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Exploring rater agreement: configurations of agreement and disagreement 
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Abstract 

At the level of manifest categorical variables, a large number of coefficients and models 
for the examination of rater agreement has been proposed and used for descriptive and ex-
planatory purposes. This article focuses on exploring rater agreement. Configural Frequency 
Analysis (CFA) is proposed as a method of exploration of cross-classifications of raters’ 
judgements. CFA allows researchers to (1) examine individual cells and sets of cells in 
agreement tables; (2) examine cells that indicate disagreement; and (3) explore agreement 
and disagreement among three or more raters. Four CFA base models are discussed. The first 
is the model of rater agreement that is also used for Cohen’s (1960) 6 (kappa). This model 
proposes independence of raters’ judgements. Deviations from this model suggest agreement 
or disagreement beyond chance. The second CFA model is based on a log-linear null model. 
This model is also used for Brennan and Prediger’s (1981) 6n. It proposes a uniform distribu-
tion of ratings. The third model is that of Tanner and Young (1985). This model proposes 
equal weights for agreement cases and independence otherwise. The fourth model is the 
quasi-independence model. This model allows one to blank out agreement cells and thus to 
focus solely on patterns of disagreement. Examples use data from applicant selection. 
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Exploring rater agreement: configurations of agreement and disagreement 
 
Rater agreement is of great importance in many domains of research and life. Coders are 

expected to agree when coding video and audio tapes. The majority of voters agrees on 
which party will govern a country over the coming years. Olympic medals in gymnastics or 
boxing are awarded based on agreement among three or more judges, and so forth. For the 
analysis of rater agreement, many measures have been proposed, with Cohen’s (1960) 6 
(kappa) and the coefficient of raw agreement being the most popular ones. In addition, an 
increasing number of models is being discussed that describe the variability in cross-
tabulations of rater judgements, with log-linear models being prominent for manifest vari-
able approaches (e.g., Tanner & Young, 1985; von Eye & Schuster, 2000) and latent class 
models being prominent for latent variables approaches (Schuster & Smith, 2002; Uebersax, 
1993). 

Both the coefficients and the models for rater agreement allow one to test hypotheses 
concerning a priori specified characteristics of rater agreement. For example, Cohen’s 6 is 
used to test the hypothesis that agreement is better than expected based on the chance model 
of rater independence. However, none of the coefficients or models proposed thus far em-
bodies an exploratory component that would allow one to identify those rating categories in 
which two or more raters agree particularly strongly, those categories, in which they agree 
no better than chance, or those categories in which raters show more (or less) disagreement 
than expected based on chance. This article discusses Configural Frequency Analysis (CFA; 
Lienert & Krauth, 1975; von Eye, 2002; von Eye & Gutiérrez Peña, 2004) as a method of 
exploration of rater agreement. 

This article consists of four parts. The first part introduces CFA as a method of explora-
tion of rater agreement. The second part presents four models of CFA that are suitable for 
the exploration of rater agreement. The third part of this article presents data examples, and 
the article concludes with a discussion. 

 
 

1. Exploring raters’ judgements using Configural Frequency Analysis 
 
In this article, we propose using Configural Frequency Analysis (CFA; Lienert & 

Krauth, 1975; von Eye, 2002) as a method for the exploration of cross-classifications of rater 
judgements. CFA is a method that allows one to examine individual cells of a cross-
classification under the null hypothesis that E[mi] = Ei, where E[...] is the expectancy, mi is 
the observed frequency in Cell i, Ei is the expected cell frequency, and i goes over all cells of 
the cross-classification (cf. duMouchel, 1999). CFA labels cells (also called configurations) 
as constituting types if E[mi] > Ei. Configurations constitute antitypes if E[mi] < Ei. 

Three ways of determining estimated expected cell frequencies in CFA have been dis-
cussed (von Eye, 2002). The first involves estimating expected cell frequencies using a log-
linear model.  The second way involves using a priori probabilities, as for instance, in CFA 
of first differences between time-adjacent scores. The third way involves estimation based on 
distributional assumptions. A related approach, proposed by duMouchel (1999), uses empiri-
cal Bayesian methods of data exploration. DuMouchel’s approach defines extreme cells only 
in terms of what would be a CFA type. Therefore, we propose using the methods of CFA 
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which enable one to examine both cells with above expectancy and cells with below expec-
tancy numbers of cases. 

In the following sections, we focus on log-linear models for the estimation of expected 
cell frequencies, for two reasons. First, the majority of CFA models uses log-linear models to 
calculate expected cell frequencies. Second, Cohen’s 6 can be viewed as using a log-linear 
main effect base model, and Brennan and Prediger’s 6n can be viewed as using a log-linear 
no-effect base model, that is, a null model. In the context of CFA, the former model is 
termed a First Order Base Model, and the latter is termed a Zero Order Base Model. 

