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Abstract 

If the mean of a criterion variable differs across groups, measurement error in the group-
ing variable leads to bias in the estimated size of the effect. Similar to the classical errors-in-
variables model for continuous predictors, measurement error in a dichotomous predictor 
leads to underestimation of the ‘true’ effect size. It is shown how to correct the effect size 
given certain characteristics of the measurement error are known.  
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Introduction 
 
When individuals are assigned to mutually exclusive categories, a certain proportion of 

them may be misclassified. Equivalently, one also speaks of measurement error in the classi-
fication. For instance, it is well known that classification of psychiatric patients into diagnos-
tic categories is not perfectly reliable and therefore, the diagnoses of some patients can be 
expected to be incorrect. Participants in the treatment group of a clinical trial may not follow 
a prescribed medication plan and therefore, may be misclassified as being ‘treated’ when, in fact, 
they were not. Or, when occupational attainment of individuals is assessed by asking them to 
indicate the job category into which they belong, misclassification may arise because job 
categories sometimes do not have clear-cut boundaries. 

If misclassification in a categorical variable is present, statistical analysis should account 
for the misclassification, otherwise the results may be biased. Of course, the amount of bias 
can be expected to be directly related to the extent of the misclassification. In the common 
situation where the dependence of a criterion variable on a predictor variable is analyzed, one 
has to distinguish carefully whether it is the criterion variable, the predictor variable, or both 
that are subject to error. 

In this article, only the case of measurement error in the predictor variable will be con-
sidered; see Schuster and von Eye (2003) for a discussion of the case in which a dichotomous 
criterion variable contains misclassification. In particular, the focus will be on the important 
case of a continuous criterion variable and a dichotomous predictor, which for instance oc-
curs when a researcher plans to compare two groups on a continuous variable, but for which 
individuals can not be assigned to a group with perfect reliability. In this case, the difference 
between the group means will be a biased estimate of the effect size and therefore, the out-
comes of familiar tests on location differences, such as the two-sample t-test or the Wilcoxon 
Rank Sum test, may be questionable. 

I will begin by reviewing the classical measurement error model that considers a linear model 
between continuous variables, both of which contain measurement error. This model is also 
commonly referred to as the “errors-in-variables” model. I then present a measurement error 
model for a continuous criterion and a dichotomous predictor. Although it is possible to 
maintain standard assumptions, such as uncorrelatedness of error terms, normality of error 
terms, and so forth, it will be seen that a dichotomous predictor variable introduces addi-
tional complexity not present in the classical measurement error model. Although this model 
has found some attention in the econometric and biostatistical literature (see, for example, 
Aigner, 1973; Christopher & Kupper, 1995; Hausman, 2001), it seems that it has been largely 
ignored in psychology. This is unfortunate because many psychological classifications can be 
expected to have less than perfect reliability. Finally, it is examined how the effect size can 
be corrected if the general characteristics of the measurement error are available. 
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The Errors-in-Variables Model for Continuous Variables 
 
The usual linear regression model expresses the relationship between the criterion Y  and 

the predictor X  as 
 
  0 1 ,Y X uβ β= + +  (1) 

 
where 0β  and 1β  are the intercept and slope parameters and u represents the residual. The 
residual may contain multiple sources of error, such as equation error and measurement error in 
the criterion. Among the standard assumptions of the linear regression model are that u has a 
mean of zero and that u  and X  are uncorrelated. Under these conditions, it is well known 
that the OLS estimators of the regression coefficients are unbiased. Although the linear re-
gression model accounts for unsystematic measurement error in the criterion, the predictor is 
assumed to be measured without error. For social science data, the assumption of perfectly 
reliable predictors is often difficult to justify. 

If the predictor can only be observed with measurement error, then the simple linear re-
gression model, Equation (1), can be modified by replacing the predictor X  with the meas-
urement error-free predictor, ξ . In other words, if the predictor X  can be observed with 
measurement error only, then one replaces the usual model for the regression of Y  on X  
with the regression model of Y  on ξ . The model then becomes 
 
 0 1 .Y γ γ ξ ε= + +  (2) 

 
The assumptions about the residual ε  are similar to the corresponding assumptions 

about u , the residual of the regression of Y  on X . Specifically, it is assumed that ε  has a 
mean of zero and that ε  and the ξ  are uncorrelated. However, because ξ  can not be ob-
served, the question arises how the γ -coefficients can be estimated. Before this issue can be 
addressed, additional assumptions about the measurement error in the predictor must be 
introduced. 

