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Abstract 

In this article, we extend the discussion of prediction models of Configural Frequency Analysis 
(CFA). We build on the correspondence of such prediction models to logit models that was shown by 
von Eye and Bogat (in this issue), and derive additional possible CFA prediction models. These models 
can, as is illustrated, include multiple predictors and multiple criteria. Design matrices are presented for 
each of the models that are discussed, and the corresponding logit models are specified. Data examples 
are presented. 
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Prediction models for Configural Frequency Analysis 
 
One of the more attractive models of Configural Frequency Analysis (CFA; Lienert, 

1968; von Eye, 2002; von Eye & Gutiérrez-Peña, 2004) is that of Prediction CFA. This 
model allows one to identify those predictor patterns that go hand-in-hand with particular 
patterns on the criterion side. Thus far in the literature, only a very limited range of predic-
tion models for CFA has been discussed and applied (Lienert & Krauth, 1973; von Eye, 
1985). In this article, we extend the approach proposed by von Eye and Bogat (2006), derive 
prediction models for CFA from (1) corresponding models of logistic regression (cf. Fien-
berg, 1980),  and (2) the concept of a CFA base model. We focus on models that can be 
expressed in terms of hierarchical log-linear models. 

 
 

1. Prediction CFA 
 
Configural Frequency Analysis (CFA; Lienert, 1968; von Eye, 2002; von Eye, & Gutiér-

rez Peña, 2004) takes a perspective of data analysis that differs from the perspective taken by 
most statistic methods. Most methods analyze data by relating variables to each other. For 
example, the amount of alcohol consumed and body mass are used to predict blood alcohol 
content, or severity of disease is used to predict life expectancy. The variables used in these 
examples are continuous. In categorical variables, the same approach is typically taken. For 
example, graduation odds are predicted from gender and race of student athletes. Methods of 
logistic regression and log-linear modeling are typically used to analyze such data. These 
methods also relate variables to each other. Local deviations from a model are held against 
the model, and steps are undertaken to improve model fit. 

In contrast, Prediction CFA (PCFA) does not ask whether variables are associated with 
each other, interact, or are predictive of each other. PCFA asks whether a particular pattern 
of categorical predictor variables allows one to predict the above or the below expectancy 
occurrence rate of a particular criterion pattern. 

As all other models of CFA, PCFA asks for each cell of the cross-classification of all 
variables under study, whether the observed cell frequency, mr, differs significantly from the 
expected cell frequency, mr, that was estimated under a suitable base model (more detail 
concerning base models follows below), where r goes over all cells of the cross-
classification. The cell-specific null hypothesis is H0: E[mr] = mr. If this hypothesis can be 
rejected, Cell r constitutes a CFA type, if mr > mr, and a CFA antitype, if mr < mr (for details 
concerning testing and α protection in CFA, see von Eye, 2002). 

Standard CFA does not distinguish between groups of variables that differ in status. In 
contrast, PCFA distinguishes between predictors and criteria. To introduce PCFA, let A and 
B be the predictor variables and C the criterion. Crossed, the three variables span a table with 
R cells, indexed as r = 1, ..., R. Let the probability of cell r be πr, the observed cell frequency 
mr, and the expected cell frequency, m*r, estimated under the PCFA base model. 

The main characteristic of CFA base models is that they contain all terms that are not of 
interest to the researcher. If this model is contradicted, at least one of the terms that the re-
searcher is interested in will exist. The base model of the version of PCFA that was proposed 
by Lienert and Krauth (1973) has the following characteristics: 
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1. It is saturated in the predictors. This characteristic is needed to prevent types and anti-
types from emerging just because associations among predictors exist. 

2. It is saturated in the criteria. This characteristic is needed to prevent types and antitypes 
from emerging just because associations among criteria exist. 