CFA is typically performed in an exploratory context. In most applications, each cell in a 
cross-classification is examined with the goal of determining whether it constitutes a type or 
an antitype, or whether there is no significant discrepancy from expectation. A large number 
of tests has been proposed for this examination, including the z-test and the binomial test for 
multinomial sampling, and, when sampling is product-multinomial, Lehmacher’s (1981) 
exact and approximative hypergeometric tests. Because the number of statistical decisions 
can be large, protection of the family-wise " is standard procedure in CFA applications (see 
Perli, Hommel, & Lehmacher, 1985). 

When exploring the cross-classification of two raters, one has a number of options which 
cells to examine. The coefficient of raw agreement focuses on the cells in the main diagonal, 
also called the agreement cells. Cohen’s (1960) 6 and Brennan and Prediger’s (1981) 6n are 
proportionate reduction in error measures (see Fleiss, 1975). That is, these measures ask 
whether, overall, the number of observed instances of disagreement is below the expected 
number. This corresponds to asking whether the diagonal cells contain more cases of agree-
ment than predicted from the base model. Thus, CFA of rater agreement can focus on the 
diagonal cells, looking, e.g., for agreement types. However, CFA can also be used to exam-
ine off-diagonal cells, looking, e.g., for disagreement antitypes. Alternatively, CFA can 
examine each cell in the table, looking for patterns of types and antitypes. In the following 
examples, we first opt for examining each cell, and focus on the specification of models on 
which the search for types and antitypes of agreement or disagreement can be based. Later, 
we examine selections of cells, for instance, the disagreement cells (cf. von Eye & von Eye, 
2005). 

Significant deviations from models that focus on all cells can suggest that the two raters  
1) agree more often than expected, if E[mii] > Eii (agreement types); 
2) agree less often than expected, if E[mii] < Eii (agreement antitypes); 
3) disagree more often than expected, if E[mij] > Eij (for i … j) (disagreement types); or 
4) disagree less often than expected, if E[mij] < Eij (for i … j) (disagreement antitypes). 

 
This applies accordingly when agreement among more than two raters is explored. In the 

following section, we describe four CFA base models that we consider for the exploration of 
rater agreement. 

 
 

2. CFA models for the exploration of rater agreement 
 
The four CFA base models that are presented in this section, differ in the assumptions 

made concerning the agreement cells, that is, the cells in the diagonal of the cross-
classification of two or more raters’ judgements. The first two models, the ones for first 
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order and for zero order CFA, do not make any particular assumption concerning the agree-
ment cells, except that the frequency distribution in these cells follows the base models. For 
first order CFA, the base model is that of rater independence. For zero order CFA, the base 
model proposes that no effects exist. The third model considered here was proposed by Tan-
ner and Young (1985) for explanatory analysis of agreement tables. This model proposes 
that raters place equal weights on the agreement cells. The fourth model is specific for the 
exploration of disagreement cells. This model blanks out the agreement cells and searches 
for types and antitypes in the disagreement cells. The following paragraphs describe these 
four models in more detail. 

First or CFA of rater agreement. The base model of first order CFA was the original 
CFA model (Lienert, 1969). In the present context, it proposes independence among the d 
raters whose judgements are crossed. More specifically, the model proposes, for two raters, 

 
log 0 A B

i jm e= λ + λ + λ + , 
 

where m is the vector of observed frequencies, 0λ is the intercept, the A
iλ are the parameters 

for the main effects of Rater A, the B
iλ are the main effects for Rater B, and e is the vector of 

residuals. There are J main effect parameters (J $ 1) for each rater, corresponding to the J + 
1 rating categories used. 

Instead of looking at the overall model fit, CFA examines individual cells and asks 
whether the above null hypothesis must be rejected. If a null hypothesis must be rejected, it 
suggests an agreement type or antitype, or a disagreement type or antitype. Each of these 
indicates a violation of the independence assumption and is interpreted individually. The 
typical result for agreement tables includes a number of agreement types and a number of 
disagreement antitypes. Data examples follow below. 

Zero order CFA of rater agreement. Cohen’s 6 has been criticized for a number of rea-
sons, two of which stand out and are discussed here. The first of the criticisms of Cohen’s 6 
is known as marginal dependence. This characteristic indicates that if (1) the marginal prob-
abilities are unequal and (2) at least one off-diagonal cell has a probability greater than zero, 
6 has an asymptotic maximum score of less than unity. As a result, a comparison of 6 values 
across tables can be problematic. The second criticism, related to the first, is that 6 can indi-
cate low levels of agreement beyond chance although a vast proportion of judgements 
matches exactly. The reason for this characteristic is that large frequencies in diagonal cells 
can conform with expectation as specified in the main effect model, in particular if the mar-
ginals differ from each other. 

