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Abstract. Ultra low frequency, kHz and MHz electromag-
netic (EM) anomalies were recorded prior to the L’Aquila
catastrophic earthquake that occurred on 6 April 2009. The
main aims of this paper are threefold: (i) suggest a procedure
for the designation of detected EM anomalies as seismogenic
ones. We do not expect to be able to provide a succinct and
solid definition of a pre-seismic EM emission. Instead, we
aim, through a multidisciplinary analysis, to provide the el-
ements of a definition. (ii) Link the detected MHz and kHz
EM anomalies with equivalent last stages of the earthquake
preparation process. (iii) Put forward physically meaning-
ful arguments for quantifying the time to global failure and
the identification of distinguishing features beyond which the
evolution towards global failure becomes irreversible. We
emphasize that we try to specify not only whether a sin-
gle EM anomaly is pre-seismic in itself, but also whether
a combination of kHz, MHz, and ULF EM anomalies can
be characterized as pre-seismic. The entire procedure un-
folds in two consecutive parts. Here in Part 1 we focus on
the detected kHz EM anomaly, which play a crucial role
in our approach to these challenges. We try to discrimi-
nate clearly this anomaly from background noise. For this
purpose, we analyze the data successively in terms of var-
ious concepts of entropy and information theory including,
Shannonn-block entropy, conditional entropy, entropy of the
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source, Kolmogorov-Sinai entropy,T -entropy, approximate
entropy, fractal spectral analysis, R/S analysis and detrended
fluctuation analysis. We argue that this analysis reliably dis-
tinguishes the candidate kHz EM precursor from the noise:
the launch of anomalies from the normal state is combined
by a simultaneous appearance of a significantly higher level
of organization, and persistency. This finding indicates that
the process in which the anomalies are rooted is governed
by a positive feedback mechanism. This mechanism induces
a non-equilibrium process, i.e., a catastrophic event. This
conclusion is supported by the fact that the two crucial sig-
natures included in the kHz EM precursor are also hidden
in other quite different, complex catastrophic events as pre-
dicted by the theory of complex systems. However, our view
is that such an analysis by itself cannot establish a kHz EM
anomaly as a precursor. It likely offers necessary but not
sufficient criteria in order to recognize an anomaly as pre-
seismic. In Part 2 we aim to provide sufficient criteria: the
fracture process is characterized by fundamental universally
valid scaling relationships which should be reflected in a real
fracto-electromagnetic activity. Moreover, we aim to answer
the following two key questions: (i) How can we link an
individual EM precursor with a distinctive stage of the EQ
preparation process; and (ii) How can we identify precursory
symptoms in EM observations that indicate that the occur-
rence of the EQ is unavoidable.
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1 Introduction

A catastrophic earthquake (EQ) occurred on 6 April 2009
(01 h 32 m 41 s UTC) in central Italy (42.33◦ N–13.33◦ E).
The majority of the damage occurred in the city of L’Aquila.

A vital problem in material science and in geophysics is
the identification of precursors of macroscopic defects or
shocks. An EQ is essentially a large scale fracture so, as
with any physical phenomenon, science should have some
predictive power regarding its future behaviour.

Earthquake physicists attempt to link the available obser-
vations to the processes occurring in the Earth’s crust.
Fracture-induced physical fields allow a real-time monitoring
of damage evolution in materials during mechanical loading.
When a material is strained, electromagnetic (EM) emissions
in a wide frequency spectrum ranging from kHz to MHz are
produced by opening cracks, which can be considered as so-
called precursors of general fracture. These precursors are
detectable both on a laboratory and a geological scale (Ba-
hat et al., 2005; Eftaxias et al., 2007a; Hayakawa and Fu-
jinawa,1994; Hayakawa, 1999; Hayakawa and Molchanov,
2002).

Since 1994, a station has been installed and operating at a
mountainous site of Zante Island in the Ionian Sea (Western
Greece). Its purpose is the detection of EM precursors. Clear
ultra-low-frequency (ULF), kHz and MHz precursors have
been detected over periods ranging from a few days to a few
hours prior to catastrophic EQs that have occurred in Greece
since its installation.

We emphasize that the detected precursors were associ-
ated with EQs that occurred in land (or near the coast-line),
and were strong (magnitude 6 or larger) and shallow(Con-
toyiannis et al., 2005; Karamanos et al., 2006). Recent re-
sults indicate that the recorded EM precursors contain infor-
mation characteristic of an ensuing seismic event (e.g., Ef-
taxias et al., 2002, 2004, 2006, 2007; Kapiris et al., 2004,
2005; Contoyiannis et al., 2005; Contoyiannis and Eftaxias,
2008; Kalimeri et al., 2008; Papadimitriou et al., 2008).

The L’Aquila EQ occurred in land, was very shallow and
its magnitude was 6.3. MHz, kHz and ULF EM anoma-
lies were observed before this EQ. An important feature, ob-
served both on a laboratory and a geological scale, is that the
MHz radiation precedes the kHz one (Eftaxias et al., 2002
and references therein). The detected anomalies followed the
temporal scheme listed below.

(i) The MHz EM anomalies were detected on 26 March
2009 and 2 April 2009.

(ii) The kHz EM anomalies emerged on 4 April 2009.

(iii) The ULF EM anomaly was continuously recorded from
29 March 2009 up to 2 April 2009.

We point out that despite fairly abundant circumstantial
evidence, pre-seismic EM signals have not been adequately
accepted as real physical quantities. Many of the problems of

fundamental importance in seismo-EM signals are unsolved.
Thus, the question naturally arises as to whether the recorded
anomalies were seismogenic or not.

We stress that the experimental arrangement affords us the
possibility of determining not only whether or not a single
kHz, MHz, or ULF EM anomaly is pre-seismic in itself, but
also whether a combination of such kHz, MHz, and ULF
anomalies can be characterized as pre-seismic. Some key
open questions are the following.

(i) How can we recognize an EM observation as a pre-
seismic one? We wonder whether necessary and suffi-
cient criteria have been established that permit the char-
acterization of an EM observation as a precursor.

(ii) How can we link an individual EM precursor with a dis-
tinctive stage of the EQ preparation process?

(iii) How can we identify precursory symptoms in EM ob-
servations that indicate that the occurrence of the EQ is
unavoidable?

Here we shall study the possible seismogenic origin of
the anomalies recorded prior to the L’Aquila EQ within the
frame work of thesekey questions.

Recent studies have provided us with relevant experi-
ence (e.g., Kapiris et al., 2004; Contoyiannis et al., 2005,
2008; Papadimitriou et al., 2008; Eftaxias et al., 2006, 2007,
2009a). This experience affords us the possibility of verify-
ing the results of the present study by comparing it with the
results of previous ones.

Here, in Part 1, we present our procedure for answering
key question (i) above. This procedure applies to both the
kHz and MHz anomalies, but for now we restrict our study
to the kHz anomaly. In Part II we focus on the MHz and ULF
EM anomalies and key questions (ii) and (iii).

Our approach. An anomaly in a recorded time series is
defined as a deviation from normal (background) behaviour.
In order to develop a quantitative identification of EM pre-
cursors, concepts of entropy and tools of information theory
are used in order to identify statistical patterns. It is expected
that a significant change in the statistical pattern represents
a deviation from normal behaviour, revealing the presence
of an anomaly. Symbolic dynamics provides a rigorous way
of looking at “real” dynamics. First, we attempt a symbolic
analysis of experimental data in terms of Shannonn-block
entropy, Shannonn-block entropy per letter, conditional en-
tropy, entropy of the source, andT -entropy. It is well-known
that Shannon entropy works best in dealing with systems
composed of subsystems which can access all the available
phase space and which are either independent or interact via
short-range forces. For systems exhibiting long-range cor-
relations, memory, or fractal properties, Tsallis’ entropy be-
comes the most appropriate mathematical tool (Tsallis, 1988,
2009). A central property of the EQ preparation process is
the possible occurrence of coherent large-scale collective be-
haviour with a very rich structure, resulting from repeated
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nonlinear interactions among the constituents of the system
(Sornette, 1999). Consequently, Tsallis entropy is an appro-
priate tool for investigating the launch of an EM precursor.

The results show that all the techniques based on symbolic
dynamics clearly discriminate the recorded kHz anomalies
from the background: they are characterized by a signifi-
cantly lower complexity (or higher organization).

For purpose of comparison we also analyze the data by
means of Approximate Entropy (ApEn), which refers just to
the raw data. This analysis verifies the results of symbolic
dynamics.

Fractal spectral analysis offers additional information con-
cerning signal/noise discrimination by doing two things. (i)
It shows that the candidate kHz precursor follows the frac-
tional Brownian motion (fBm)-model while, on the contrary,
the background follows the 1/f-noise model. (ii) It implies
that the candidate kHz precursor haspersistentbehaviour.
The existence of persistency in the candidate precursor is
confirmed by R/S analysis, while the conclusion that the
anomaly follows the persistent fBm-model is verified by De-
trended Fluctuation Analysis.

The abrupt simultaneous appearance of both high orga-
nization and persistency in a launched kHz anomaly im-
plies that the underlying fracto-electromagnetic process is
governed by a positive feedback mechanism (Sammis and
Sornette, 2002). Such a mechanism is consistent with the
anomaly’s being a candidate precursor.