3. It proposes independence among predictors and criteria. 
 
Based on this set of characteristics, PCFA types and antitypes indicate predictor - criteria 

relationships at the level of patterns of variable categories. Specifically, if the cell-specific 
null hypothesis H0: E[mr] = mr can be rejected, cell r constitutes a prediction type, if mr > 
m*r, and a prediction antitype, if mr < mr. In different words, if, for the pattern of predictor 
and criterion variables in cell r, more cases are found than expected, the predictor pattern of 
cell r is said to predict the occurrence of the criterion pattern of cell r. If fewer cases are 
found than expected, the predictor pattern of cell r is said to predict the non-occurrence of 
the criterion pattern of cell r. Depending on theory, prediction types are sometimes inter-
preted as causal, for instance by stating that a particular predictor pattern causes a particular 
criterion pattern to occur. Antitypes sometimes are interpreted as causal as well, for instance 
by stating that a particular predictor pattern prevents a particular criterion pattern from oc-
curring. 

Consider the following data example. On January 8, 2003, the New York Times pub-
lished a table in which the three variables Race of Victim (V), Race of Defendant (D), and 
Penalty (P) issued were crossed for a total of 1311 murder cases that had been death penalty-
eligible in Maryland from 1978 to 19993. For the present purposes, we scale the two race 
variables as 1 = black, and 2 = white, and the Penalty variable as 1 = no death penalty and 2 
= death penalty issued. In the following configural analysis, we ask whether there is a rela-
tionship between these three variables such that patterns of the two race variables predict the 
penalty issued. Specifically, we use the PCFA base model [DV][P]. For the cell-wise tests, 
we use the z-test, and we protect α using the Bonferroni procedure which results in the ad-
justed α* = 0.00625. Table 1 presents the results of PCFA. 

 
 

Table 1: 
PCFA of the predictors Race of Victim (V), Race of Defendant (D) and the criterion Penalty (P) 

 
 Configuration m m* z p Type/antitype? 
 VDP 
 111 593 570.094 .959 .169 
 112 14 36.906 -3.770 .000 Antitype 
 121 284 302.422 -1.059 .145 
 122 38 19.578 4.164 .000 Type 
 211 25 24.419 .118 .453 
 212 1 1.581 -.462 .322 
 221 272 277.064 -.304 .380 
 222 23 17.936 1.196 .116 
                                                                                                                         
3 The frequencies in the following analyses sum to 1250. This discrepancy to the sample size reported in the 

New York Times is the result of rounding (the paper only reported % values), and the newspaper’s omission 
of 5% of cases that did not fall in the above eight patterns (mostly other-race cases). 
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The overall likelihood ratio X2 for the CFA base model is 35.34. This value suggests sig-
nificant data - model discrepancies (df = 3; p < 0.01). We thus can expect types and antitypes 
to emerge. Indeed, PCFA suggests that one type and one antitype exist. The antitype indi-
cates that the pattern black defendant - black victim is less likely to result in the death pen-
alty than one would expect under the assumptions specified in the PCFA base model. The 
type indicates that the pattern white defendant - black victim is more likely to result in the 
death penalty than expected from the PCFA base model. From these results, we conclude 
that there exists a predictors - criterion relationship such that two cells violate the PCFA base 
model. 

 
 

2. Logistic regression 
 
Logistic regression is a method to estimate the occurrence probability of one of the cate-

gories of a dependent variable using one or more predictors. The predictors can be categori-
cal or continuous. In the present context in which we create parallel logistic regression and 
PCFA models, we focus on categorical variables only. 

To illustrate, consider the example from Section 1 again. Let the probability of the death 
penalty being issued be denoted by 1Pp . Then, the logistic regression model for the two 
predictors, V, and D, and the criterion, P, is 
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where α is the model constant, and the β are the parameter estimates (for alternative repre-
sentations of this model see, e.g., Agresti, 2002). It is well known that this model can be 
equivalently expressed in terms of a log-linear model. Specifically, the log-linear model that 
is equivalent to the above logit model is  
 

0log ,V D P VD VP DP
i j k ik jk ijm λ λ λ λ λ λ λ∗ = + + + + + +  

 
where the λ are the unknown model parameters, the subscripts index the parameters, and the 
superscripts indicate the variables. In bracket notation, this model can be expressed by 
[VD][VP][DP]. 