To deal with these criticisms, Brennan and Prediger (1981) proposed using the uniform 
distribution model for a base model for 6 instead of the main effect model of rater independ-
ence (cf. von Eye & Sörensen, 1991). The resulting measure of rater agreement, 6n, does not 
suffer from these two criticized characteristics of Cohen’s 6. For a comparative discussion of 
Cohen’s (1960) 6 and Brennan and Prediger’s (1981) 6n, see Hsu and Field (2003). 

In the context of configural exploration of rater agreement, the same discussion can be 
carried. Types and antitypes from first order CFA share characteristics with 6. It can occur 
that the largest number of agreements does not stand out as a type, because this number 
conforms with the expectancy that is based on the model of variable independence. (This 
topic will be taken up again in the discussion section.) 
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Therefore, we suggest, in a fashion analogous to Brennan and Prediger’s (1981) ap-
proach, also considering the null model for exploration of rater agreement. The model is log 
m = 8. Deviations from this model indicate that particular configurations of rating categories 
were observed more often (types) or less often (antitypes) than estimated by the null model. 
This implies that cells emerge as constituting types if they contain significantly more cases 
than the average cell, and cells emerge as constituting antitypes if they contain significantly 
fewer cases than the average cell. 

Tanner and Young’s (1985) equal weight agreement model as a CFA base model. Tanner 
and Young’s (1985) equal weight agreement model (also called the null-association agree-
ment model; see Schuster, 2002) assumes that the parameters for the interaction between 
Rater A and Rater B, AB

ijλ , are all zero. In this respect, this model is identical to the base 
models for Cohen’s 6 and first order CFA. However, in addition, Tanner and Young’s 
(1985) model, which is equivalent to Aickin’s (1990) constant predictive probability model, 
posits an equal weight parameter for the diagonal cells, that is, the agreement cells. For two 
raters, the model can be formulated as the log-frequency model 

 

0log A B
i J ijm e= λ + λ + λ + δ ξ +  

 
where *ij is the vector that contains the weights and > is the parameter that is estimated for 
this vector, and A and B label the two raters. In Tanner and Young’s model, *ij = 1 if i = j 
and *ij = 0, else. For more than two raters, this model can be adapted in a straightforward 
way (von Eye & Mun, 2005). The expression exp(2>) is known to have a simple odds-ratio 
interpretation which reflects the degree of agreement. More specifically, the interpretation is 
 

exp(2 ) ii jj

ij ji

m m
m m

ξ =  

 
(Schuster, 2002). Thus, > can be compared to Cohen’s 6. 

In the present context, however, we are less interested in the overall degree of agreement. 
Instead, we ask whether, in particular cells, types and antitypes exist that contradict the equal 
weight agreement model. If such types and antitypes can be identified, they indicate local 
associations. Just as first order CFA of rater agreement, these associations suggest systematic 
patterns in the joint frequency distribution of the raters. In addition, however, they indicate 
that the hypothesis of equal weights in the agreement cells allows one to explain only part of 
the variation in the agreement table. 

Quasi-independence model for the exploration of disagreement. In particular in contexts 
of rater training, it is important to know where raters disagree. Beyond chance disagreement 
may result in specific training or in re-specifications of agreement scales. A CFA base model 
that is suited to the exploration of disagreement cells is the log-linear quasi-independence 
model. For two raters, this model is 

 

0log A B
i j k

k
m e= λ + λ + λ + λ +∑  
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where the first three terms on the right hand side of the equation are the same as in the first 
order base model. The summation term describes the vectors needed to blank out the agree-
ment cells. In the typical case, J such vectors are needed in a model with J being the number 
of rating categories, i, j = 1, ..., J - 1, and k = 1, ..., J. Types that result from this model indi-
cate disagreement beyond chance, and antitypes indicate lack of disagreement that is beyond 
chance. 

It is important to realize the difference between types and antitypes of disagreement that 
result from the model of quasi-independence and those that result from the first order CFA 
base model. Both models propose independence between raters. However, the first order 
CFA model estimates expected cell frequencies taking into account all cells, including the 
agreement cells. The quasi-independence base model estimates expected cell frequencies 
under exclusion of the agreement cells. Thus, types and antitypes of disagreement describe 
patterns of disagreement rather than judgements in general. 