The paper is organized as follows. Section 2 briefly de-
scribes the configuration of the Zante station. It also presents
the candidate ULF, kHz and MHz EM precursors. Section 3
refers to theoretical background of the present study. More
precisely, it introduces the idea of symbolic dynamics and
provides a brief overview of (Shannon-like)n-block entropy,
differential or conditional entropy, entropy of the source
or limit entropy, and Kolmogorov-Sinai entropy, nonexten-
sive Tsallis entropy,T -entropy, approximate entropy, fractal
spectral analysis, R/S analysis, and fractal detrended analy-
sis. In Sect. 4 all the aforementioned methods of analysis are
applied to the data. Section 5 discusses the results in terms of
the theory of complex systems. Finally, Sect. 6 summarizes
and concludes the paper.

2 Data presentation

Since 1994, a station has been functioning at a mountainous
site of Zante island (37.76◦ N–20.76◦ E) in the Ionian Sea
(western Greece) with the following configuration: (i) six
loop antennas detecting the three components (EW, NS, and
vertical) of the variations of the magnetic field at 3 kHz and
10 kHz respectively; (ii) two verticalλ/2 electric dipole an-
tennas detecting the electric field variations at 41 and 54 MHz
respectively, and (iii) two Short Thin Wire Antennas (STWA)
of 100 m length each, lying on the Earth’s surface, detecting
ultra low frequency (ULF) (<1 Hz) anomalies in the EW and

Fig. 1. Critical excerpts of the 41 MHz electric field strength time
series on 26 March 2009 (upper panel) and 2 April 2009 (lower
panel), respectively. The behaviour of the EM fluctuations included
in each time interval is analogous to a continuous (second order)
phase transition. The vertical axis shows the output of sensor (in
mV) that measures the electric field.

NS directions respectively. The 3 kHz, 10 kHz, 41 MHz, and
54 MHz were selected in order to minimize the effects of the
man-made noise in the mountainous area of Zante. All the
EM time-series were sampled once per second, i.e sampling
frequency 1 Hz. The distance between the Zante station and
the epicentre of the L’Aquila EQ is approximately 800 km.

A sequence of MHz, kHz and ULF EM anomalies were
observed one after the other before the L’Aquila EQ, as fol-
lows.

2.1 MHz EM anomalies

EM anomalies were simultaneously recorded at 41 MHz and
54 MHz on 26 March 2009 and 2 April 2009. Figure 1
shows excerpts of the recorded anomalies by the 41 MHz
electric dipole. In Part 2 we will show that the excerpts of
the recorded MHz EM emission presented in Fig. 1 may be
described in analogy with a thermal continuous (second or-
der) phase transition (Eftaxias et al., 2009b).

www.nat-hazards-earth-syst-sci.net/9/1953/2009/ Nat. Hazards Earth Syst. Sci., 9, 1953–1971, 2009



1956 K. Eftaxias et al.: Characterizing ULF, kHZ and MHz EM anomalies

Eftaxias et al.: Characterizing ULF, kHZ and MHz EM anomalies 17

40000 42000 44000 46000 48000 50000 52000
800

850

900

950

1000

1050

(a
rb

itr
ar

y 
un

its
)

(sec)

(mV)

El
ec

tr
ic

 fi
el

d

t

60000 62000 64000 66000 68000 70000 72000 74000 76000 78000
600

650

700

750

800

850

900

950

(a
rb

itr
ar

y 
un

its
)

(sec)

(mV)

El
ec

tr
ic

 fi
el

d 

t

Fig. 1. Critical excerpts of the 41 MHz magnetic field strength time
series on March 26, 2009 (upper panel) and April 2, 2009 (lower
panel), respectively. The behaviour of the EM fluctuations included
in each time interval is analogous to a continuous (second order)
phase transition. The vertical axis shows the output of sensor (in
mV) that measures the electric field.

Fig. 2. (a) We observed the presence of a sequence of strong EM
impulsive bursts at 10 kHz on April 4, 2009. (b) These anomalies
were launched during a quiescent period in the detection of EM
disturbances in the kHz band. A segment from the EM background
(N) and three excerpts of the emerged strong kHz EM activity (B1,
B2, B3) from this time series are indicated. The vertical axis shows
the output of sensor (in mV) that measures the magnetic field.

Fig. 3. Magnified images of the excerpts N, B1, B2, and B3 that are
shown in Fig. 2.

Fig. 2. (a) We observed the presence of a sequence of strong EM
impulsive bursts at 10 kHz on 4 April 2009.(b) These anomalies
were launched during a quiescent period in the detection of EM
disturbances in the kHz band. A segment from the EM background
(N) and three excerpts of the emerged strong kHz EM activity (B1,
B2, B3) from this time series are indicated. The vertical axis shows
the output of sensor (in mV) that measures the magnetic field.

2.2 kHz EM anomalies

A sequence of strong multi-peaked EM bursts, with sharp
onsets and ends, were simultaneously recorded by the 3 kHz
and 10 kHz loop antennas on 4 April 2009. Figure 2a shows
the EM anomalies recorded by the 10 kHz (E-W) loop an-
tenna. These anomalies were launched over a quiescent
period concerning the detection of EM disturbances at the
kHz frequency band (Fig. 2b). Figure 3 depicts magnified
images of the excerpts N, B1, B2, and B3 that are shown in
Fig. 2a.

2.3 ULF EM anomaly

The daily pattern of the ULF recordings during the normal
period, i.e., far from the EQ occurrence, follows a rather pe-
riodical variation which is characterized by the existence of
a clear minimum during the day time (Fig. 4). One finds
a clear alteration of the normal daily profile as the shock
approaches. The ULF EM anomaly continuously appeared
from 29 March 2009 up to 2 April 2009. The curve returns
to its normal shape on 7 April 2009. In Part 2 we will show
that this anomaly may be originated in seismo-ionospheric
anomalous states which produce changes on EM wave prop-
agation. Importantly, based on very low frequency (kHz) ra-
dio sounding, Biagi et al. (2009) and Rozhnoi et al. (2009)
have observed ionospheric perturbations in the time interval
2–8 days before the L’Aquila EQ.

We note that all of the recorded EM anomalies we report
here have been obtained during a quiet period in terms of
magnetic storm, solar flares and atmospheric activity. In ad-
dition, the consecutive appearance of ULF, MHz and kHz

Fig. 3. Magnified images of the excerpts N, B1, B2, and B3 that are
shown in Fig. 2.

EM anomalies in a time interval of a few days prior to the
L’Aquila EQ occurrence excludes the possibility that they
were man-made.

3 Theoretical background

In this section we briefly introduce concepts of entropy and
tools of information theory which will be used in the present
study.

3.1 Fundamentals of symbolic dynamics

For the scale of completeness and for later use, we compile
here the basic points of symbolic dynamics. Symbolic time
series analysis is a useful tool for modelling and characteri-
zation of nonlinear dynamical systems (Voss et al., 1996). It
provides a rigorous way of looking at “real” dynamics with
finite precision (Hao, 1989, 1991; Kitchens, 1998; Kara-
manos and Nicolis, 1999). Briefly, it is a way of coarse-
graining or simplifying the description.

The basic idea is quite simple. One divides the phase
space into a finite number of partitions and labels each parti-
tion with a symbol (e.g. a letter from some alphabet). In-
stead of representing the trajectories by infinite sequences
of numbers-iterates from a discrete map or sampled points
along the trajectories of a continuous flow, one watches the
alteration of symbols. Of course, in so doing one loses an
amount of detailed information, but some of the invariant,
robust properties of the dynamics may be kept, e.g. periodic-
ity, symmetry, or the chaotic nature of an orbit (Hao, 1991).

In the framework of symbolic dynamics, time series are
transformed into a series of symbols by using an appro-
priate partition which results in relatively few symbols.
After symbolization, the next step is the construction of
“symbol sequences” (“words” in the language symbolic
dynamics) from the symbol series by collecting groups of
symbols together in temporal order.

Nat. Hazards Earth Syst. Sci., 9, 1953–1971, 2009 www.nat-hazards-earth-syst-sci.net/9/1953/2009/



K. Eftaxias et al.: Characterizing ULF, kHZ and MHz EM anomalies 1957

18 Eftaxias et al.: Characterizing ULF, kHZ and MHz EM anomalies

Fig. 4. The time series of the ULF electric field strength, as recorded
by the STWA sensors. The vertical axis shows the output of sensor
(in mV) that measures the electric field.

Fig. 5. The Shannonn-block entropyH(n) (a), Shannonn-block
entropy per letterH(n)/n (b), conditional entropyH(n + 1) −

H(n) (c), and Kolmogorov entropyh/ln2 (d) in the background
noise (N) and the three candidate precursory EM bursts B1, B2,
B3 for lumping (upper panel) and gliding (lower panel). All these
symbolic entropies, for either reading technique, show a significant
drop of complexity in the EM bursts compared to the noise.

Fig. 6. The normalized Tsallis entropy has significantly lower val-
ues in the candidate EM precursors B1, B2, and B3 in comparison
to that of the noise N. We conclude that the bursts B1, B2, and B3
are characterized by higher organization compared to the noise N.

Fig. 4. The time series of the ULF electric field strength, as recorded
by the STWA sensors. The vertical axis shows the output of sensor
(in mV) that measures the electric field.

