations 2 

47-0000 Construction and Extraction Occupations 20 

49-0000 Installation, Maintenance, and Repair Occupations 22 

51-0000 Production Occupations 68 

53-0000 Transportation and Material Moving Occupations 13 

55-0000 Military Specific Occupations 0 

Note. f  = Number of SOCs in the Major Group. 
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To facilitate classification, the SOC system divides jobs with similar skills and work ac-
tivities into 23 Major Groups, 96 Minor Groups, and 449 Broad Occupations (Bureau of 
Labor Statistics, 2001a). Table 3 shows that the SOCs covered by DOT jobs in the present 
dataset cover 22 of the 23 Major Groups. Furthermore, given any particular SOC job, the 
percentage of DOTs with data ranges from 0.4% (1 DOT-level job out of 251) to 100% (1 
DOT-level job with data where in fact only 1 DOT job fits into the SOC), with a mean of 
30% and a (large) standard deviation of 29%. Thus, the extent to which DOTs with data 
represent all DOTs within each SOC varies considerably across SOCs. These percentages 
should not be strictly interpreted, however, because DOT job titles themselves vary in their 
breadth. However, the results do indicate that DOT data are well represented and distributed 
across the SOC system.  

 
 

Results 
 

Descriptive Statistics and Reliability 
 
Tables 4, 5, and 6 provide descriptive statistics and intercorrelations for actual test score, 

job analyst, and regression-estimated GATB data at the DOT level. Tables 7, 8, and 9 pro-
vide similar results at the SOC level. 

Previous studies indicate that the GATB aptitudes are measured reliably across numerous 
populations and contexts. For example, studies from high school, college, and adult samples 
using test-retest intervals of one day to three years generally produced reliability coefficients 
in the range of .80 to .90 (U.S. Department of Labor, 1970). Thus, the GATB test score data 
in the present study should be highly reliable, especially because profiles reflect mean test 
scores across employees within a job, and means are more stable than individual scores. 

Unfortunately, less is known about the reliability of job analyst ratings available from the 
DOT, including the GATB ratings used in this study. As Miller et al. (1980) note, “no checks 
appear to have been made of the validity and reliability of the [DOT] ratings during the 
course of fourth edition production” (p. 169). However, a few researchers have estimated the 
reliability of DOT ratings using ratings based on procedures very similar to those used to 
generate actual DOT ratings (e.g., Cain & Green, 1983; Geyer, Hice, Hawk, Boese, & 
Brannon, 1989; Miller, et al., 1980). These studies indicate that reliability varies across 
scales. However, in research relevant to the present study, Geyer et al. (1989) found alpha 
coefficients for GATB aptitude ratings greater than .80 when four raters were used (Table 10 
summarizes their findings), suggesting that the aptitude ratings available from the DOT are 
also likely to be quite reliable. 

The regression-estimated data are weighted linear composites of seven principal compo-
nents comprising DOT ratings. Therefore, these composite scores should have higher reli-
ability than the individual ratings (Li, Rosenthal, & Rubin, 1996), which themselves gener-
ally seem to have acceptable levels of reliability (with some exceptions; e.g., see Cain & 
Green, 1983). 
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Table 4: 
Actual Test Score Data (DOT Level): Descriptive Statistics and Intercorrelations 

 
GATB Aptitude M SD 1 2 3 4 5 6 7 8 
1. Verbal Ability 98.85 10.72 --        
2. Numerical Ability 97.97 12.19 .90 --       
3. Spatial Ability 102.42 10.93 .76 .84 --      
4. Form Perception 103.89 10.86 .77 .78 .78 --     
5. Clerical Ability 105.93 11.45 .81 .72 .56 .85 --    
6. Motor Coordination 102.39 9.16 .72 .64 .46 .79 .87 --   
7. Finger Dexterity 97.94 8.05 .43 .46 .46 .61 .42 .58 --  
8. Manual Dexterity 105.13 8.17 .32 .39 .45 .57 .43 .53 .60 -- 

Note. N = 518. All correlations are significant at p < .01. 
 
 
 

Table 5: 
Analyst Data (DOT Level): Descriptive Statistics and Intercorrelations 

 
GATB Aptitude M SD 1 2 3 4 5 6 7 8 
1. Verbal Ability 3.21 .80 --        
2. Numerical Ability 3.38 .81 .71 --       
3. Spatial Ability 3.30 .82 .35 .48 --      
4. Form Perception 3.23 .74 .26 .40 .70 --     
5. Clerical Ability 3.61 .83 .63 .59 .13 .16 --    
6. Motor Coordination 3.28 .60 -.08 .00 .35 .40 .01 --   
7. Finger Dexterity 3.30 .65 .00 .10 .37 .46 .05 .62 --  
8. Manual Dexterity 3.14 .58 -.21 -.10 .38 .34 -.24 .56 .50 -- 

Note. N = 518. |r| > .09 are significant at p < .05. |r| > .12 are significant at p < .01. 
 