In the development of CFA as a statistical method, a model that is similar to the present 
quasi-independence model was discussed by Victor (1983) and Kieser and Victor (1999; cf. 
von Eye, 2002). Victor noted that routine CFA base models are specified to include all cells 
of a cross-classification. This includes those cells that end up being identified as types and 
antitypes. The existence of such types and antitypes can have two effects. First, cells that, 
otherwise, would be inconspicuous, can be turned into types or antitypes. Second, possibly 
existing types or antitypes can be obscured by other types or antitypes. In one word, the 
structure in a cross-classification can be misinterpreted because of the existence of the types 
and antitypes one is after. For an example of such a phenomenon see Kieser and Victor 
(1999). 

The authors identify two major reasons for the obscuring of types and antitypes by other 
types and antitypes. The first reason is the well-known dependence of types and antitypes in 
a cross-classification. In extreme cases (typically in small tables), the existence of one type 
predetermines the existence of other types and antitypes (for a proof, see von Weber, 
Lautsch, & von Eye, 2003). The second reason lies in the routine CFA base model. This 
model assumes that types and antitypes do not exist. For these reasons, the authors proposed 
the above log-linear model of quasi-independence as a suitable CFA base model. In a first 
step, this model blanks out those cells that are expected to constitute types or antitypes. If 
this selection is valid, the remaining cells conform to the base model. 

In the present context of exploration of disagreement cells, we propose a similar proce-
dure. We propose blanking out the agreement cells, that is, the cells in the diagonal of an 
agreement table. The remaining cells, that is, the disagreement cells can then be analyzed 
under just any CFA base model, provided there are enough degrees of freedom left for the 
base model. A prime candidate for such a model is the original CFA base model of rater 
independence. However, other models are conceivable. For example, in training studies in 
which raters are trained to avoid scoring errors, one could test hypotheses concerning the 
location of errors over time. 
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3. Data examples 
 
In the following paragraphs, we present data examples. We analyze data from a study on 

the agreement of raters on the qualification of job applicants in a large agency in the United 
States2. A sample of N = 465 interview protocols was examined by two evaluators. Each 
evaluator indicated on a four-point scale the degree to which an applicant was close to the 
profile specified in the advertisement of the position, with 1 indicating very good match and 
4 indicating lack of match (see von Eye & Mun, 2005). Table 1 displays the observed fre-
quency distribution of the cross-classification of the two evaluators. 

Table 1 suggests that the two evaluators agree at a moderate level. Specifically, the Pear-
son X2 = 273.40 indicates significant deviations from independence (df = 9; p < 0.01). Raw 
agreement is 54.41%, that is, the two evaluators agree in over 54% of their decisions exactly. 
For Cohen’s 6, we calculate 0.364 (se6 = 0.032; p < 0.01). This value suggests that the two 
evaluators agree to over 36% better than chance. For Brennan and Prediger’s (1981) 6n, we 
calculate 0.39. This value suggests that the two evaluators agree to almost 40% more often 
than expected based on the reference chance model that posits that both evaluators are inde-
pendent and use the rating categories at equal rates. We now discuss the exploration of this 
cross-classification of raters’ judgements. 

First Order CFA. We now analyze the data in Table 1 under the four base models dis-
cussed in Section 2 of this article. We begin with First Order CFA. Sampling is considered 
multinomial. We select the z-test for the examination of the individual cells, with 
z = (m - e)/ e where m is the observed cell frequency and e is the estimated expected cell 
frequency. The significance level is set to " = 0.05; after Bonferroni-adjustment, it is "* 
=0.05/16 = 0.003. The chance model for First Order CFA is the log-linear main effect 
model log A B

i jm e= λ + λ + λ + , where the superscripts index the two raters. Table 2 displays 
the results of First Order CFA. 

As was noted above, the overall goodness-of-fit Pearson X2 = 273.40 (df = 9; p < 0.01) 
suggests significant deviations from the base model of rater independence. We thus can 
expect types and antitypes to emerge. 