To be more precise, the simplest possible coarse-graining
of a time series is given by choosing a thresholdC (usu-
ally the mean value of the data considered) and assign-
ing the symbols “1” and “0” to the signal, depending on
whether it is above or below the threshold (binary partition).
Thus, we generate a symbolic time series from a 2-letter
(λ=2) alphabet (0, 1), e.g. 0110100110010110.... We usually
read this symbolic sequence in terms of distinct consecutive
“blocks” (words) of lengthn = 2. In this case one obtains
01/10/10/01/10/01/01/10/.... We call this reading proce-
dure “lumping”.

The number of all possible kinds of words isλn
=22

=4,
namely 00, 01, 10, 11. The required probabilities for the es-
timation of an entropy,p00, p01, p10, p11 are the fractions
of the blocks (words) 00, 01, 10, 11 in the symbolic time se-
ries, namely, 0, 4/16, 4/16, and 0, correspondingly. Based on
these probabilities we can estimate, for example, the proba-
bilistic entropy measureHS introduced by Shannon (1948),

HS = −

∑
pi lnpi (1)

where pi are the probabilities associated with the micro-
scopic configurations.

Various tools of information theory and entropy concepts
are used to identify statistical patterns in the symbolic se-
quences, onto which the dynamics of the original system un-
der analysis has been projected.For detection of an anomaly,
it suffices that a detectable change in the pattern represents a
deviation of the system from nominal behaviour (Graben and
Kurths, 2003). Recent published work has reported novel
methods for detection of anomalies in complex dynamical
systems, which rely on symbolic time series analysis. En-
tropies depending on the word-frequency distribution in sym-
bolic sequences are of special interest, extending Shannon’s
classical definition of the entropy and providing a link be-
tween dynamical systems and information theory. These en-
tropies take a large/small value if there are many/few kinds
of patterns, i.e. they decrease while the organization of pat-
terns is increasing. In this way, these entropies can measure
the complexity of a signal.

It is important to note that one cannot find an optimum
organization or complexity measure (Kurths et al., 1995).
We think that a combination of some such quantities which
refer to different aspects, such as structural or dynamical

properties, is the most promising way. In this way sev-
eral well-known techniques have been applied to extract EM
precursors hidden in kHz EM time series.

3.2 The concept of dynamical (Shannon-like)
n-block entropies

Block entropies, depending on the word-frequency distribu-
tion, are of special interest, extending Shannon’s classical
definition of the entropy of a single state to the entropy of a
succession of states (Nicolis and Gaspard, 1994).

Symbolic sequences,{A1...An...AL}, are composed
of letters from an alphabet consisting ofλ letters
{A(1),A(2)...A(λ)

}. An English text for example, is written
on an alphabet consisting of 26 letters{A,B,C...X,Y,Z}.

A word of lengthn<L, {A1...An}, is defined by a sub-
string of lengthn taken from{A1...An...AL}. The total num-
ber of different words of lengthn which exists in the alphabet
is

Nλn = λn.

We specify that the symbolic sequence is to be read in terms
of distinct consecutive “blocks” (words) of lengthn,

...A1...An︸ ︷︷ ︸
B1

An+1...A2n︸ ︷︷ ︸
B2

...Ajn+1...A(j+1)n︸ ︷︷ ︸
Bj+1

... (2)

As stated previously, we call this reading procedurelump-
ing. Gliding is the reading of the symbolic sequence using
a moving frame. It has been suggested that, at least in some
cases, the entropy analysis by lumping is much more sen-
sitive than classical entropy analysis (gliding) (Karamanos,
2000, 2001).

The probabilityp(n)(A1,...,An) of occurrence of a block
A1...An is defined by the fraction,

No. of blocks, A1...An, encountered when lumping

total No. of blocks
(3)

starting from the beginning of the sequence.
The following quantities characterize the information con-

tent of the symbolic sequence (Khinchin, 1957; Ebeling and
Nicolis, 1992).

3.2.1 The Shannonn-block entropy

Following Shannon’s approach (Shannon, 1948) then-block
entropy,H(n), is given by

H(n) = −

∑
(A1,...,An)

p(n)(A1,...,An) · lnp(n)(A1,...,An). (4)

The entropy H(n) is a measure of uncertainty and gives the
average amount of information necessary to predict a sub-
sequence of length n.
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3.2.2 The Shannonn-block entropy per letter

From the Shannonn-block entropy we derive then-block
entropy per letter

h(n)
=

H(n)

n
. (5)

This entropy may be interpreted as the average uncertainty
per letter of an n-block.

3.2.3 The conditional entropy

From the Shannonn-block entropies we derive the condi-
tional (dynamic) entropies by the definition

h(n) = H(n+1)−H(n). (6)

The conditional entropy h(n) measures the uncertainty of
predicting a state one step into the future, provided a history
of the precedingn states.

Predictability is measured by conditional entropies. For
Bernoulli sequences we have the maximal uncertainty

h(n) = log(λ). (7)

Therefore we define the difference

rn = log(λ)−h(n) (8)

as the average predictability of the state following a mea-
suredn-trajectory.In other words, predictability is the infor-
mation we get by exploration of the next state in comparison
to the available knowledge.

We use, in most cases,λ as the base of the logarithms.
Using this base the maximal uncertainty/predictability is one
(Ebeling, 1997).

In general our expectation is that any long-range memory
decreases the conditional entropies and improves our chances
for prediction.

(iv) The entropy of the source or limit entropy
A quantity of particular interest is the entropy of the

source, defined as

h = lim
n→∞

h(n) = lim
n→∞

h(n) (9)

It is the average amount of information necessary to pre-
dict the next symbol when being informed about the complete
pre-history of the system.

The limit entropyh is the discrete analog of Kolmogorov-
Sinai entropy. Since positive Kolmogorov-Sinai entropy im-
plies the existence of a positive Lyapunov exponent, it is an
important measure of chaos.

3.3 Principles of non-extensive Tsallis entropy

In the Introduction we explained why physical systems that
are characterized by long-range interactions or long-term
memories, or are of a multi-fractal nature, are best described

by a generalized statistical-mechanical formalism proposed
by Tsallis (1988, 2009). More precisely, inspired by multi-
fractals concepts, he introduced an entropic expression char-
acterized by an indexq which leads to non-extensive statis-
tics (1988, 2009):

Sq = k
1

q −1

(
1−

W∑
i=1

p
q
i

)
, (10)

wherepi are probabilities associated with the microscopic
configurations,W is their total number,q is a real number
andk is Boltzmann’s constant.

The entropic indexq describes the deviation of Tsallis en-
tropy from the standard Boltzmann-Gibbs one. Indeed, using
p

(q−1)
i =e(q−1)ln(pi )∼1+(q−1)ln(pi) in the limit q→1, we

recover the usual Boltzmann-Gibbs entropy

S1 = −k

W∑
i=1

pi ln(pi). (11)

The entropic indexq characterizes the degree of non-
extensivity reflected in the following pseudo-additivity rule:

Sq(A+B) = Sq(A)+Sq(B)+
1−q

k
Sq(A)Sq(B). (12)

For subsystems that have special probability correlations,
extensivity

SB−G = SB−G(A)+SB−G(B) (13)

is not valid forSB−G, but may occur forSq with a particular
value of the indexq. Such systems are sometimes referred to
as non-extensive (Tsallis, 1988, 2009).

The casesq>1 andq<1, correspond to sub-additivity, or
super-additivity, respectively. We may think ofq as a bias-
parameter:q<1 privileges rare events, whileq>1 privileges
prominent events (Zunino et al., 2008).

We clarify that the parameterq itself is not a measure of
the complexity of the system but measures the degree of non-
extensivity of the system. It is the time variations of the
Tsallis entropy for a givenq, (Sq ), that quantify the dynamic
changes of the complexity of the system.Lower Sq values
characterize the portions of the signal with lower complex-
ity.

In terms of symbolic dynamics the Tsallis entropy for the
word lengthn is (Kalimeri et al., 2008):

Sq(n) = k
1

q −1

(
1−

∑
(A1,A2,...,An)

[p(n)A1,A2,...,An ]
q

)
. (14)

3.4 T -entropy of a string

T -entropy is a novel grammar-based complexity/information
measure defined for finite strings of symbols (Ebeling et al.,
2001; Tichener et al., 2005). It is a weighted count of the
number of production steps required to construct a string
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from its alphabet.Briefly, it is based on the intellectual econ-
omy one makes when rewriting a string according to some
rules.

An example of an actual calculation of theT -complexity
for a finite string is given by Ebeling et al. (2001). We briefly
describe how theT -complexity is computed for finite strings.
TheT -complexity of a string is defined by the use of one re-
cursive hierarchical pattern copying (RHPC) algorithm. It
computes the effective number ofT -augmentation steps re-
quired to generate the string. TheT -complexity may thus be
computed effectively from any string and the resultant value
is unique.

The stringx(n) is parsed to derive constituent patterns
pi∈A+ and associated copy-exponentski∈N+,i=1,2,...,q,
whereq∈N+ satisfying:

x = p
kq
q p

kq−1
q−1 ...p

ki

i ...p
k1
1 α0, α0 ∈ A. (15)

Each patternpi is further constrained to satisfy:

pi = p
mi,i−1
i−1 p

mi,i−2
i−2 ...p

mi,j

j ...p
mi,1
1 αi, (16)

αi∈A and= 0≤ mi,j ≤ kj . (17)

The T -complexity CT (x(n)) is defined in terms of the
copy-exponentski :

CT (x(n)) =

q∑
i

ln(ki +1). (18)

One may verify thatCT (x(n)) is minimal for a string com-
prising a single repeating character.