 
 

Table 6: 
Regression Estimated Data (DOT Level): Descriptive Statistics and Intercorrelations 

 
GATB Aptitude M SD 1 2 3 4 5 6 7 8 
1. Verbal Ability 98.95 8.68 --        
2. Numerical Ability 105.99 18.90 .97 --       
3. Spatial Ability 102.65 8.43 .84 .94 --      
4. Form Perception 104.08 7.10 .97 .98 .90 --     
5. Clerical Ability 106.06 8.02 .97 .92 .74 .95 --    
6. Motor Coordination 102.60 5.88 .94 .85 .64 .90 .97 --   
7. Finger Dexterity 98.15 3.10 .79 .77 .74 .86 .77 .81 --  
8. Manual Dexterity 105.21 2.47 .75 .81 .88 .86 .70 .67 .91 -- 

Note. N = 518. All correlations are significant at p < .01 
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Table 7: 
Actual Test Score Data (SOC Level): Descriptive Statistics and Intercorrelations 

 
GATB Aptitude M SD 1 2 3 4 5 6 7 8 
1. Verbal Ability 102.25 10.82 --        
2. Numerical Ability 101.38 11.29 .89 --       
3. Spatial Ability 105.59 10.05 .70 .81 --      
4. Form Perception 106.51 10.34 .78 .80 .76 --     
5. Clerical Ability 108.87 11.21 .84 .74 .53 .87 --    
6. Motor Coordination 104.23 8.53 .77 .66 .45 .79 .88 --   
7. Finger Dexterity 98.20 7.51 .51 .55 .57 .69 .51 .62 --  
8. Manual Dexterity 105.40 7.44 .34 .44 .52 .57 .43 .50 .55 -- 

Note. N = 264. All correlations are significant at p < .01. 
 
 
 

Table 8: 
Analyst Data (SOC Level): Descriptive Statistics and Intercorrelations 

 
GATB Aptitude M SD 1 2 3 4 5 6 7 8 
1. Verbal Ability 2.94 .81 --        
2. Numerical Ability 3.16 .76 .65 --       
3. Spatial Ability 3.15 .84 .19 .39 --      
4. Form Perception 3.14 .76 .15 .37 .72 --     
5. Clerical Ability 3.40 .76 .56 .47 -.10 -.03 --    
6. Motor Coordination 3.28 .60 -.21 -.08 .40 .43 -.10 --   
7. Finger Dexterity 3.31 .66 -.04 .08 .41 .51 .00 .68 --  
8. Manual Dexterity 3.17 .63 -.30 -.19 .42 .42 -.35 .67 .61 -- 

Note. N = 264. |r| > .14 are significant at p < .05. |r| > .18 are significant at p < .01. 
 
 
 

Table 9: 
Regression Estimated Data (SOC Level): Descriptive Statistics and Intercorrelations 

 
GATB Aptitude M SD 1 2 3 4 5 6 7 8 
1. Verbal Ability 102.16 8.26 --        
2. Numerical Ability 112.67 17.15 .96 --       
3. Spatial Ability 105.35 7.36 .77 .89 --      
4. Form Perception 106.47 6.67 .97 .97 .85 --     
5. Clerical Ability 108.80 8.00 .97 .91 .64 .94 --    
6. Motor Coordination 104.50 6.16 .94 .83 .55 .90 .97 --   
7. Finger Dexterity 99.04 3.18 .73 .70 .65 .82 .71 .78 --  
8. Manual Dexterity 105.88 2.33 .65 .72 .83 .80 .59 .59 .89 -- 

Note. N = 264. All correlations are significant at p < .01. 
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Table 10: 
GATB Reliability Estimates from Geyer et al. (1989) 

 
GATB Aptitude α: One Rater α: Four Raters 
General Ability .88 .97 
Verbal Ability .93 .98 
Numerical Ability .75 .92 
Spatial Ability .78 .93 
Form Perception .72 .91 
Clerical Ability .70 .90 
Motor Coordination .65 .88 
Finger Dexterity .68 .89 
Manual Dexterity .51 .81 

 
 
Clustering Results 
 

Number of clusters. As discussed previously, the CCC, pseudo F, and pseudo t2 indices 
were jointly examined to determine the number of clusters present in each dataset. Unfortu-
nately, as often happens in practice, these statistical indices did not converge onto the same 
number of clusters, and so no clear solution appeared for any of the datasets. Therefore, 
rather than arbitrarily focusing on a single solution based on weak evidence, multiple cluster 
solutions were explored for each dataset and used in subsequent analyses. First, it was as-
sumed that given approximately 500 jobs at the DOT level and 250 jobs at the SOC level, 
somewhere between approximately 2 and 50 clusters would end up being the most useful, 
manageable, and appropriate for most practical purposes. Second, for several of the datasets, 
peaks in graphs of the three types of clustering statistics appeared in both the 2-5 cluster 
range and 15-25 cluster range. Therefore, choosing cluster solutions above and below the 15 
cluster point seemed appropriate. Based on this, three ranges were chosen to reflect a low 
range (below 15 clusters), a middle range (a range of 20 solutions starting at the 15 cluster 
point), and a high range (a range of 20 solutions starting at the 35 cluster point) that would 
cover the 2 to 50 cluster range. The most appropriate solution within each of these three 
ranges was chosen based on examining the CCC, pseudo F, and pseudo t2 plots (see Table 
11). Although in some cases this resulted in cluster solutions with a larger number of clusters 
than might be practical for some purposes, analysis of these solutions is still helpful for un-
derstanding how the three types of data behave across different clustering solutions. 