When testing for types and antitypes, the standard null hypothesis is E[mii] = Eii. The 
standard alternative hypothesis is E[mii] … Eii. Based on this specification of hypotheses, 
CFA tests are often considered two-sided, because the sign of the difference between the  
 

 
Table 1:  

Cross-classification of two evaluators’ ratings of job interview protocols 
 

  Evaluator B 
  1 2 3 4 

Evaluator A 1 80 36 10 0 
 2 30 67 41 2 
 3 6 41 85 17 
 4 0 4 25 21 

                                                                                                                         
2 Thanks go to Neal Schmitt for making these data available. 
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Table 2:  
First Order CFA of the rater agreement data in Table 1 

  

      Rater 
        AB          m     e           z      p 
        11         80   31.432      8.663   .000    Type 
        12         36   40.103      -.648   .518 
        13         10   43.626     -5.091   .000    Antitype 
        14          0   10.839     -3.292   .002    Antitype 
        21         30   34.925      -.833   .404 
        22         67   44.559      3.362   .000    Type 
        23         41   48.473     -1.073   .284 
        24          2   12.043     -2.894   .004    
        31          6   37.170     -5.113   .000    Antitype 
        32         41   47.424      -.933   .350 
        33         85   51.589      4.652   .000    Type 
        34         17   12.817      1.168   .242 
        41          0   12.473     -3.532   .000    Antitype 
        42          4   15.914     -2.987   .002    Antitype 
        43         25   17.312      1.848   .064 
        44         21    4.301      8.052   .000    Type 

 
 

observed and the estimated expected cell frequencies is not known to the testing procedures. 
The tail probability with which the protected " is compared is then p = 2@Prob(Z > |z|), where 
Z is the test statistic estimated for a cell, and z is the critical value in the sampling distribu-
tion. However, many researchers who develop and use CFA, do take this sign into account. 
In a parallel fashion, the sign is taken into account in Bayesian data mining (see, e.g., 
DuMouchel, 1999). If the sign is taken into account, the tail probability is p = Prob(Z > |z|) 
for types and p = Prob(Z < |z|) for antitypes. While the former approach to significance test-
ing in CFA is strict and accurate, the latter reflects (1) the data mining and exploratory char-
acteristics of CFA application, (2) the common use of the method, and (3) the way CFA 
programs are written (see, e.g., the programs referred to in Krauth, 1993, or von Eye, 2001, 
2002). In the remainder of this article, we apply, two-sided tests for the data examples. 

Adopting this strategy, we find that first order CFA suggests the existence of four types 
and five antitypes. The types are constituted by Cells 1 1, 2 2, 3 3, and 4 4. These are the 
agreement cells, that is, the cells that contain the cases in which both raters showed perfect 
agreement. Each of these cells contains significantly more cases than could be expected 
based on chance. 

The antitypes are constituted by Cells 1 3, 1 4, 3 1, 4 1, and 4 2. Each of these cells con-
tains significantly fewer cases than could be expected based on chance. Interestingly, this 
pattern of antitypes suggests that instances in which these two raters disagree by two or more 
rating categories occur significantly less often than expected based on the independence 
model. A result of this kind cannot be found using such summary coefficients as Cohen’s 6 
or Brennan and Prediger’s 6n. The same applies to the following observation. 
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None of the cells that indicate a difference of only one rating category between the two 
raters, constitutes a type or an antitype. These are Cells 1 2, 2 1, 2 3, 32, 3 4, and 4 3. Of 
these, only Cell 4 3 has a tendency to contain more cases than expected (p = 0.03). The Bon-
ferroni procedure of protecting " prevents this cell from constituting a type. 

Zero Order CFA. The second base model that we employ for the exploration of the data 
in Table 1 is Zero Order CFA. This analysis uses a chance model parallel to the one used for 
Brennan and Prediger’s (1981) 6n, that is, the log-linear null model log m = 8. Deviations 
from this model can be interpreted in a fashion analogous to deviations from the model for 
First Order CFA, the only difference being that whereas here, deviations indicate the exis-
tence of main effects, an interaction, or both, in First Order CFA, deviations only indicate 
the existence of an interaction, because main effects are taken into account. To create com-
parable results, Zero Order CFA was performed under the same specifications as First Order 
CFA for Table 2. Table 3 presents results. 

The overall Pearson goodness-of-fit X2 for the base model of Zero Order CFA of these 
data is 401.51 which indicates significant deviations from a uniform distribution (df = 15; p 
< 0.01). These deviations are realized in the form of a type-antitype pattern very similar to 
the one shown in Table 2. However, there are two differences of note. First, Cell 4 4 no 
longer constitutes a type. Thus, we cannot conclude that the two raters agree more often than 
expected from a no effect model in their ratings when they use Category 4. In fact, the ob-
served frequency in Cell 4 4 is slightly below average. Second, most of the model-data dis-
crepancies in Table 3 are larger than in Table 2. This difference reflects the differences be-
tween the base models: The main effect model used to estimate the expected cell frequencies 
in Table 2 takes more information into account than the no-effect model used for Table 3. 