TheT -informationIT (x(n)) of the stringx(n) is defined
as the inverse logarithmic integral,li−1, of theT -complexity
divided by a scaling constant ln2:

IT (x(n)) = li−1
(

CT (x(n))

ln2

)
. (19)

In the limit n→∞ we have thatIT (x(n))≤ln(#An).
The form of the right-hand side may be recognizable as

the maximum possiblen-block entropy of Shannon’s defi-
nition. The Naperian logarithm implicitly gives to theT -
information the units of nats.IT (x(n)) is theT -information
of stringx(n). TheaverageT -information rate per symbol,
referred to here as the averageT -entropy ofx(n) and denoted
by hT (x(n)), is defined along similar lines,

hT (x(n)) =
IT (x(n))

n
(nats/symbol). (20)

3.5 Approximate entropy

Related to time series analysis, the approximate entropy,
ApEn, provides a measure of the degree of irregularity or
randomness within a series of data (of lengthN ). ApEn was

pioneered by Pincus as a measure of system complexity (Pin-
cus, 1991). It was introduced as a quantification of regularity
in relatively short and noisy data. It is rooted in the work of
Grassberger and Procaccia (1983) and has been widely ap-
plied to biological systems (Pincus and Goldberger, 1994;
Pincus and Singer, 1996, and references therein).

The approximate entropy examines time series for similar
epochs: more similar and more frequent epochs lead to lower
values ofApEn.

For a qualitative point of view, givenN points, theApEn-
like statistics is approximately equal to the negative loga-
rithm of the conditional probability that two sequences that
are similar form points remain similar, that is, within a tol-
erancer, at the next point. SmallerApEn-values indicate a
greater chance that a set of data will be followed by sim-
ilar data (regularity), thus, smaller values indicate greater
regularity. Conversely, a greater value forApEn signifies
a lesser chance of similar data being repeated (irregularity),
hence, greater values convey more disorder, randomness and
system complexity. Thus a low/high value ofApEn re-
flects a high/low degree of regularity. Notably,ApEn de-
tects changes in underlying episodic behaviour not reflected
in peak occurrences or amplitudes (Pincus and Keefe, 1992).

The following is a short description of the calculation of
ApEn. A more comprehensive description ofApEn may be
found in (Pincus, 1991; Pincus and Goldberger, 1994; Pincus
and Singer, 1996).

Given any sequence of data pointsu(i) from i=1 to N , it
is possible to define vector sequencesx(i), which consists of
lengthm and are made up of consecutiveu(i), specifically
defined by the following:

x(i) = (u[i],u[i +1],...,u[i +m−1]). (21)

In order to estimate the frequency that vectorsx(i) repeat
themselves throughout the data set within a tolerancer, the
distanced(x[i],x[j ]) is defined as the maximum difference
between the scalar componentsx(i) and x(j). Explicitly,
two vectorsx(i) andx(j) are “similar” within the tolerance
or filter r, namelyd(x[i],x[j ])≤r, if the difference between
any two values foru(i) and u(j) within runs of lengthm

does not exceedr (i.e. |u(i+k)−u(j +k)| ≤ r for 0≤k≤m).
Subsequently, the correlation sum of vectorx(i) is

Cm
i (r) =

[number of j such thatd(x[i],x[j ]) ≤ r]

(N −m+1)
,

wherej ≤ (N −m+1).
TheCm

i (r) values measure, within a tolerancer, the reg-
ularity (frequency) of patterns similar to a given one of win-
dow lengthm. The parameterr acts like a filter value: within
resolutionr, the numerator count the number of vectors that
are approximately the same as a given vectorx(i). The quan-
tity Cm

i (r) is called the correlation sum because it quantifies
the summed (or global) correlation of vectorx(i) with all
other vectors.
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Taking the natural logarithm ofCm
i (r), the mean logarith-

mic correlation sum of all vectors is defined as:

8m(r) =

∑
i

lnCm
i (r)/(N −m+1) (22)

where
∑

i is a sum fromi = 1 to (N −m+ 1). 8m(r) is
a measure of the prevalence of repetitive patterns of length
m within the filter r. Briefly, 8m(r) represents the average
frequency of all them-point patterns in the sequence remain
close to each other.

Finally, approximate entropy, orApEn(m,r,N), is de-
fined as the natural logarithm of the relative prevalence of
repetitive patterns of lengthm as compared with those of
lengthm+1:

ApEn(m,r,N) = 8m(r)−8m+1(r). (23)

Thus,ApEn(m,r,N) measures the logarithmic frequency
that similar runs (within the filterr) of lengthm also remain
similar when the length of the run is increased by 1. Small
values ofApEn indicate regularity, given that increasing run
length m by 1 does not decrease the value of8m(r) sig-
nificantly (i.e., regularity connotes that8m

[r] ≈ 8m+1
[r]).

ApEn(m,r,N) is expressed as a difference, but in essence it
represents a ratio; note that8m

[r] is a logarithm of the aver-
agedCm

i (r), and the ratio of logarithms is equivalent to their
difference.

In summary, ApEn is a “regularity statistics” that quanti-
fies the unpredictability of fluctuations in a time series. The
presence of repetitive patterns of fluctuation in a time series
renders it more predictable than a time series in which such
patterns are absent. A time series containing many repetitive
patterns has a relatively small ApEn; a less predictable (i.e.,
more complex) process has a higher ApEn.

3.6 Fractal spectral analysis

It is well known that during the complex process of EQ
preparation, linkages between space and time produce char-
acteristic fractal structures. It is expected that these fractal
structures are included in signals rooted in the EQ genera-
tion process.

If a time series is a temporal fractal then a power-law of
the formS(f ) ∝ f −β is obeyed, withS(f ) the power spec-
tral density andf the frequency. The spectral scaling expo-
nentβ is a measure of the strength of time correlations. The
goodness of the power law fit to a time series is represented
by a linear correlation coefficient,r.

Our attention is directed to whether distinct changes in
the scaling exponentβ emerge in kHz EM bursts. For this
purpose, we applied the wavelet analysis technique to derive
the coefficients of its power spectrum. The wavelet trans-
form provides a representation of the signal in both the time
and frequency domains. In contrast to the Fourier transform,
which provides a description of the overall regularity of sig-
nals, the wavelet transform identifies the temporal evolution

of various frequencies in a time-frequency plane that indi-
cates the frequency content of a signal a given time. The
decomposition pattern of the time-frequency plane is deter-
mined by the choice of basis functions. In the present study,
we used the continuous wavelet transform with the Morlet
wavelet as basis function. The results were checked for con-
sistency using the Paul and DOG mother functions (Torrence
and Compo, 1998).

3.7 Rescaled Range Analysis: the Hurst exponent

The Rescaled Range Analysis (R/S), which was introduced
by Hurst (1951), attempts to find patterns that might repeat in
the future. There are two main variables used in this method,
the range of the data (as measured by the highest and lowest
values in the time period) and the standard deviation of the
data.

Hurst, in his analysis, first transformed the natural records
in time X(N) = x(1),x(2),...,x(N), into a new variable
y(n,N), the so-called accumulated departure of the natural
record in time in a given yearn(n = 1,2,...N), from the av-
erage,< x(n), over a period ofN years. The transformation
follows the formula

y(n,N) =

n∑
i=1

(x(i)−〈x〉) (24)

Then, he introduced the rescaled range

R/S =
R(N)

S(N)
(25)

in which the rangeR(N) is defined as a distance between the
minimum and maximum value ofy by

R(N) = ymax−ymin (26)

and the standard deviationS(N) by

S(N) =

√√√√ 1

N

N∑
i=1

[y(i)−〈x〉]2 (27)

R/S is expected to show a power-law dependence on the
bin sizen:

R(n)/S(n)∼ nH , (28)

whereH is the Hurst exponent.

3.8 Detrended Fluctuation Analysis

Often experimental data are affected by non-stationary be-
havior, and strong trends in the data can lead to a false de-
tection of long-range correlations if the results are not care-
fully interpreted. Detrended Fluctuation Analysis (DFA),
proposed by Peng et al. (1993, 1994, and 1995) and based
on random walk theory, is a well-established method for de-
termining the scaling behaviour of noisy data in the presence
of trends without knowing their origin and shape.
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We briefly introduce the DFA method, which involves the
following six steps.

(i) We consider a time seriesi = 1,...,N of lengthN . In
most applications, the indexi will correspond to the time of
measurements. We are interested in the correlation of the
valuesxi and xi+k for different time lags, i.e. correlations
over different time scalesk. In the first step, we determine
the integrated profile

y(k) =

k∑
i=1

(x(i)−〈x〉),i = 1,...,N (29)

where〈...〉 denotes the mean.
(ii) The integrated signaly(k) is divided into non-

overlapping bins of equal lengthn.
(iii) In each bin of lengthn, we fity(k), using a polynomial

function of orderl, which represents the trend in that box. We
usually use a linear fit. They coordinate of the fit line in each
box is denoted byyn(k).