It is common to assume an additive measurement error δ , that is, X ξ δ= + . In addi-
tion, δ  is assumed to have a mean of zero and is uncorrelated with both ξ  and ε . The 
model of the regression of Y  on ξ , Equation (2), can be expressed as 

 
 0 1( )= + − +Y Xγ γ δ ε  

 0 1 *,X uγ γ= + +      (3) 

 
where 1*u ε γ δ= − . Because Equations (3) and (1) both express a linear model in the ob-
servable variables Y  and X , these models appear to be identical. However, Equation (3) 
differs from the usual linear regression model because an assumption about the residual 
terms u  of Equation (1) is not satisfied for the residual term *u  of Equation (3). Specifi-
cally, the covariance between X  and *u  is equal to 2

1 δγ σ− , and therefore, X  and *u  will 
be correlated whenever X  contains measurement error, that is, 2 0δσ > , and the mean of the 
criterion depends on ξ , that is, 1 0≠γ . 

A consequence of this difference between the two models is that the γ -parameters of 
Equation (3) and the β -parameters of Equation (1), although conceptually closely related, 
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are estimated by different sets of estimators. The β -parameters can be estimated easily by 
the usual OLS estimators (see, for instance, von Eye & Schuster, 1998). Therefore, if the 
relation between the β - and γ -parameters is simple, then one should be able to obtain 
estimators of the γ -parameters by exploiting this relationship. For the slope coefficient, 1γ , 
which usually is of primary interest, one can show that 
 

 1
1 ˆˆ ,=
xx

y
P

β  (4) 

 
where the ratio xxP  is commonly referred to as the predictor reliability (Cheng & Van Ness, 
1999; Fuller, 1987). In this article, the predictor reliability is defined as the correlation be-
tween parallel variables, where two variables, 1 1X ξ δ= +  and 2 2X ξ δ= +  are said to be 
parallel, if 1 2E( ) E( ) 0δ δ= =  and 1 2Var( ) Var( )δ δ= . Because this correlation can not 
exceed a value of 1.0, it follows that 1̂β  can only be considered a biased and inconsistent 
estimator of 1γ . More specifically, 1̂β  will systematically underestimate 1γ  and this bias can 
not be expected to decrease with increasing sample size. However, correcting the bias is in 
principle staightforward. If the reliability is known or if an independent and sufficiently 
accurate reliability estimate is available one can correct the OLS slope with the help of Equa-
tion (4). 

 
 

The Errors-in-Variables Model with a Continuous Criterion and a Dichotomous 
Predictor 

 
In this section, we investigate the errors-in-variables model for the situation of a con-

tinuous criterion and a dichotomous predictor containing measurement error. Therefore, in 
the remainder of this article X  and ξ  denote dichotomous variables. Although it would be 
desirable if one could maintain the assumptions of the errors-in-variables model for contin-
uous predictors, this is not possible because the measurment error of the predictor neither has 
necessarily an expected value of zero nor is it independent of the predictor (Aigner, 1973). 
This is best understood by considering the joint distribution of the measurement error δ  and 
the predictor ξ . 

 
 

Table 1: 
Joint distribution of ‘true’ predictor values and measurement error of the predictor 
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Let the probability of an individual belonging to the first subpopulation be denoted as 
Pξ , that is, ( 1)P Pξ ξ= = , and let the misclassification probabilities be denoted as 1π  and 

0π . Specifically, 1π  denotes the probability with which an individual belonging to the first 
category will be misclassified, that is, 1 ( 0 | 1)P Xπ ξ= = = , and 0π  denotes the probability 
that an individual belonging to the other group will be misclassified, that is, 

0 ( 1| 0)P Xπ ξ= = = . Using this notation, Table 1 gives the joint distribution of ξ  and δ . 
From this joint distribution it follows that 

 
 0 1( ) (1 )E P Pξ ξδ π π= − −  

 2
1 0( , ) ( ),Cov ξξ δ σ π π= − +  

 
where 2 (1 )P Pξ ξ ξσ = − . The second formula shows that if the true state of the individuals 
differs in the population and therefore, 2 0ξσ > , the true predictor value and the measurement 
error δ  will be negatively correlated. 

Because the assumptions of the errors-in-variables models for continuous and dichotomous 
predictors differ, it is not surprising that the approaches to correcting the regression slope in 
the classical case do not carry over to the dichotomous predictor case. In the next section we 
investigate these differences. 