 
 

Table 3:  
Zero Order CFA of the rater agreement data in Table 1 

 
   Configuration    m      e           z      p 
        11         80    29.063      9.449   .000    Type 
        12         36    29.063      1.287   .198 
        13         10    29.063     -3.536   .000    Antitype 
        14          0    29.063     -5.391   .000    Antitype 
        21         30    29.063       .174   .862 
        22         67    29.063      7.037   .000    Type 
        23         41    29.063      2.214   .026 
        24          2    29.063     -5.020   .000    Antitype 
        31          6    29.063     -4.278   .000    Antitype 
        32         41    29.063      2.214   .026 
        33         85    29.063     10.376   .000    Type 
        34         17    29.063     -2.238   .026 
        41          0    29.063     -5.391   .000    Antitype 
        42          4    29.063     -4.649   .000    Antitype 
        43         25    29.063      -.754   .452 
        44         21    29.063     -1.496   .134 
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The equal weight agreement base model. We now employ Tanner and Young’s (1985) 
equal weight agreement model for the exploration of the agreement data in Table 1. As was 
indicated above, this model goes beyond the first order CFA model by including a parameter 
for the agreement cells. This parameter can be interpreted as an indicator of strength of 
agreement. Performing a CFA when this parameter is included, implies asking whether types 
and antitypes of agreement or disagreement exist once we take into account the strength of 
agreement between the two raters. Table 4 displays the results from this analysis, for which 
we also used the z-test, and the Bonferroni procedure to protect ". 

 
 

Table 4:  
CFA of the agreement data in Table 1 under the equal weight agreement base model 

 
  Configuration     m      e           z       p 
        11         80    64.389      1.945   .052 
        12         36    25.559      2.065   .039 
        13         10    27.454     -3.331   .000    Antitype 
        14          0     8.598     -2.932   .003    Antitype 
        21         30    20.461      2.109   .035 
        22         67    82.931     -1.749   .080 
        23         41    27.877      2.485   .013 
        24          2     8.731     -2.278   .023 
        31          6    21.139     -3.293   .000    Antitype 
        32         41    26.812      2.740   .006    
        33         85    92.029      -.733   .463 
        34         17     9.020      2.657   .008 
        41          0    10.011     -3.164   .002    Antitype 
        42          4    12.698     -2.441   .015 
        43         25    13.640      3.076   .002    Type 
        44         21    13.651      1.989   .047 

 
 
The equal weight agreement base model for the data in Tables 1 and 4 suggests signifi-

cant data-model discrepancies (X2 = 101.95; df = 8; p < 0.01). This model is significantly 
better than the main effect model without the equal weight agreement parameter that was 
used for the analyses in Table 2 ()X2 = 171.44; )df = 1; p < 0.01). Still, the model itself 
must be rejected. Therefore, we cannot interpret the equal weight agreement parameter (> = 
1.16; se = 0.09), and we expect types and antitypes to emerge. Table 4 shows that 1 type and 
4 antitypes emerge when strength of agreement is taken into account. 

The pattern of types and antitypes differs greatly from the patterns in Tables 2 and 3. 
None of the agreement cells constitutes a type anymore. Taking into account strength of 
agreement thus allows one to explain that part of the variability in the agreement table that is 
due to exactly matching judgements. However, there are disagreement antitypes, and, for the 
first time in the present analyses, disagreement types. The antitypes overlap with the anti-
types identified by First Order CFA. They indicate that disagreement by more than one scale 
point is less likely than expected based on the assumption of rater independence, both with 
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and without taking into account strength of agreement. The sole type is constituted by Cell 4 
3. It suggests that disagreement by just one scale point is more likely than expected when 
strength of agreement is taken into account. Cells 1 2, 2 1, 2 3, 3 2, and 3 4 support this 
interpretation, although none of these indicates beyond chance agreement that is significant 
after the Bonferroni adjustment. Probability poolers as discussed by Darlington and Hayes 
(1999) and von Eye (2002) can be used to test the hypothesis that disagreement by just one 
scale point is more likely than expected by the equal weight agreement base model. 

Log-linear models of quasi-independence for the analysis of disagreement. We now turn 
to the exploration of patterns of disagreement (cf. von Eye & von Eye, 2005). To explore 
disagreement, we employ the log-linear model of quasi-independence and blank out the 
agreement cells in the main diagonal of the agreement table. The CFA results under this base 
model appear in Table 5. To make the results comparable, we again used the z-test and the 
Bonferroni procedure. 