(iv) The integrated signaly(k) is detrended by subtracting
the local trendyn(k). Then we define the detrended time
series for bins of durationn, by yn(k) = y(k)−yn(k).

(v) For a given bin sizen, the root-mean-square (rms) fluc-
tuations for this integrated and detrended signal is calculated:

F(n) =

√√√√ 1

N

N∑
k=1

{y(k)−n(k)}2 (30)

(vi) The aforementioned computation is repeated for a
broad range of scales box sizes (n) to provide a relationship
betweenF(n) and the box sizen.

A power-law relation between the average root-mean
square fluctuationF(n) and the bin sizen indicates the pres-
ence of scaling:

F(n) ∼ nα (31)

The scaling exponentα quantifies the strength of the long-
range power-law correlations in the time series.

4 Application to the data

In this section, we apply all the methods described in section
3 to the kHz EM time series under study.

4.1 Dynamical characteristics of pre-seismic kHz EM
activity in terms of block entropies

The upper panel in Fig. 5 shows the entropies obtained by
lumping. The lower panel depicts the entropies estimated by
gliding. We mentioned thatlumping is the reading of the
symbolic sequence by takingportions, as opposed togliding
where one has essentially amoving frame. We conclude that
both methods of reading lead to consistent results.

Fig. 5. The Shannonn-block entropyH(n) (a), Shannonn-block
entropy per letterH(n)/n (b), conditional entropyH(n+1)−H(n)

(c), and Kolmogorov entropyh/ln2 (d) in the background noise
(N) and the three candidate precursory EM bursts B1, B2, B3 for
lumping (upper panel) and gliding (lower panel). All these symbolic
entropies, for either reading technique, show a significant drop of
complexity in the EM bursts compared to the noise.

4.1.1 The Shannonn-block entropy

Figure 5a depict the Shannonn-block entropy,H(n), as a
function of the word lengthn for the time windows N, B1,
B2, and B3 (see Fig. 3). We observe that the noise N is char-
acterized by significantly largerH(n)-values.

This finding means that the average amount of information
necessary to predict a sub-sequence of lengthn is larger in
the noise than in the bursts B1, B2, and B3 is.

4.1.2 The Shannonn-block entropy per letter

Figure 5b show thatthe average uncertainty per letter of an
n-block is larger in the noise than in the bursts B1, B2, and
B3 is.
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4.1.3 The conditional entropy

Figsure 5c illustrate the conditional entropies,h(n), as a func-
tion of the word lengthn for the excerpts under study. The
noise N has significantly higherh(n)-values.

This result means that the uncertainty of predicting one
step in the future, provided a history of the present state and
the previous n-1 states, is higher in the case of noise N or, in
terms of predictability, the average predictability of the state
following after a measured n-trajectory is higher in the bursts
B1, B2, and B3. We recall that any long-range memory de-
creases the conditional entropies and improves the chances
for predictions.

4.1.4 The entropy of the source

One important conjecture, due essentially to Ebeling and
Nicolis (1992), is that the most general (asymptotic) scaling
of the block entropies takes the form

H(n) = e+nh+gnµ0(lnn)µ1 (32)

wheree andg are constants andµ0 andµ1 are constant ex-
ponents.

Because of the rather linear scaling observed in Fig. 5a, we
approximate the former equation by the simple linear relation

H(n) = e+nh (33)

With this approximation, the slops of the lines in Fig. 5a
can be considered as the entropy of the source, which is the
discrete analog of the Kolmogorov-Sinai entropy. Since the
source entropy lies between zero and ln2 we can express it as
a percentage by multiplying by (100/ln2).

Figure 5a (upper panel) shows that there is a clear dis-
tinction of the values of the slopes, leading to a significant
difference in the corresponding Kolmogorov-Sinai entropies
(Fig. 5d, upper panel).

Now lets focus on the entropies estimated by gliding
(Fig. 5, lower panel). In this lower panel we show the
Kolmogorov-Sinai entropy (Fig. 5d, solid columns) esti-
mated by:

(i) The slope ofH(n) versusn. The associated values
of Kolmogorov-Sinai entropy are shown by the solid
columns in Fig. 5d.

(ii) Using the relation

h = lim
n→∞

h(n) (34)

via the asymptotic behaviour of the Shannonn-block
entropy per letter depicted in Fig. 5b. The corre-
sponding Kolmogorov-Sinai-entropy values are shown
in Fig. 5d by the dotted columns. For both estimates we
observe a systematic drop of the entropy of the source
in the bursts B1, B2 and B3.

The observed behaviour implies that the average amount
of information necessary to predict the next symbol, when
being informed about the complete pre-history of the sys-
tem, significantly decreases in the emerged candidate kHz
EM precursor with respect to the noise.

The question arises as to whether the observed asymptotic
linear scaling in Figs. 5a is a law of nature. This is an open
problem.

Brief conclusion. The various block entropies, which
quantify dynamic aspects of a time series in a statistical man-
ner, can recognize and discriminate the emerged strong EM
precursors from the background noise. They suggest that the
memory (or compressibility) in the bursts B1, B2, and B3 is
significantly larger in comparison to that of the noise N.

4.2 Dynamical characteristics of pre-seismic kHz EM
activity in terms of Tsallis entropy

Tsallis entropies are computed using the technique of lump-
ing for binary partition (with the mean value as threshold)
and block (word) lengthn = 2. A detailed calculation of
Tsallis entropies by means of symbolic dynamics is given
in Kalimeri et al. (2008).

As Tsallis (1988) has pointed out, the results depend upon
the entropic indexq and it is expected that, in every spe-
cific case, better discrimination is achieved with appropriate
ranges of values ofq. The appropriate choice of this param-
eter remains an open problem which we will focus on here.

Recently, Sotolongo-Costa and Posadas (2004) introduced
a model for EQ dynamics rooted in a nonextensive frame-
work starting from first principles. They obtained the fol-
lowing analytic expression for the distribution of EQ magni-
tudes:

log(N(m >))= logN +

(
2−q

1−q

)
×

log
[
1+α(q −1)×(2−q)(1−q)/(q−2)102m

]
(35)

whereN is the total number of EQs,N(m >) the number
of EQs with magnitude larger thanm, andm ≈ log(ε). This
is not a trivial result, and incorporates the characteristics of
nonextensivity into the magnitude distribution of EQs. The
parameterα is the constant of proportionality between the
EQ energy and the size of fragment,r. Vilar et al. (2007)
have revised the fragment-asperity interaction model intro-
duced by Sotolongo-Costa and Posadas by considering a dif-
ferent definition for mean values in the context of Tsallis
nonextensive statistics and introducing a new scale between
the EQ energy and the size of fragments.

Sotolongo-Costa and Posadas (2004), Silva et al. (2006)
and Vilar et al. (2007) successfully tested the viability of this
distribution function with data in various different areas. The
associated nonextensive parameter found to be distributed in
a narrow range from 1.60 to 1.71.
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Notice, we have shown (Papadimitriou et al., 2008) that
the above mentioned nonextensive models also describe the
sequence of pre-seismic kHz EM fluctuations detected prior
to the Athens EQ (M = 5.9) of 7 September 1999. The as-
sociated parameterq is 1.80. In Part 2 of this contribution
(Eftaxias et al., 2009b) we will show that the recorded kHz
EM fluctuations prior to the L’Aquila EQ can also be de-
scribed by the revised nonextensive fragment-asperity inter-
action model (Silva et al., 2006, with aq-value of 1.82.

It is very interesting to observe the similarity in theq-
values for all the groupings of EQs used, as well as for the
precursory sequences of kHz EM bursts associated with the
activation of the Athens and L’Aquila faults.This finding is
in full agreement with the well documented self-affine nature
of faulting and fracture.

Based on the concepts discussed above, we estimate the
Tsallis entropies, with aq-value of 1.8. Figure 6 shows that
the Tsallis entropies in the emerged strong EM bursts drop to
lower values in comparison to that of the noise. This suggests
that in the noise there are many kinds of patterns, while in the
bursts there are fewer patterns.

Figure 7b compares the Tsallis and Shannon entropies for
the excerpts under study. Both entropies give comparable re-
sults and clearly discriminate the anomalies from the noise.
However, the Shannon entropy makes no connection with the
possible physical mechanism involved. The Tsallis entropies
at least allow for the possible effects of long-range interac-
tion, long-time memories or multi-fractals.

4.3 Dynamical characteristics of pre-seismic kHz EM
activity in terms of T -entropy

Figure 8 shows that the averageT -entropies in the emerged
kHz EM activity dramatically drop to lower values.

This experimental finding indicates that a significantly
lower number of production steps are required in order to
construct the string from its alphabet into the emerged strong
EM bursts: the bursts are characterized by a considerably
lower complexity in comparison to that of the normal epoch
(EM background).

Brief conclusion.All the tools we have used here, rooted
in the notion of symbolic dynamics, discriminate and distin-
guish in a sensitive way the kHz EM anomalies from the EM
background. All the methods we have applied lead to the
conclusion that the kHz EM bursts that emerged a few tens
of hours prior to the L’Aquila EQ are characterized by a sig-
nificantly lower complexity (or higher organization, higher
predictability, lower uncertainty, and higher compressibility)
with respect to that of the EM background (noise).