 
Similarity of cluster solutions across data types. Similarity of cluster solutions can be ex-

amined in several ways, such as by cross-classifying solutions or computing various indices 
of similarity. Previous research (Milligan & Cooper, 1986) suggested examining similarity of 
cluster solutions resulting from the three types of data using the Hubert and Arabie (1985) 
adjusted Rand (1971) statistic, which indicates the extent to which pairs of jobs placed in the 
same cluster for one solution are also placed in the same cluster for the other solution (and, 
conversely, jobs placed in different clusters for one solution are also placed in different clus-
ters for the other solution). To some extent, this sort of agreement can occur by chance, and 
the adjusted Rand statistic takes this into account, similar in spirit to the kappa coefficient of 
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agreement. The adjusted Rand statistic has an upper bound of 1.0, indicating perfect agree-
ment, and should equal 0.0 when cluster solution agreement can be attributed to chance; 
however, it can also take on negative values when agreement is less than that expected from 
chance. This statistic can be interpreted as the proportion of agreement between cluster solu-
tions over and above the agreement expected due to chance (Collins & Dent, 1988). 

Table 12 presents Hubert and Arabie adjusted Rand statistics for each cluster range at the 
DOT and SOC level. This table reveals a couple of patterns. First, the three types of data, 
though related, clearly produce substantially different cluster solutions. None of the adjusted 
Rand values are above .45 (i.e., 45% agreement over what is expected due to chance) and 
only two are above .20, indicating little cluster solution agreement above chance levels in 
most cases. Second, it appears that (a) job analyst and regression-estimated data tend to 
produce more similar cluster solutions than do (b) actual test scores and job analyst data or 
 

 
Table 11: 

Number of Clusters Indicated by the CCC, Pseudo F, and Pseudo t2 

 

Data Type 
Small 

(2-14 Clusters) 
Medium 

(15-34 Clusters) 
Large 

(35-54 Clusters) 
DOT Level    
Actual Test Score 3 18 42 
Analyst 3 23 48 
Regression Estimated 3 23 50 
    
SOC Level    
Actual Test Score 3 26 39 
Analyst 3 21 40 
Regression Estimated 4 22 42 

 
 

Table 12: 
Adjusted Rand Statistic 

 

Comparison 

2-14  
Cluster 
Range 

15-34 
Cluster 
Range 

35-54 
Cluster 
Range 

DOT Level 
Actual Test Score and Analyst .19 .07 .04 
Analyst and Regression-Estimated .42 .16 .12 
Actual Test Score and Regression-Estimated .20 .06 .03 

 
SOC Level 
Actual Test Score and Analyst .11 .08 .07 
Analyst and Regression-Estimated .15 .18 .16 
Actual Test Score and Regression-Estimated .24 .07 .06 

Note. Adjusted Rand statistic from Hubert and Arabie (1985). 
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 (c) actual test scores and regression-estimated data. For all three of the cluster ranges at the 
DOT level and two of the three ranges at the SOC level, the analyst and regression-estimated 
comparison produced noticeably higher adjusted Rand statistics than did the actual test score 
and job analyst comparison and the actual test score and regression-estimated comparison. 
However, although the job analyst and regression-estimated comparison tends to produce 
relatively higher values, these values still appear to be relatively small in an absolute sense: 
the highest of the six is .42, and the other five are within .10 to .20, indicating that, alto-
gether, substantial disagreement exists across all cluster solutions. 

Note that a comparison between these clustering results and an appropriate “gold stan-
dard” would provide further useful information. For instance, one could determine whether 
clusters produced by one of the data types tend to be more similar to an established classifi-
cation system than clusters produced by other data types. For example, we might compare 
our clustering results with the widely used SOC classifications. However, classifications in 
the SOC are made based on “work performed, skills, education, training, and credentials,” 
(Bureau of Labor Statistics, 2001a) rather than required abilities; therefore, observed differ-
ences between the ability-based classifications in this study and the classifications of this 
system may not be easily interpretable, as they may reflect legitimate differences rather than 
unwanted deviations from a gold standard. One could compare our results to an ability-based 
classification system; for instance, Gottfredson’s Occupational Aptitude Patterns Map is 
based on jobs’ overall aptitude level (5 levels) and aptitude patterns (4 general patterns; see 
Gottfredson, 1986). This possibility could be explored with our data, though our decision 
was to be informed by the relative comparisons of cluster solutions with our existing data 
sets and not to stray from the O*NET classification system. 