 
 

Correcting the Regression Slope for Measurement Error when the Predictor is 
Subject to Misclassification 

 
Denote the true population means of the groups studied as 1µ  and 0µ . Specifically, 

1E( | 1)Y ξ µ= = and 0E( | 0)Y ξ µ= = . If the classification is not perfectly reliable, then it 
is of interest to express the expectation of Y  given the actual assignment group, denoted 
below as 1( | 1)E Y X ν= =  and 0( | 0)E Y X ν= = , in terms of the µ -parameters. In other 
words, it is of interest to determine how the µ - and ν -parameters are related. 

To achieve this, one typically assumes X  to not carry any additional information over 
and above the information that is contained in ξ . In other words, one assumes that Y  and 
X  are conditionally independent given ξ .2 Assuming conditional independence, it is shown 

in the Appendix that the relationship between the µ - and ν -parameters is 
 

 1 0 1 0
1 ( )µ µ ν ν
τ

− = − , (5) 

 
where 
 

 
2

2 ,
x

ξστ θ
σ

=  (6) 

                                                                                                                             
2 This assumption could be violated by a placebo effect. If 0=ξ  denotes the control group (absence of 

treatment), then the administration of an inert pill, 0=X , could have a positive effect that is not ac-
counted for by the value of ξ . 
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22 (1 ), (1 ),X X XP P P Pξ ξ ξ σσ = − = −  and 1 01θ π π= − − . Note that Equation (5) is similar to 
Equation (4) because for dichotomous predictors, 1 0( )µ µ−  is the slope of the regression of 
Y  on ξ  and 1 0( )ν ν−  is the slope of the regression of Y  on X . It can be shown that the 
correction factor τ  can not exceed 1.0 (Aigner, 1973). This result is similar to the classical 
errors-in-variables model for which the correction factor, the reliability of the predictor vari-
able, also can not exceed 1.0. In other words, 1 0v v−  will necessarily be smaller than 

1 0µ µ−  unless there is no misclassification. 
We next determine the reliability of the dichotomous predictor as the correlation between 

statistically equivalent (parallel) variables. The correlation between two dichotomous vari-
ables is commonly referred to as the φ -coefficient. If X  and 'X   denote two parallel vari-
ables, the correlation is given by 
 

 
( 1, ' 1) ( 0, ' 0) ( 1, ' 0) ( 0, ' 1)

( 1) ( 0) ( ' 1) ( ' 0)
P X X P X X P X X P X X

P X P X P X P X
φ = = = = − = = = =
=

= = = =
 (7) 

 
Assuming local stochastic independence between the variables, one obtains the joint clas-

sification probabilities that are given in Table 2. With the help of this table the φ -coefficient 
can be expressed as 

 
  

 
2

2
2
X

ξσφ θ
σ

=  (8) 

 
 
This equation has been given previously by Kraemer (1979, p. 464) as an expression for 

Cohen’s kappa (1960).3 Two points that are worth emphasizing follow from Equation (8).  
First, the correction factor τ  in Equation (6) differs from the correlation in Equation (8). 

More specifically, it follows from Equation (8) that φ θτ= . Thus, the reliability of the di-
chotomous predictor should not be used to correct the mean differences between groups for 
the misclassification because if misclassification is present, then φ τ< . As a result, using φ  
instead of τ  in Equation (5) will exaggerate the true effect size 1 0µ µ− . Second, the reli-
ability, Equation (8), is different from the variance ratio 2 2/ Xξσ σ , which for continuous 
variables is an equivalent expression for the predictor reliability. In fact, it is not difficult to 
verify that unlike the situation for continuous variables, this variance ratio can exceed 1.0 
and therefore, is not suitable as a definition of reliability. For this reason, the reliability of the 
dichotomous classification has been defined as the φ -coefficient of parallel variables. 