We consider whether other tools, referring only to the raw
data and not to corresponding symbolic sequences, also lead
to this conclusion. An answer is given in the following sec-
tion, where we analyze the data by means of approximate
entropy.

Fig. 6. The normalized Tsallis entropy has significantly lower val-
ues in the candidate EM precursors B1, B2, and B3 in comparison
to that of the noise N. We conclude that the bursts B1, B2, and B3
are characterized by higher organization compared to the noise N.
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Fig. 7. For reasons of comparison, we present the values ofApEn,
the Hurst exponent estimated by R/S analysis, and Tsallis entropy
and Shannon entropy for B1, B2, B3 and N.

4.4 Dynamical characteristics of pre-seismic kHz EM
activity in terms of approximate entropy

Figure 7a shows that the approximate entropy in the three
emerged kHz EM bursts prior to the L’Aquila EQ clearly
drops to lower values in comparison to that of the noise.

The above mentioned result suggests that the candidate
kHz EM precursors are governed by the presence of repeti-
tive patterns, which render them more predictable than noise
in which such repetitive patterns are absent. Thus, the ap-
plication of approximate entropy verifies the conclusions ex-
tracted by the tools of symbolic dynamics.

In order to extract more and perhaps different information
that may be hidden in the recorded kHz EM anomaly, we
shall study the data in terms of fractal spectral analysis in the
next section.

4.5 Dynamical characteristics of pre-seismic kHz EM
activity in terms of fractal spectral analysis

The power spectral densities were estimated using a moving
window of 256 samples and an overlap of 255 samples. The
spectral parametersr andβ were calculated for each window.

Figure 9 shows that in the strong kHz EM bursts which
emerged on 4 April 2009, the coefficientr takes values very
close to 1, i.e., the fit to the power-law is excellent. This is
a strong indicator of the fractal character of the underlying
processes and structures.

Theβ exponent takes on high values, i.e. between 2 and 3,
in the strong EM fluctuations. This fact implies the follow-
ing:

(i) The EM bursts have long-range temporal correlations,
i.e. strong memory: the current value of the precursory
signal is correlated not only with its most recent values
but also with its long-term history in a scale-invariant,

Fig. 8. Values of normalizedT -entropy for time intervals A and
B (upper and lower panels, respectively). Time intervals A and B
are defined in Fig. 6. In the case of bursts we observe that less
production steps are required in order to construct the string from
its alphabet.

fractal manner. In short, the data indicate an underling
mechanism of high organization. Such a mechanism is
compatible with the last stage of EQ generation.

(ii) The spectrum manifests more power at lower frequen-
cies than at high frequencies. The enhancement of lower
frequency power physically reveals a predominance of
larger fracture events. This footprint is also in harmony
with the final step of EQ preparation.

(iii) Two classes of signal have been widely used to model
stochastic fractal time series, fractional Gaussian (fGn)
and fractional Brownian motion (fBm) (Heneghan and
McDarby, 2000). For the case of the fGn-model the
scaling exponentβ lies between−1 and 1, while
the fBm regime is indicated byβ values from 1 to
3 (Heneghan and McDarby, 2000). Theβ expo-
nent successfully distinguishes the candidate precursory
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Fig. 9. From top to bottom are shown the 10 kHz time series, spectral exponentsβ, linear correlation coefficientsr, and the wavelet power
spectrum from 12:00:00 3 April 2009 to 12:00:00 5 April 2009, correspondingly. The red dashed line in theβ plot marks the transition
between anti-persistent and persistent behavior.

activities from the EM noise. Indeed, theβ values in the
EM background are between 1 and 2 indicating that the
time profile of the EM time series during the quiet peri-
ods is qualitatively analogous to the fGn class. On the
contrary, theβ values in the candidate EM precursors
are between 2 and 3, suggesting that the profile of the
time series associated with the candidate precursors is
qualitatively analogous to the fBm class.

Let’s look at the implications of these results.

(i) Theoretical and laboratory experiments support the con-
sideration that both temporal and spatial activity can be
described as different cuts in the same underlying frac-
tal (Maslov et al., 1994; Ponomarev et al., 1997). A
time series of a major historical event could have both
temporal and spatial correlations.

(ii) It has been pointed out that fracture surfaces can be
represented by self-affine fractional Brownian surfaces
over a wide range (Huang and Turcotte, 1988).

Statements (i) and (ii) lead to the hypothesis that the fBm-
type profile of the precursory EM time series reflects the slip-
ping of two rough, rigid Brownian profiles one over the other
that led to the L’Aquila EQ nucleation. In Part 2 of this pa-
per this consideration is investigated in detail (Eftaxias et al.,
2009b).

Theβ exponent is related to the Hurst exponentH (Hurst,
1951) by the formula (Turcotte,1997):

β = 2H +1 (36)

with 0< H < 1 (1< β < 3) for the fractional Brownian mo-
tion (fBm) model (Heneghan and McDarby, 2000). The ex-
ponentH characterizes the persistent/anti-persistent proper-
ties of the signal.

The range 0.5<H<1 (2<β<3) indicates persistency,
which means that if the amplitude of the fluctuations in-
creases in a time interval it is likely to continue increasing
in the next interval. We recall that we foundβ values in
the candidate EM precursors to lie between 2 and 3. The
H values are close to 0.7 in the strong segments of the kHz
EM activity. This means that their EM fluctuations are posi-
tively correlated or persistent, which suggests that the under-
lying dynamics is governed by a positive feedback mecha-
nism. External influences would then tend to lead the system
out of equilibrium (Telesca and Lasaponara, 2006). The sys-
tem acquires a self-regulating character and, to a great extent,
the property of irreversibility, one of the important compo-
nents of prediction reliability (Morgounov, 2001). Sammis
and Sornette (2002) have recently presented the most impor-
tant positive feedback mechanisms.

Remark: theH exponent also reveals the “roughness” of
the time series. We draw attention to the fact that theH

values in the strong kHz EM fluctuations are close to the
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Fig. 9. From top to bottom are shown the 10 kHz time series, spectral exponentsβ, linear correlation coefficientsr, and the wavelet power
spectrum from 12:00:00 3 April 2009 to 12:00:00 5 April 2009, correspondingly. The red dashed line in theβ plot marks the transition
between anti-persistent and persistent behavior.

activities from the EM noise. Indeed, theβ values in the
EM background are between 1 and 2 indicating that the
time profile of the EM time series during the quiet peri-
ods is qualitatively analogous to the fGn class. On the
contrary, theβ values in the candidate EM precursors
are between 2 and 3, suggesting that the profile of the
time series associated with the candidate precursors is
qualitatively analogous to the fBm class.

Let’s look at the implications of these results.

(i) Theoretical and laboratory experiments support the con-
sideration that both temporal and spatial activity can be
described as different cuts in the same underlying frac-
tal (Maslov et al., 1994; Ponomarev et al., 1997). A
time series of a major historical event could have both
temporal and spatial correlations.

(ii) It has been pointed out that fracture surfaces can be
represented by self-affine fractional Brownian surfaces
over a wide range (Huang and Turcotte, 1988).

Statements (i) and (ii) lead to the hypothesis that the fBm-
type profile of the precursory EM time series reflects the slip-
ping of two rough, rigid Brownian profiles one over the other
that led to the L’Aquila EQ nucleation. In Part 2 of this pa-
per this consideration is investigated in detail (Eftaxias et al.,
2009b).

Theβ exponent is related to the Hurst exponentH (Hurst,
1951) by the formula (Turcotte,1997):

β = 2H +1 (36)

with 0< H < 1 (1< β < 3) for the fractional Brownian mo-
tion (fBm) model (Heneghan and McDarby, 2000). The ex-
ponentH characterizes the persistent/anti-persistent proper-
ties of the signal.

The range 0.5<H<1 (2<β<3) indicates persistency,
which means that if the amplitude of the fluctuations in-
creases in a time interval it is likely to continue increasing
in the next interval. We recall that we foundβ values in
the candidate EM precursors to lie between 2 and 3. The
H values are close to 0.7 in the strong segments of the kHz
EM activity. This means that their EM fluctuations are posi-
tively correlated or persistent, which suggests that the under-
lying dynamics is governed by a positive feedback mecha-
nism. External influences would then tend to lead the system
out of equilibrium (Telesca and Lasaponara, 2006). The sys-
tem acquires a self-regulating character and, to a great extent,
the property of irreversibility, one of the important compo-
nents of prediction reliability (Morgounov, 2001). Sammis
and Sornette (2002) have recently presented the most impor-
tant positive feedback mechanisms.

Remark: theH exponent also reveals the “roughness” of
the time series. We draw attention to the fact that theH

values in the strong kHz EM fluctuations are close to the
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activities from the EM noise. Indeed, theβ values in the
EM background are between 1 and 2 indicating that the
time profile of the EM time series during the quiet peri-
ods is qualitatively analogous to the fGn class. On the
contrary, theβ values in the candidate EM precursors
are between 2 and 3, suggesting that the profile of the
time series associated with the candidate precursors is
qualitatively analogous to the fBm class.

Let’s look at the implications of these results.

(i) Theoretical and laboratory experiments support the con-
sideration that both temporal and spatial activity can be
described as different cuts in the same underlying frac-
tal (Maslov et al., 1994; Ponomarev et al., 1997). A
time series of a major historical event could have both
temporal and spatial correlations.