 
 

Criterion-Related Validity Results 
 
DOT level analyses. Criterion-related validity coefficients are available for each of the 

518 DOT jobs included in this study, correlating the nine GATB aptitudes with ratings of 
either job or training performance, or course/exam grades. Table 13 presents descriptive 
statistics for these criterion-related validity coefficients. 
For test-validation purposes, analyzing criterion-related validity coefficients highlights the 
advantages and disadvantages of using each of the three types of data in job clustering. Use-
ful cluster solutions will contain similar profiles of criterion-related validity coefficients 
within clusters yet differ between clusters. Profile analysis provides one way to examine 
variability in criterion-related validity coefficients across clusters. Profile analysis is an ap-
plication of multivariate analysis of variance (MANOVA) for investigating two or more 
groups that are measured on multiple dependent variables (DVs). Profiles of scores can con-
sist of either one DV measured multiple times or of different DVs measured on the same 
scale. In this case, the groups are job clusters, and the DVs are criterion-related validity 
coefficients for each of the nine GATB scales. Across job clusters, this method independ-
ently tests for differences in the levels of the aptitude profiles, differences in the shapes of 
the aptitude profiles, and a general test for the flatness of the pooled aptitude profile across 
all profiles (cf. Harris, 1975).  
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Table 13: 
Criterion Related Validity Coefficient Descriptive Statistics at the DOT Level 

 
GATB Aptitude M SD Sample Size M Sample Size SD 
General Ability .23 .16 82.0 68.4 
Verbal Ability .17 .16 88.6 66.2 
Numerical Ability .22 .16 88.6 66.2 
Spatial Ability .16 .16 88.6 66.2 
Form Perception .18 .16 88.6 66.2 
Clerical Ability .19 .16 88.6 66.2 
Motor Coordination .15 .16 86.1 64.2 
Finger Dexterity .15 .17 86.1 64.2 
Manual Dexterity .16 .18 86.1 64.2 
Note. N = 518 for validity coefficients. Due to missing data, N = 388-518 for sample sizes. 

 
 
The “levels” test assesses whether different clusters of jobs have different mean levels of 

criterion-related validity. The null hypothesis for this test is that the overall profile mean 
(i.e., the mean across the means of the separate DVs in the profile) is identical across groups 
(Harris, 1975). Rejecting this hypothesis indicates that job clusters differ in terms of mean 
DV levels, suggesting a main effect for cluster membership. Results from the present analy-
sis would indicate whether clusters are significantly different in terms of their average level 
of criterion-related validity. 

The “flatness” test assesses the null hypothesis that the pooled profile of DVs across all 
job clusters is flat (Harris, 1975). Results from the present analysis would indicate whether 
certain GATB scales tend to have more or less criterion-related validity than other scales. 
Thus, whereas the “levels” analysis tests for between-cluster differences based on mean 
validity coefficients across aptitudes, the “flatness” analysis tests for between-aptitude dif-
ferences based on mean validity coefficients across clusters. 

Finally, the “parallelism” test assesses the null hypothesis that the profiles for the groups 
are parallel, meaning they have exactly the same shape (Harris, 1975). If this null hypothesis 
is rejected we conclude that the groups differ significantly in terms of the shape of their DV 
profiles. Here, a significant interaction indicates that the job clusters’ criterion-related valid-
ity profiles for the GATB scales are not parallel (i.e., their shape depends on the cluster). 
These three tests are therefore analogous to two-way analysis of variance tests. The “levels” 
test corresponds to a test of the cluster or group main effect, the “flatness” test corresponds to 
a test of the GATB aptitude main effect, and the “parallelism” test corresponds to a test of 
the interaction between cluster and GATB aptitude (Harris, 1975). 

Note that the following results are based on analyses that include criterion-related valid-
ity coefficients for G, which as mentioned previously is redundant with V, N, and S. Analy-
ses excluding G were also conducted, yielding very similar results. Some minor differences 
were observed, particularly for the flatness analyses (e.g., in the magnitude of partial eta-
squared values), but the pattern of results remained the same for all analyses. Furthermore, 
results from the flatness analyses are rendered somewhat irrelevant by the presence of sig-
nificant parallelism results (discussed below); therefore the flatness results (and any differ-
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ences in these results when G is excluded) are not of primary concern. Thus, results based on 
analyses including validity coefficients for G are reported for the sake of completeness. 

Table 14 presents results of the “levels” tests. Actual test score data consistently produce 
clusters that differ significantly in terms of the level of their profiles of criterion-related 
validity coefficients (p < .05 in all cases). On the other hand, analyst data produce clusters 
that do not differ significantly in terms of validity profile level (p > .40 in all cases). Finally, 
regression-estimated data clusters had significantly different validity profile levels in the 15-
34 cluster range (p < .05), but not in the 2-14 or 35-54 ranges (p > .20). Thus, actual test 
score data consistently produce significantly different mean validity profile levels, whereas 
analyst data do not. Regression-estimated results are somewhat mixed, indicating these data 
tend to produce relatively similar validity profile levels, except in the middle 15-34 cluster 
range where there is some differentiation. Partial eta-squared values, indicating the propor-
tion of variance in averaged validity coefficients accounted for by cluster membership, also 
demonstrate this pattern. However, overall partial eta-squared values appear to be relatively 
small. For example, cluster membership resulting from actual test score data at the 2-14 
cluster range accounts for only approximately 2% of the variance in averaged validity coeffi-
cients. By contrast, in some cases, such as with actual test score data at the 35-54 cluster 
range, we obtained values as high as approximately 20%. In these cases it appears cluster 
membership is important, yet nontrivial within-cluster variability in average validity coeffi-
cients remains. 