The overall Pearson goodness-of-fit for the base model in Table 5 shows significant data-
model discrepancies (X2 = 77.73; df = 5; p < 0.01). We thus conclude that the disagreement 
cells do not follow a distribution that is conform with the hypothesis of rater independence. 
CFA identifies two types, constituted by Cells 3 4, and 4 3. These types suggest that dis-
agreement by one scale point is more likely than expected under a model of independence 
that focuses exclusively on the disagreement cells. Using probability poolers such as Stouf-
fer’s Z, one can test the hypotheses whether including Cells 1 2, 2 3, and 3 2 in a group that 
also contains the type-constituting cells 3 4, and 4 3 (as well as Cell 2 1) supports the state- 
 

 
Table 5: 

CFA of the data in Table 1 under the log-linear quasi-independence model, blanking out the 
agreement cells 

 
  

  Configuration     m       e           z      p 
        11         80    80.000       .000   - 
        12         36    23.571      2.560   .010 
        13         10    18.847     -2.038   .041 
        14          0     3.582     -1.893   .059 
        21         30    18.049      2.813   .005    
        22         67    67.000       .000   - 
        23         41    46.174      -.761   .446 
        24          2     8.776     -2.287   .022 
        31          6    13.659     -2.072   .038 
        32         41    43.700      -.408   .683 
        33         85    85.000       .000   - 
        34         17     6.641      4.019   .000    Type 
        41          0     4.292     -2.072   .038 
        42          4    13.730     -2.626   .008 
        43         25    10.979      4.232   .000    Type 
        44         21    21.000       .000   - 
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ment that, overall, disagreement by one scale point is more likely than expected. Stouffer’s Z 
is estimated by 
 

1
/

t

i
i

Z Z t
=

=∑ , 

 
where the zi are the z scores that correspond to the probabilities of the configurations that are 
being pooled, and t is the number of configurations being pooled. For the present data, we 
calculate Z = 12.45/√6 = 5.085 and p < 0.01. We thus consider this statement supported. 

 

 
4. Summary and discussion 

 
This article proposed using Configural Frequency Analysis for the exploration of agree-

ment tables. The exploration of such tables is of interest whenever researchers (a) need to 
know more about patterns of agreement and disagreement than can be provided by such 
coefficients as Cohen’s 6 or raw agreement, and (b) hypotheses specific enough to formulate 
models do not exist. For example, when raters or coders are trained, particular tendencies to 
disagree can be detected and training can focus on avoiding such patterns. These tendencies 
may be unknown before analysis. Also, trends shown by raters can be detected using the 
configural approach. 

 
 

4.1 Comparing the models proposed for exploration of rater agreement 
 
This article proposes four log-linear models as base models for the configural exploration 

of rater agreement and disagreement. These models are sensitive to different data character-
istics and thus can suggest different appraisals of agreement and disagreement. We now 
discuss differences among these four models, and provide suggestions as to when each of the 
four models is most suitable. 

The first base model discussed here is that of rater independence. This model takes the 
rater main effects into account. In different words, this base model takes into account the 
possibly differing rates with which raters use rating categories. As a consequence, types and 
antitypes of agreement and disagreement do not reflect the number of occurrences of a 
judgement pattern. Instead, they reflect the number of occurrences beyond (or below) what 
could be expected considering the rates with which raters use the rating categories. Types 
and antitypes from this base model therefore reflect local interactions that result in deviations 
from the probability pattern that is conform with the main effects model. 

One implication of these characteristics of the main effect model is that large cell fre-
quencies can be conform with the main effect model and may thus not result in types. Con-
sider the artificial data in the 2 x 2 cross-classification in Table 6. In this table, the cell with 
the largest frequency fails to constitute an agreement type because the deviation from the 
main effect model is non-significant. Thus, although agreement is very high (raw agreement 
is 90.18%), the main effect base model of first order CFA does not label Cell 1 1 as out of  
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Table 6: 
Sample table in which the cell with the largest frequency does not constitute a type when 

analyzed with first order CFA 
 

Cell frequencies Statistical tests Cell index 
observed expected z p(z) 

11 94 88.39 .59  .56 
12 5 10.61 -1.72 .08 
21 6 11.61 -1.65 .10 
22 7 1.39 4.75 < .01 

 
 

the expected, although it carries the vast majority (93.07%) of the agreement cases. We 
analyze the data in Table 6 using the z-test and the Bonferroni procedure. The adjusted sig-
nificance threshold is "* = 0.0125. 

The results in Table 6 show that both raters made extensive use of the first rating cate-
gory. In 94 out of 112 cases, both raters used this category. In 7 additional cases, they both 
used Category 2. However, Cell 1 1 does not constitute an agreement type. Instead, Cell 2 2 
constitutes an agreement type although it shows no more than 7 cases. Thus, this example 
illustrates that agreement and disagreement types and antitypes reflect interactions rather 
than the mere magnitude of a cell probability. Cohen’s 6 for the example in Table 6 is 0.505. 