(ii) It has been pointed out that fracture surfaces can be
represented by self-affine fractional Brownian surfaces
over a wide range (Huang and Turcotte, 1988).

Statements (i) and (ii) lead to the hypothesis that the fBm-
type profile of the precursory EM time series reflects the slip-
ping of two rough, rigid Brownian profiles one over the other
that led to the L’Aquila EQ nucleation. In Part 2 of this pa-
per this consideration is investigated in detail (Eftaxias et al.,
2009b).

Theβ exponent is related to the Hurst exponentH (Hurst,
1951) by the formula (Turcotte,1997):

β = 2H +1 (36)

with 0<H<1 (1<β<3) for the fractional Brownian motion
(fBm) model (Heneghan and McDarby, 2000). The expo-
nentH characterizes the persistent/anti-persistent properties
of the signal.

The range 0.5<H<1 (2<β<3) indicates persistency,
which means that if the amplitude of the fluctuations in-
creases in a time interval it is likely to continue increasing
in the next interval. We recall that we foundβ values in
the candidate EM precursors to lie between 2 and 3. The
H values are close to 0.7 in the strong segments of the kHz
EM activity. This means that their EM fluctuations are posi-
tively correlated or persistent, which suggests that the under-
lying dynamics is governed by a positive feedback mecha-
nism. External influences would then tend to lead the system
out of equilibrium (Telesca and Lasaponara, 2006). The sys-
tem acquires a self-regulating character and, to a great extent,
the property of irreversibility, one of the important compo-
nents of prediction reliability (Morgounov, 2001). Sammis
and Sornette (2002) have recently presented the most impor-
tant positive feedback mechanisms.

Remark: the H exponent also reveals the “roughness”
of the time series. We draw attention to the fact that the
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H values in the strong kHz EM fluctuations are close to the
value 0.7. Fracture surfaces were found to be self-affine
over a wide range of length scales (Mandelbrot, 1982). The
Hurst exponentH∼0.75 has been interpreted as a univer-
sal indicator of surface roughness, weakly dependent on the
nature of the material and on the failure mode (Lopez and
Schmittbuhl, 1998; Hansen and Schmittbuhl, 2003; Ponson
et al., 2006). So, the roughness of the temporal profile of
strong pre-seismic kHz anomalies that emerged prior to the
L’Aquila EQ reflects the universal spatial roughness of frac-
ture surfaces.In Part 2 we especially focus on this crucial
point.

Hurst (1951) proposed the R/S method in order to identify,
through theH exponent, whether the dynamics is persistent,
anti-persistent or uncorrelated. We consider whether the R/S
method verifies the values of theH exponent estimated by
fractal spectral analysis.

4.6 Dynamical characteristics of pre-seismic kHz EM
activity in terms of R/S analysis

Figure 7a shows that the R/S technique applied directly to the
raw data may be of use in distinguishing “candidate patho-
logical” from “healthy” data sets in terms of theH expo-
nent. The “healthy” data (EM background) are characterized
by antipersistency. In contrast, the “candidate pathological”
data sets are characterized by strong persistency.

We emphasize, that theH exponents derived from the re-
lation β=2H+1, follow quite nicely those estimated by the
R/S analysis. Notice, the relationβ=2H+1 is valid for the
fBm-model. The observed consistency supports the hypoth-
esis that the candidate EM precursors follow the persistent
fBm-model. In the next section we examine whether the DFA
analysis verifies or not the former hypothesis.

4.7 Dynamical characteristics of pre-seismic kHz EM
activity in terms of DFA analysis

We fit the experimental time series by the functionF(n) ∼

nα. In a logF(n)− logn representation this function is a line
with slopeα. We note that the scaling exponentα is not
always constant (independent of scale) andcrossoversoften
exist, i.e., the value ofα differs for long and short time scales.
In order to examine the probable existence ofcrossoverbe-
haviour, both the short-term and long-term scaling exponents
α1 andα2 were included in the fits for the noise N and the
bursts B1, B2, and B3.

Following Peng et al. (1995), we show in Fig. 10 the scat-
ter plot of scaling exponentsα1 andα2. The behaviour of
these two exponents clearly separates the EM noise from
candidate EM precursors. The three bursts are character-
ized by much largerα1 andα2 values. More precisely, in
the noise the two exponents have values close to 1 indicat-
ing an underlying 1/f -type noise, whereas the three bursts
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Fig. 10. The scatter plot of scaling exponentsα1 andα2 clearly
separates the EM noise N (denoted by a star) from candidate EM
precursors B1 (square), B2 (triangle), and B3 (circle). In the noise
the two exponents have values close to 1, indicative of an under-
lying 1/f -type noise. In contrast, the three bursts show exponents
between 1.3 and 1.5, fairly close to that of fBm (α2∼1.5).

have both exponents fairly close (1.5) to that of a fBm-model
(Peng et al., 1995).

This finding: (i) supports the conclusion that kHz EM
impulsive fluctuations are governed by strong long-range
power-law correlations; (ii) indicates an underlying positive
feedback mechanism, which, under external influences, has
the propensity to lead the system out of equilibrium; (iii) ver-
ifies that the strong kHz activity follows the persistent fBm-
model.

Notice, the DFA-analysis shows that the candidate EM
precursor do not exhibit a clear crossover in scaling be-
haviour. Indeed, both theα1 andα2 exponents have values
pretty close to that (1.5) of a persistent fBm-model.

5 View of candidate precursory patterns in terms of
complexity theory

The field of study of complex systems holds that the dynam-
ics of complex systems is founded on universal principles
that may be used to describe disparate problems ranging from
particle physics to the economies of societies (Stanley, 1999,
2000; Stanley et al., 2000; Vicsek, 2001, 2002).

The study of complex system in a unified framework
has become recognized in recent years as a new scientific
discipline, the ultimate of interdisciplinary fields. For ex-
ample, de Arcangelis et al. (2006) presented evidence for
universality in solar flares and EQ occurrences. Picoli et
al. (2007) reported similarities between the dynamics of
geomagnetic signals and heartbeat intervals. Kossobokov
and Keilis-Borok (2000) have explored similarities of mul-
tiple fracturing on a neutron star and on the Earth, in-
cluding power-law energy distributions, clustering, and the
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symptoms of transition to a major rupture. Sornette and
Helmstetter (2002) have presented occurrence of finite-time
singularities in epidemics, of rupture earthquakes and star-
quakes. Kapiris et al. (2005) and Eftaxias et al. (2006) re-
ported similarities in precursory features in seismic shocks
and epileptic seizures. Osario et al. (2007) have suggested
that an epileptic seizure could be considered as a quake of
the brain. Fukuda et al. (2003) reported similarities between
communication dynamics on the Internet and the automatic
nervous system. A common denominator of the various ex-
amples of crises is that they emerge from a collective pro-
cess: the repetitive actions of interactive nonlinear influences
on many scales lead to a progressive built-up of large-scale
correlations and ultimately to the crisis.

Breaking down the barriers between physics, chemistry,
biology and the so-called soft sciences of psychology, soci-
ology, economics, and anthropology, this approach explores
the universal physical and mathematical principles that gov-
ern the emergence of complex systems from simple compo-
nents (Bar-Yan, 1997; Sornette, 2002; Rundle et al., 1995).

One of the issues that we will need to address is whether
the crucial pathological symptoms of low complexity and
persistency included in the candidate kHz EM precursor also
characterize other catastrophic events, albeit different in na-
ture.

We investigate the probable presence of such pathological
symptoms in epileptic seizures, magnetic storms and solar
flares.

5.1 Similarities between the dynamics of magnetic
storms and EM precursors

Intense magnetic storms are undoubtedly among the most
important phenomena in space physics, involving the solar
wind, the magnetosphere the ionosphere, the atmosphere and
occasionally the Earth’s crust (Daglis, 2001; Daglis et al.,
2003). The Dst index is a geomagnetic index which mon-
itors the world-wide magnetic storm level. It is based on
the average value of the horizontal component of the Earth’s
magnetic field measured hourly at four near-equatorial geo-
magnetic observatories.

Recently, Balasis et al. (2006, 2008, 2009a, b) studied Dst
data which included intense magnetic storms, as well as a
number of smaller events. They have applied the majority of
the techniques used in the present work to these events. The
results show that all the crucial features extracted from the
kHz EM activity in the present paper, including (e.g., long-
range correlations, persistency, and the appearance of fluc-
tuations at all scales with a simultaneous predominance of
large events), are also contained in intense magnetic storms.
We suggested that the development of both intense magnetic
storms and kHz EM precursors can study within the unified
framework ofIntermittent Criticality. Intermittent Criticality
has a more general character than classical Self-Organized

Criticality, since it implies the predictability of impending
catastrophic events.

In Part 2 of this paper more quantitative evidence of
universal behaviour between the kHz EM precursors under
study and intense magnetic storms is presented. We empha-
size that, based on previously detected kHz EM pre-seismic
anomalies, we have already shown that kHz EM precursors
and magnetic storms share common scale-invariant natures
(Papadimitriou et al., 2008; Balasis et al., 2009a). The rele-
vant analysis is based on the nonextensive model of EQ dy-
namics presented by Sotolongo-Costa and Posadas (2004).