 
Table 14: 

Profile Analysis “Levels” Test at the DOT Level 
 

 Source df F p Partial Eta-Squared 
2-14 Cluster Range 
Actual Test Score 3 Clusters 2 4.48 .01 .02 
 Error 515    
Analyst 3 Clusters 2 0.67 .51 .00 
 Error 515    
Regression-Estimated 3 Clusters 2 1.18 .31 .01 
 Error 515    
15-34 Cluster Range 
Actual Test Score 18 Clusters 17 3.32 .00 .10 
 Error 500    
Analyst 23 Clusters 22 0.97 .50 .04 
 Error 495    
Regression-Estimated 23 Clusters 22 1.79 .02 .07 
 Error 495    
35-54 Cluster Range 
Actual Test Score 42 Clusters 41 2.83 .00 .20 
 Error 476    
Analyst 48 Clusters 47 0.83 .78 .08 
 Error 470    
Regression-Estimated 50 Clusters 49 1.14 .25 .11 
 Error 468    
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Table 15 presents results of the “flatness” tests. These results clearly show that the mean 
validity profile across all clusters is significantly different from flat (p < .01). This indicates 
that one or more of the GATB scales tend to predict criteria differently than the other scales. 
Partial eta-squared values indicate that non-flatness of the validity profile accounts for 49% 
to 58% of the variance. Thus, overall a substantial amount of variance is accounted for by 
this effect. However, these results are not explored further both because they are not the 
primary focus of this paper, and they are essentially rendered irrelevant by results discussed 
below. 

 
Table 15: 

Profile Analysis “Flatness” Test at the DOT Level 
 

 Source df Wilks' 
Lambda 

F p Partial 
Eta-Squared 

2-14 Cluster Range 
Actual Test Score GATB 8 .454 76.42 .00 .55 
 Error 508     
Analyst GATB 8 .425 85.85 .00 .58 
 Error 508     
Regression-Estimated GATB 8 .426 85.46 .00 .57 
 Error 508     
15-34 Cluster Range 
Actual Test Score GATB 8 .508 59.68 .00 .49 
 Error 493     
Analyst GATB 8 .486 64.44 .00 .51 
 Error 488     
Regression-Estimated GATB 8 .438 78.17 .00 .56 
 Error 488     
35-54 Cluster Range 
Actual Test Score GATB 8 .502 58.22 .00 .50 
 Error 469     
Analyst GATB 8 .502 57.51 .00 .50 
 Error 463     
Regression-Estimated GATB 8 .477 63.10 .00 .52 
 Error 461     

 
 
Results of the “parallelism” tests indicate the level and flatness results must be qualified, 

because there is a significant GATB scale × cluster membership interaction for all three types 
of data at all three cluster solution ranges (p < .01). These significant interactions indicate 
that in all cases mean validity profiles are not parallel (see Table 16). In other words, each 
type of data produces at least some clusters that differ in terms of validity profile shape. 
Although partial eta-squared values are fairly similar for results for each of the three types of 
data, regression-estimated data produce the largest values across cluster solutions, followed 
by job analyst data, and then actual test score data. Overall, partial eta-squared values are 
relatively low, ranging from .05 (for actual test score data at the 2-14 and 15-34 cluster 
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range) to .13 (for regression-estimated data at the 35-54 cluster range), indicating a consider-
able amount of within-cluster variance in profile shape. 

SOC level analyses. Results obtained using SOC-level data are very similar to those ob-
tained using DOT-level data and therefore are not presented in detail. The pattern of results is 
essentially the same, particularly for the levels and flatness tests. Results of the parallelism 
test are also similar in that a significant GATB scale × cluster membership interaction exists 
across all data types and ranges of cluster solutions (p < .01). However, results differ in terms 
of partial eta-squared values: whereas DOT-level analyses demonstrated a consistent pattern 
in which regression-estimated data produced the largest eta-squared values, followed by job 
 

 
Table 16: 

Profile Analysis “Parallelism” Test at the DOT Level 
 

 Source df Wilks' 
Lambda 

F p Partial  
Eta-Squared 

2-14 Cluster Range 
Actual Test Score GATB *  

3 Clusters 
16 .896 3.57 .00 .05 

 Error 1016     
Analyst GATB *  

3 Clusters 
16 .846 5.53 .00 .08 

 Error 1016     
Regression-Estimated GATB *  

3 Clusters 
16 .829 6.26 .00 .09 

 Error 1016     
15-34 Cluster Range 
Actual Test Score GATB *  

18 Clusters 
136 .643 1.66 .00 .05 

 Error 3607     
Analyst GATB *  

23 Clusters 
176 .604 1.45 .00 .06 

 Error 3701     
Regression-Estimated GATB *  

23 Clusters 
176 .569 1.63 .00 .07 

 Error 3701     
35-54 Cluster Range 
Actual Test Score GATB *  

42 Clusters 
328 .433 1.27 .00 .10 

 Error 3706     
Analyst GATB *  

48 Clusters 
376 .392 1.23 .00 .11 

 Error 3674     
Regression-Estimated GATB *  

50 Clusters 
392 .336 1.38 .00 .13 

 Error 3662     
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analyst data, and then actual test score data, SOC-level analyses failed to reveal any consis-
tent pattern. Again, partial eta-squared values were fairly similar across data types, but in this 
case the rank order of data types in terms of these values was not consistent across cluster 
solution ranges. 