If researchers wish that agreement and disagreement types and antitypes also reflect the 
magnitude of a cell probability, the null model of no effects may be the appropriate base 
model. A re-analysis of the data in Table 6, presented in Table 7, illustrates the differential 
characteristics of the First Order and the Zero Order CFA base models. 

Zero Order CFA identifies Cell 1 1 as constituting an agreement type, Cells 1 2 and 2 1 
as constituting disagreement antitypes, and Cell 2 2 as constituting an agreement antitype. In 
different words, for each cell in this table, Zero Order CFA suggests a different type/antitype 
decision than First Order CFA. The probability of Cell 1 1 is significantly above average, 
and the probabilities of the other three cells are significantly below average. Both the main 
effects and the interaction in this table are responsible for this result. As was indicated 
above, the choice of Brennan and Prediger’s (1981) coefficient 6n over Cohen’s 6 (1960) can 
use the same arguments as the choice of the Zero Order CFA base model over the base 
model of First order CFA. 

 
 

Table 7:  
Zero Order CFA of the data in Table 6 

 
Cell frequencies Statistical tests Cell index 

observed expected z p(z) 
11 94 28 12.47  < 0.01 
12 5 28 -4.35 < 0.01 
21 6 28 -4.16 < 0.01 
22 7 28 -3.97 < 0.01 
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The third base model that is proposed here is the equal weight agreement model of Tan-
ner and Young (1985). This model involves a parameter that can be interpreted as a measure 
of strength of agreement. Types and antitypes of agreement and disagreement therefore 
reflect local interactions that go beyond what can be explained based on the rater main ef-
fects and knowledge that describes the strength of agreement. 

When comparing this base model with the fourth of the base models proposed here, it is 
of importance to note that the Tanner and Young model is based on all cells in a table, and 
that statements resulting from this analysis concern both agreement and disagreement pat-
terns. The fourth model proposed here focuses on disagreement, at the exclusion of the 
agreement cells. Therefore, the expected probabilities reflect only the structure of disagree-
ment. The possible existence of types and antitypes of agreement can no longer obscure 
possible types and antitypes of disagreement. Information concerning agreement is not taken 
into account. The interpretation of types and antitypes of disagreement rests on the following 
assumption. If the covariation of two or more raters is carried by their agreement, the distri-
bution in the disagreement cells should be random. Therefore, neither disagreement types 
nor antitypes should surface. If, however, such types and antitypes surface, systematic pat-
terns of disagreement exist that may be worth further consideration, for example in training 
programs. 

 
 

4.2 Alternative base models 
 
Other base models for the exploration of rater agreement and disagreement can be con-

sidered. For example, one can devise a model that takes into account the equal weight 
agreement parameter, but not the main effects. The resulting types and antitypes would then 
reflect only deviations from strength of agreement as viewed from a null model. Here again, 
both main effects and local interactions can be responsible for emerging types and antitypes. 
However, before propagating this model, the interpretation of the equal weight agreement 
parameter under the null model needs to be specified in more detail. 

Another model that may be of interest is the Zero Order CFA base model, applied to the 
agreement table when the agreement cells are blanked out. This model allows one to exam-
ine the disagreement cells with the average disagreement probability in mind. The difference 
between this model and the fourth model proposed here can be described using the same 
arguments as the description of the difference between the first two models proposed here. 

The models proposed here can be extended in a natural way. First, more than two raters 
can be analyzed simultaneously. Second, classification and grouping variables can be taken 
into account. One can ask, for example, whether agreement patterns are the same in samples 
of female and male raters. Two-sample CFA allows one to answer this question. Third, co-
variates can be taken into account. One can ask whether types and antitypes of agreement 
and disagreement still exist when knowledge about other variables is considered. Finally, 
models that take into account scale characteristics, e.g., Goodman’s linear-by-linear associa-
tion model, can be placed in the context of exploration of agreement tables. 

From a computational perspective, it can be noted that all the models discussed in this ar-
ticle can be estimated using general purpose statistical packages such as SAS, SYSTAT, or 
SPSS, or more specialized software such as Lem. Some of the CFA software (von Eye, 
2001) is also capable of estimating these models. 
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In sum, this article proposes tools for the exploratory analysis of agreement tables. Coef-
ficients of agreement provide information about various aspects of strength of agreement. 
The methods proposed here allow one to identify those patterns of agreement and disagree-
ment that deviate in particular from assumptions that are specified in the form of base mod-
els. These assumptions concern either the entire table or a selection of cells. 
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in explaining emergence, structure, and functioning of molar 
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