5.2 Similarities between epileptic seizures and
EM precursors

Theoretical studies suggest that EQs and neural-seizure dy-
namics should have many similar features and could be ana-
lyzed within similar mathematical frameworks (Hopfield et
al., 1994; Rudle et al., 1995; Herz and Hopfield, 1995).
Recently, we studied the temporal evolution of the fractal
spectral characteristics in: (i) electroencephalograph (EEG)
recordings in rat experiments, including epileptic shocks,
and (ii) pre-seismic kHz EM time series detected prior to
the Athens EQ. We showed that similar distinctive symp-
toms (including high organization and persistency) appear
in epileptic seizures and kHz EM precursors (Kapiris et al.,
2005; Eftaxias et al., 2006). We proposed that these two ob-
servations also find a unifying explanation within “Intermit-
tent Criticality”.

5.3 Similarities between solar flares and EM precursors

In a recent work Koulouras et al. (2009) investigated MHz
EM radiations rooted in solar flares. A comparative study
show that these emissions include all the precursory features
extracted from the kHz EM emission under study via frac-
tal spectral analysis. Significantly, the solar activity follows
the “persistent fBm model”, while persistent behaviour is
not found in quiet Sun observations. Schwarz et al. (1998)
showed that the time profiles of solar mm-wave bursts are
qualitatively analogous to fBm-model, showing persistent
behaviour. De Arcangelis et al. (2006) presented evidence
for universality in solar flares and EQ occurrences, while Pa-
padimitriou et al. (2008) reported indications for universality
in kHz pre-seismic EM activities and EQs.

In a forthcoming paper we report a successful test of the
universal hypothesis on solar flares and the kHz EM anoma-
lies detected prior to the L’Aquila EQ. The relevant analysis
is based in part on the nonextensive model of EQ dynamics
presented by (Solotongo-Costa and Posadas, 2004).

In summary, the kHz EM precursors under study, epileptic
seizures, solar flares, and magnetic storms contain “univer-
sal” symptoms in their internal structural patterns. These
symptoms clearly distinguish these catastrophic events from
the corresponding normal state.
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6 Discussion and conclusions

A sequence of ULF, kHz and MHz EM anomalies were
recorded at Zante station, from 26 March 2009 up to 4 April
2009, prior to the L’Aquila EQ that occurred on 6 April 2009.
“Are there credible earthquake precursors?” is a question de-
bated in the science community. This paper focuses on the
question of whether the recorded anomalies are seismogenic
or not. Our approach is based on the following key open
questions: (i)How can we recognize an EM observation as
a pre-seismic one?(ii) How can we link an individual EM
precursor with a distinctive stage of the EQ preparation pro-
cess?(iii) How can we identify precursory symptoms in EM
observations that indicate that the occurrence of the EQ is
unavoidable?We study the possible seismogenic origin of
the anomalies recorded prior to the L’Aquila EQ within the
frame work of these open questions. The entire procedure
unfolds in two consecutive parts. Here, in Part 1 of our con-
tribution, we restrict ourselves to the study of the kHz EM
anomalies, which have a crucial role in addressing the above
three challenges. More precisely, we focus on the question
whether the recorded kHz EM anomalies are seismogenic or
not.

In order to develop a quantitative identification of a kHz
EM anomaly, measures of entropy and tools of information
theory have been used to identify statistical patterns; a sig-
nificant change of these patterns represents a deviation from
normal behaviour, revealing the presence of an anomaly.In
principle one cannot find an optimum tool for anomaly detec-
tion. A combination of various tools seems to be the best way
to get a more precise characterization of a recorded anomaly
as pre-seismic.

We analyzed the kHz EM time series in terms of Shannon
n-block entropy, Shannonn-block entropy per letter, condi-
tional entropy, entropy of the source, nonextensive Tsallis
entropy andT -entropy, which refer to a transformed sym-
bolic sequence. For the purpose of comparison we applied
one more tool, approximate entropy which refers directly to
the raw data. We conclude that all the methods applied are
sensitive in distinguishing the launched candidate kHz radi-
ation from the normal background state (noise).the kHz EM
anomalies are characterized by a considerably lower com-
plexity (higher organization, lower uncertainty, higher pre-
dictability and higher compressibility) in comparison to that
of the background.

The spectral fractal technique further distinguishes the
candidate kHz EM precursor from the background.The for-
mer follows the persistent fractional Brownian motion model,
while the noise the fractional Gaussian noise model. We ver-
ify the existence of persistency in the anomalies by R/S anal-
ysis. The indication that the candidate precursor follows the
fractional Brownian motion model is verified by means of
detrended fractal analysis.

The fact that the launch of anomalies from the normal state
is combined by a simultaneous appearance of: (i) a signifi-

cantly higher level of organization, and (ii) persistency, indi-
cates that the process, in which the anomalies are rooted, is
governed by apositive feedback mechanism. Such a mecha-
nism is consistent with the anomalies being a candidate pre-
cursor. The existence of a positive feedback mechanism ex-
presses a positive circular causality that acts as a growth-
generating phenomenon and therefore drives unstable pat-
terns (Telesca and Lasaponara, 2006). It can be the result
of stress transfer from damaged to intact entities or it can re-
sult from the effect of damage in lowering the local elastic
stiffness (Sammis and Sornette, 2002). The appearance of
the property of irreversibility in a probable precursor is one
of the important components of predictive capability (Mor-
gounov, 2001).

In this field of research, the reproducibility of results is
desirable. Significantly, the catastrophic symptoms found in
the candidate kHz EM precursors under study are also found
in rather well established kHz EM precursors associated with
significant EQ that recently occurred in Greece (e.g. Kapiris
et al., 2004; Contoyiannis et al., 2005; Eftaxias et al., 2007;
2008; Kalimeri et al., 2008).

The study of complex systems holds that the dynamics
found in such systems is rooted in universal principles that
may be used to describe disparate problems ranging from
particle physics to the economies of societies. Evidence has
shown that high organization and persistency footprints are
also included in other catastrophic events, such as neural-
seizures, magnetic storms, and solar flares. Part 2 of this
communication further supports the hypothesis that such
phenomena can be investigated in a unified framework (Ef-
taxias et al., 2009b).

We consider whether the clear discrimination of the kHz
EM anomalies that emerged from the normal state prior to
the L’Aquila EQ, even based on a combination of (i) a rather
strong statistical analysis and (ii) striking similarities with
other complex catastrophic events, leads reliably to the con-
clusion that these anomalies were rooted in the preparation
of the L’Aquila EQ.

Our view is that such an analysis by itself cannot establish
an anomaly as a precursor. It likely offersnecessarybut not
sufficientcriteria in order to recognize an EM anomaly as
pre-seismic.

Much remains to be done to tackle precursors systemat-
ically. It is a difficult task to rebate two events separated
in time, such as a candidate EM precursor and the ensuing
EQ. It remains to be established whether different approaches
could provide additional information that would allow one
to accept the seismogenic origin of the recorded kHz EM
anomalies and link these to a corresponding stage of EQ gen-
eration.

In Part 2 (Eftaxias et al., 2009b), based on the strategy
described in the Introduction, we complete our study. We
support the seismogenic origin of the detected kHz-MHz EM
anomalies. In particular, we focus on the questions:How
can we link an individual EM precursor with a distinctive
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stage of the EQ preparation process? How can we identify
precursory symptoms in EM observations that indicate that
the occurrence of the EQ is unavoidable?We will argue that:

(i) The kHz EM anomalies were associated with the
fracture of asperities that were distributed along the
L’Aquila fault sustaining the system. The aspect of self-
affine nature of faulting and fracture is widely docu-
mented from both, field observations and laboratory ex-
periments, and studies of failure precursors on the small
(laboratory) and large (earthquake) scale. It is expected
that this fundamental aspect bridges the regional seis-
micity with activation of a single fault, on one hand,
and the activation of a single fault with laboratory seis-
micity, on the other hand. We verify this prospect in
terms of the detected kHz EM precursor. We show that
the activation the L’Aquila is a reduced self-affine im-
age of the regional seismicity and a magnified image of
laboratory seismicity. Furthermore, ample experimental
and theoretical evidence especially support the hypoth-
esis that natural rock surfaces can be represented by a
fractional Brownian motion scheme over a wide range.
We show that the universal fractional Brownian motion
spatial profile of the L’Aquila fault has been mirrored
into the candidate precursory kHz EM activity. We paid
attention to the fact that the surface roughness has been
interpreted as a universal indicator of surface fracture,
weakly dependent on the nature of the material and on
the failure mode. We conclude that the universal spa-
tial roughness of fracture surfaces pretty coincides with
the roughness of the temporal profile of the kHz EM
anomaly that emerged a few tens of hours prior to the
L’Aquila EQ.

(ii) The MHz EM anomalies could be triggered by frac-
tures in the highly disordered system that surrounded
the backbone of asperities of the activated fault. Frac-
ture process in heterogeneous materials is characterized
by antipersistency, and can be described in analogy with
a thermal continuous second order phase transition. We
show that these two crucial features are mirrored on the
MHz EM candidate precursor.

(iii) We clearly state that the detection of a MHz EM pre-
cursor does not mean that the occurrence of EQ is un-
avoidable The abrupt emergence of kHz EM emissions
indicate the fracture of asperities.
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