 
 

Pay Data Results 
 
DOT level analyses. Pay data were not available for DOT level jobs. 
SOC level analyses. Pay data were obtained from the U.S. Bureau of Labor Statistics and 

represent each SOC job’s median annual income for the year 2000. The Bureau of Labor 
Statistics collects these data through the Occupational Employment Statistics (OES) pro-
gram, which involves a yearly mail survey designed to estimate employment and wages for 
various jobs (Bureau of Labor Statistics, 2001b). The wage data used in this study are based 
on a survey of approximately 800,000 establishments. Table 17 presents descriptive statistics 
for the data available for 260 of the 264 SOC jobs included in this study. 

Intraclass correlation coefficients (ICCs) are one way to examine statistically the similar-
ity of pay within job clusters versus between clusters. There are numerous versions of the 
ICC, but essentially these coefficients give the ratio of the variance of interest (often between 
group variance) over the total variance, which is the sum of the variance of interest plus error 
variance (often within group variance; Shrout & Fleiss, 1979). Thus, these coefficients esti-
mate the proportion of total variance that is due to the effect of interest. In this case, ICCs 
can be used to examine the relative amounts of between-to-within-cluster variance in pay 
rates. Job clusters developed for use in job evaluation should include less within cluster 
variance in pay rates compared with the variance in pay between clusters. Therefore, rela-
tively larger ICC values could be taken as an indication that a given cluster solution is rela-
tively more useful for job evaluation. 

Table 18 presents ICC values and associated 95% confidence intervals (cf. Donner & 
Wells, 1986) for actual test score data, job analyst data, and regression-estimated data at all 
three cluster solution ranges. Results indicate the three data types perform fairly similarly 
with respect to the ICCs: actual test score and regression-estimated data tend to perform 
slightly better than analyst data, but the point estimates obtained are fairly similar, and the 
confidence intervals show substantial overlap across data types. Therefore, for the pay data, 
there are not significant differences in performance across types of ability data. 

However, some differences exist across cluster solution ranges. Although the confidence 
intervals across cluster ranges overlap, those at the 2-14 cluster range tend to be much larger 
and include zero (or approximately zero), whereas those at the 15-34 and 35-54 ranges are 
smaller and do not include ICC values below .25. These results suggest cluster solutions 
consisting of a larger number of clusters, where there is more opportunity for between-
cluster variability and less opportunity for within-cluster variability, may tend to be more 
useful for job evaluation purposes. Note that using a relatively large number of clusters does 
not defeat the purpose of clustering; even in these situations, the goal of grouping jobs into a 
smaller number of meaningful groups can be achieved. 
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Table 17: 
Pay Data: Descriptive Statistics 

 
N 260 
M $32,770.50 
Mdn $28,500.00 
SD $14,900.95 
Minimum $13,330.00 
Maximum $114,170.00 

 
 

Table 18: 
Pay Data: Intraclass Correlations  

 
Cluster Range Data Type ICC 95% Confidence Intervals 
2-14 Actual Test Score .36 -.10 - .83 
 Analyst .29 -.13 - .71 
 Regression-Estimated .49 .07 - .91 
15-34 Actual Test Score .57 .40 - .74 
 Analyst .45 .26 - .65 
 Regression-Estimated .52 .34 - .70 
35-54 Actual Test Score .56 .41 - .71 
 Analyst .49 .34 - .64 
 Regression-Estimated .57 .43 - .72 

 
 
Finally, cluster membership generally accounts for moderate amounts of variance in pay 

rates, with ICCs ranging from .29 to .57. This suggests that although cluster membership 
does account for a reasonable amount of variance, there remain nontrivial amounts of within 
cluster variability in pay rates, which provides opportunity for further investigation into the 
nature of the job clusters if clusters such as these are used in job evaluation situations. 

 
 

Discussion 
 
This study examined similarities and differences in job clusters that result from using dif-

ferent types of job data in the clustering procedure, even when the data claim to measure the 
same constructs. Previous research has indicated that different types of job characteristic data 
from different psychological domains can produce substantially different job clusters (e.g., 
Cornelius et al., 1979; Ghiselli, 1966; Pearlman, 1980). This study took a different approach 
by examining the effects on job clustering of different types of data that came from within 
the same psychological domain of aptitudes yet use different measurement methods: em-
ployee test scores, analyst ratings, and regression estimates. We then systematically exam-
ined the implications of these effects for a few major purposes to which clusters are put in 
organizational research and practice: test validation, job evaluation, and career exploration. 
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Findings 
 
Aptitude intercorrelations. Before going into the specifics of the clustering results and 

their implications, a general characteristic of the GATB data should be discussed, namely the 
level of aptitude intercorrelation. Aptitude measures are known to show positive manifold, or 
positive correlations (Carroll, 1993). The eight GATB dimensions used in this study are no 
exception, showing high levels of intercorrelation at both the DOT and SOC level, particu-
larly for regression-estimated and actual test score data (see Tables 4-9). For example, actual 
test score data demonstrated an average aptitude intercorrelation of .63 at the DOT level and 
.65 at the SOC level; regression-estimated data demonstrated an average of .85 at the DOT 
level and .80 at the SOC level. On the other hand, GATB scores obtained from analysts 
tended to be noticeably less correlated, demonstrating an average intercorrelation of .28 at 
the DOT level and .24 at the SOC level. The high level of correlation for actual test score and 
regression-estimated data likely reflects a general cognitive ability factor (g) measured by all 
tests requiring cognitive effort. It appears that the eight GATB dimensions, rather than meas-
uring distinct attributes, are to some extent measuring the same attribute (general cognitive 
ability), particularly when measured by test scores and regression-estimated scores. 