It follows from Equation (5) that the bias contained in 1 0ν ν−  can be corrected as soon 
as an estimate of τ  is available. If one knew the reliability of the classification φ  as well as 
the two misclassification probabilities 1π  and 0π , one could calculate the correction factor 
as /τ φ θ= . Alternatively, one could determine estimates of the parameters 1π , 0π , and   
 

                                                                                                                             
3 Note that if the variables are parallel, then the marginal distributions of X and X’ are identical and as a  
 result, φ  is equivalent to Cohen’s kappa (Cohen, 1960, p. 43). 
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Table 2:  
Joint distribution of two locally independent replications X  and 'X  

 

 
 
 

Table 3:  
Joint distribution of locally independent replications X and X0 

 

 
 
 

Pξ  from a latent class analysis (Clogg, 1995; Goodman, 1974; Lazarsfeld & Henry, 1968; 
McCutcheon, 1987), based on an independently conducted study that involves several repli-
cations of the dichotomous classification variable. These estimates could then be used to-
gether with Equation (5) to obtain an independent estimate of the correction factor τ . Such a 
procedure would have to ensure that τ  is estimated with sufficient precision. Otherwise, the 
corrected mean difference could deviate considerably from the true mean difference 1 0µ µ− . 
In such a setting, researchers sometimes prefer to obtain a 95% confidence interval for τ  and 
then use its upper bound as a correction factor of the mean difference. In this way, one can be 
reasonably confident that one is not over-correcting the mean difference. 

 
 

Example 
 
To illustrate the effect of measurement error in a dichotomous classification variable, we 

assume the size of the first subpopulation as well as the two misclassification probabilities 
have values .6Pξ = , 1 .1π = , and 0 .1π = . It then follows that 2 .6(.4) .24ξσ = =  and 

.8θ = . In addition, the numerical values of the joint probabilities ( , ' )P X i X j= =  can be 
obtained with the help of Table 2 and are given in Table 3. Using the entries in this table together 
with Equation (7), one finds .6305φ = . As a result, the numerical value of the correction 
factor is / .6305/ .8 .79τ φ θ= = = . Alternatively, the correction factor can be calculated 
using Equation (6). Because 2 .58(.42) .2436Xσ = = , one can verify that 

.8(.24 / .2436) .79τ = = . 
Given the parameter values, it follows that the uncorrected mean difference, 1 0ν ν− , 

equals only 79% of the true mean difference 1 0µ µ− . In other words, the uncorrected mean 
difference needs to be increased by a factor of 1/.788 = 1.269. Finally note that the correction 
factor is very different from the φ -coefficient. Therefore, using the φ -coefficient as the 
correction factor would give misleading results in the sense that the true mean difference would 
be exaggerated. 
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Appendix 
 
Using the conditional independence of Y  and X , one can express the relation between 

1ν  and the µ-parameters as 1 1 0( 1| 1) ( 0 | 1)P X P Xν µ ξ µ ξ= = = + = = . Similarly, one 
finds 0 1 0( 1| 0) ( 0 | 0)P X P Xν µ ξ µ ξ= = = + = = . Therefore, the observed effect is 

 

1 0 1 0( ( 1| 1) ( 1| 0)) ( ( 0 | 0) ( 0 | 1))P X P X P X P Xν ν µ ξ ξ µ ξ ξ− = = = − = = − = = − = = . 

Because 
 

( 1| 1) ( 1| 0) (1 ( 0 | 1))P X P X P Xξ ξ ξ= = − = = = − = = − 

(1 ( 0 | 0)) ( 0 | 0) ( 0 | 1)P X P X P Xξ ξ ξ− − = = = = = − = = , 

 
one finds that 1 0 1 0( )ν ν τ µ µ− = − , where ( 1| 1) ( 1| 0)P X P Xτ ξ ξ= = = − = =  is the 
correction factor that relates the true effect to the true observed effect. With the help of the 
expression 1 0(1 ) (1 )XP P Pξ ξπ π= − + − , the correction factor τ  can be re-written as 

 
τ

1 1

2
1

2
1 1 0

2
1 2

2 2

( 1| 1) ( 1| 0)
( 1, 1) / ( 1, 0) /(1 )
[(1 ) (1 ) ]/( (1 ))

(1 ) /

(1 (1 ) (1 )) /

(1 ) (1 ) /

/ ,

X X

X X X X

X

X

P X P X
P X P P X P

P P P P P P

P P

P P P

P P

ξ ξ

ξ ξ

ξ ξ ξ ξ

ξ ξ ξ

ξ

ξ ξ
ξ ξ
π π

π σ

π π π σ

π π σ

θσ σ

= = = − = =
= = = − = = −
= − − − −

= − −

= − − − − −

= − − −

=

 

 
where 1 01θ π π= − −  denotes the proportion of targets that are correctly classified, 
2 (1 )P Pξ ξ ξσ = −  and 2 (1 )X X XP Pσ = − . It is useful to make the mild regularity assumption: 

1 0 1π π= <  to ensure that 1 0(1 )π π− −  stays positive. 
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