This high level of aptitude intercorrelation is important because it likely restricts the un-
derlying cluster structure in terms of both the number of distinct clusters that can exist and 
the manner in which jobs can be grouped. If the different GATB aptitudes all tap general 
cognitive ability, then to some extent jobs can be differentiated or grouped primarily accord-
ing to this single ability factor. At the same time, aggregating GATB aptitude scores within 
jobs may help make the unique aspects of each aptitude more reliable, which would make the 
profile shape information a useful supplement to the information provided by general cogni-
tive ability or by the general level of the aptitude profile. 

The positive intercorrelations between aptitudes appears to be less of an issue when ana-
lyst data are used to describe occupational ability requirements. It may be that although the 
GATB subtests actually measure g primarily, analysts may be making distinctions among 
aptitudes to a greater extent. In this case, it is possible to develop job clusters according to 
similarity in GATB profile patterns/shapes. Analyst data may in fact be more appropriate 
than mean test score data whenever the goal is to differentiate among or group jobs accord-
ing to aptitude profile patterns or shapes (e.g., when matching individuals to jobs according 
to their strengths and weaknesses). The following sections describe the main findings of this 
study regarding the clustering results along with their implications. 

Clustering results. The clustering results suggest two reasonable general conclusions. 
First, there is no clear number of job clusters underlying the actual test score, analyst, or 
regression-estimated data at the DOT or SOC level. The reason for this is unclear, but it may 
be that no “true” cluster structure exists. Aptitude requirements for the jobs included in this 
study may be distributed relatively evenly or continuously, rather than in a disjointed or 
grouped manner. Although clusters could be created in this situation, the number of clusters 
would obviously be hard to identify, and the groupings would be fairly artificial, rather than 
reflecting the true underlying structure of the data. Without knowing the underlying structure 
of the data, it is difficult to determine the likelihood of this possibility. However, we empha-
size that in practice, job clusters are formed and used in a variety of job classification sys-
tems – whether or not such systems “carve nature at its joints.” Thus, the analyses and results 
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of this study are relevant despite this potential limitation; they represent an attempt to do the 
best one can empirically. 

Alternatively, it may be that a reasonably clear cluster structure underlies the data, but the 
methods used in this study did not detect the number of clusters. For example, the indices 
used to detect the number of clusters may have been ineffective. Although previous research 
(Milligan & Cooper, 1985) has indicated the three indices used in this study are among the 
best available, it is difficult to determine how effective an index will be in a given situation. 
However, other analyses of the data (which are not presented here) using different clustering 
methods and different indices for determining the appropriate number of job clusters also 
failed to converge on a clear cluster structure. Although this certainly does not rule out the 
possibility that a clear structure is present or that a particular method might have uncovered 
such a structure, it does suggest similar results might have been obtained had we focused on 
using other methods. 

The second general conclusion that can be drawn from the clustering results is that the 
three types of ability data produce substantially different cluster solutions. Across cluster 
ranges and at both the DOT and SOC level, there appeared to be relatively little cluster solu-
tion agreement across the data types above chance levels, with actual test score data tending 
to produce the most dissimilar solutions. This finding extends previous research indicating 
that different types of job data often result in substantially different job clusters. Previous 
findings suggested that choosing the psychological domain according to the purpose of clus-
tering is essential when developing data for clustering. The current findings suggest that, 
even within a given psychological domain, the type of data (which result from different 
measurement processes) is also an important influence on job clusters. Because both the 
choice of psychological domain and type of data within a given domain can substantially 
influence job clustering results, it is prudent to consider both when developing data to be 
used in job clustering. The following sections discuss this further. 

Implications for career exploration and O*NET’s Ability Profiler. As noted previously, 
O*NET (the U.S. Department of Labor’s computerized occupational information tool devel-
oped to replace the DOT) includes a career exploration tool called the Ability Profiler.  For 
each DOT job, developers of this tool generated regression-estimated ability scores, repre-
senting predicted mean employee GATB test scores. Clustering results from this study sug-
gested that profiles of mean employee GATB test scores are substantially different from 
regression-estimated ability profiles. As discussed above, many of the jobs considered simi-
lar (i.e., belonging to the same cluster) when described by actual test score data were consid-
ered dissimilar (i.e., belong to different clusters) when described by regression-estimated 
data. This suggests that the Ability Profiler might function differently if it included actual 
test score data (those data the regression-estimated scores are supposed to predict) rather than 
regression-estimated data. This does not necessarily mean that the Profiler is producing inap-
propriate occupational suggestions, but it does indicate that the recommendations currently 
produced by this tool may be data-dependent to some extent. In other words, the same jobs 
might not be suggested to a given individual if another type of occupational ability data were 
used. 

Implications for test validation. Several general patterns emerged from the criterion-
related validity results in terms of the level, flatness, and shape of these profiles. First, the 
level analyses seemed to indicate that actual test score data tend to perform better than ana-
lyst or regression-estimated data in terms of producing clusters that differ in overall validity 



P. D. CONVERSE, F. L. OSWALD 124 

profile level. However, the differences were relatively small and should not be overempha-
sized. In addition, the effect sizes obtained for this effect (ranging from approximately .00 to 
.20) were relatively small, indicating the presence of nontrivial amounts of within-cluster 
variance. Second, the flatness analyses clearly demonstrated statistically significant differ-
ences in mean criterion-related validities across GATB scales, indicating that one or more of 
the GATB scales tend to be more or less predictive of criteria than the other scales. 

Parallelism tests, which qualify the previous results, indicated that at both the DOT and 
SOC level and for all three cluster ranges, each type of data produced clusters that differ 
significantly in terms of the shape of their criterion-related validity profiles. In addition, 
partial eta-squared values indicated that at the DOT level, shape differences in regression-
estimated clusters accounted for more variance than did shape differences in job-analyst 
clusters; shape differences in job-analyst clusters, in turn, accounted for more variance than 
did shape differences in actual test score clusters. However, these differences were small, and 
a consistent pattern did not hold at the SOC level. Therefore, it is difficult to draw conclu-
sions regarding the relative merits of each type of data in terms of between-to-within cluster 
variability in validity profiles. This lack of a clear conclusion may reflect the fact that, gener-
ally speaking, each type of data has its own strengths and weaknesses, but overall there is no 
strong reason to believe that one data type has superior qualities, particularly with respect to 
test validation purposes. 

In addition, although significant results were obtained for all parallelism analyses, shape 
differences accounted for relatively small amounts of variance. For example, partial eta-
squared values varied from .05 to .13 for these effects. Although in some contexts these 
values may be acceptable, they could be viewed as relatively small for the present purposes, 
indicating the presence of substantial amounts of within-cluster variability in validity profile 
shapes. If these job clusters were used for test validation purposes, these considerable differ-
ences in predictor-criterion relationships would be masked. This type of situation might then 
lead to incorrect conclusions in the validation process, such as concluding that a predictor is 
not valid for all the jobs in a cluster, when in fact it is valid for some jobs in that cluster, or 
conversely that a predictor is valid for all the jobs in a cluster, when in fact it is not valid for 
some jobs in that cluster. Therefore, not only is it difficult to draw firm conclusions regard-
ing the relative merits of the three types of data for test validation purposes, it appears that 
using clusters resulting from any of the data types could lead to some inappropriate conclu-
sions in test validation situations. Note that this outcome may at least partly reflect the diffi-
culty encountered in finding clear cluster solutions; any cluster solutions obtained from the 
datasets used in this study may have been relatively “artificial.” Again, however, situations 
where a cluster structure is imposed is not that uncommon in practice. 

Implications for job evaluation. Overall, the pay rate results failed to demonstrate any 
meaningful differences across data types in terms of their usefulness in job evaluation. Con-
fidence intervals for the three data types overlapped substantially in all three cluster ranges. 
These findings suggest that the three data types are equally effective for use in job evaluation 
situations. Not unexpectedly, cluster solutions consisting of a larger number of clusters (e.g., 
those in the 35-54 cluster range) tended to produce higher ICCs than solutions consisting of 
fewer clusters (e.g., those in the 2-14 cluster range). Also, cluster membership generally 
accounted for moderate amounts of pay rate variability. ICCs ranged from .29 to .57, indicat-
ing the presence of nontrivial amounts of within-cluster variance. Failure to find meaningful 
differences across data types in terms of performance for job evaluation purposes further 
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emphasizes the notion that none of the three data types inherently has superior qualities or is 
more useful overall. More importantly, the relative strengths and weaknesses of each type of 
data do not appear to impact job evaluation differentially, as all three data types performed 
similarly with respect to pay rates. 

Overall, cluster membership accounted for a reasonable amount of variance in pay rates 
for all three data types. However, a substantial amount of within cluster variability remained 
in all cluster solutions, suggesting that ability-based job clusters are useful in job evaluation 
situations, but should be used as just one part of the larger evaluation process. For example, 
ability clusters could be used to categorize and evaluate jobs initially. Then, other data and 
considerations could be used to further categorize and evaluate jobs to establish appropriate 
pay rates (e.g., specific tasks performed, labor market supply and demand).  

 
 

Conclusions 
 
The purpose of this study was to examine similarities and differences in job clusters pro-

duced by actual ability test scores, job analyst ratings, and regression-estimated ability re-
quirements. Results indicated that these three types of data, though they measure the same 
aptitude constructs, produced substantially different job clusters. Although these differences 
did not appear to have clear implications for the practical purposes examined, results in the 
present study suggest that the type of ability data describing jobs influences resulting job 
clusters and, potentially, the organizational decisions based on them. Combined with past 
research findings, we can conclude that both the method used to measure job characteristics 
as well as the psychological domain to which the job characteristics belong have an impor-
tant influence on job clustering. 
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Endnote 
 
1 Two of the standard nine GATB aptitudes, General Intelligence and Numerical Ability, 

are excluded from Ability Profiler analyses because General Intelligence is redundant with 
Vocabulary, Numerical Ability, and Spatial Ability, and Numerical Ability is split into its 
two component tests, Arithmetic Reasoning and Computation (McCloy, Campbell, & 
Oswald, 1999). 

 