We now estimate this model for the data in Table 1. Table 2 displays the observed and 
the expected cell frequencies for this logistic regression analysis. To appraise overall good-
ness-of-fit, the Hosmer and Lemeshow test was performed. 
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Table 2: 
Observed and expected cell frequencies for the logistic regression model for the data in 

Table 1 
 

 1.00Pp =  1.00Pp =   
V D Observed Expected Observed Expected Total 
1 1 593 592.42 14 14.58 607 
1 2 284 284.58 38 37.42 322 
2 1 25 25.58 1 .42 26 
2 2 272 271.42 23 23.58 295 

 
 
Obviously, the discrepancies between the observed and the expected cell frequencies are 

much smaller in Table 2 than in Table 1. Accordingly, the Hosmer and Lemeshow goodness-
of-fit X2 = 0.88 suggests that the model - data discrepancies are non-significant (df  = 1; p = 
0.35). Table 3 shows that Race of Defendant is the only significant predictor. Both predictors 
were entered simultaneously. 

 
Table 3: 

Regression table for logistic regression of the data in Table 1 
 

 b S.E. Wald df Sig. Exp(b) 
V(1) -.414 .272 2.316 1 .128 .661 
D(1) 1.675 .311 29.058 1 .000 5.341 

Constant 2.443 .213 131.859 1 .000  
 
 

3. Prediction models for CFA 
 
Models of logistic regression with one dependent measure have the following character-

istics:  
a) They are saturated in the predictors; 
b) They contain the terms that relate individual predictors and their interactions to the crite-

ria. 
 
An example of such a model for three variables was given above. It was the model 

[VD][VP][DP]. This model is saturated in the predictors, because it contains all main effects 
and the interaction between the two predictors, V and D. It also contains all bivariate predic-
tor-criterion relationships. Including the three-way interaction would render this model satu-
rated. 

This model is the standard model of logistic regression of one categorical criterion and 
two categorical predictor variables. Other models are conceivable (see Agresti, 2002). We 
now discuss these models in the context of PCFA. For each model, we discuss the terms of 
interest in logistic regression, and the terms (not) of interest in PCFA. We begin with the 
simplest model, [VD][P], in which no relationship between the predictors and the criterion is 
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assumed. This and the following models form a hierarchy. At the higher levels of the hierar-
chy, increasingly complex predictor-criterion relationships are modeled. 

The simplest model, [VD][P], states that the criterion is jointly independent of the two 
predictors. This is equivalent to the logit model that only has an intercept. It can be contra-
dicted only if predictor-criterion relationships exist. Each of the terms not included in the 
model relates one or both predictors to the criterion. These are the terms [VP][DP], and 
[VDP]. From the perspective of PCFA, this logistic regression model could be a base model 
also. If V and D are unrelated to P, this base model will fit, and there will be no prediction 
types or antitypes. A graphical representation of this model appears in Figure 1. 

At the next hierarchical level, we find two models. These are the models [VD][VP] and 
[VD][DP]. In each of these models, the criterion is related to one of the predictors, and the 
relationship of this predictor to the respective other one is taken into account. Specifically, 
using the model [VD][VP], P is predicted from V only. From the perspective of PCFA, the 
relationship of interest is the one between the predictor V and the criterion P. This relation-
ship must not be part of the base model. The relationship between the second predictor, D, 
and the criterion, P, is assumed to be non-existing (or not of interest). Therefore, it is part of 
the PCFA base model. In all, the PCFA base model for the logistic regression model 
[VD][VP] is [VD][DP]. A graphical representation of this model appears in the left panel of 
Figure 2. Accordingly, the PCFA base model for the logistic regression model [VD][DP] is 
[VD][VP]. This model is depicted in the right panel of Figure 2. The models in the left panel 
of Figure 2 (Model 2a in Table 4, below) and in the right panel of Figure 2 (Model 2b in 
Table 4) are hierarchically unrelated to each other. 
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Figure 1: 
Graphical representation of the logistic regression and PCFA model [VD][P]; the double-

headed arrow indicates an association 
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Figure 2: 
Graphical representation of (1) the logistic regression model [VD][VP] and the PCFA base 
model [VD][DP] (left panel), and the  logistic regression model [VD][DP] and the PCFA 

base model [VD][VP] (right panel) 
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The most complex, non-saturated model is the one in which both predictors are related to 
the criterion variable. This is the logistic regression model [VD][VP][DP]. The only term not 
included in this model is the three-way interaction term which would make the model satu-
rated. The two relationships of interest from the perspective of predicting the dependent 
variable, P, are [VP][DP]. Therefore, these terms as well as the three-way interaction are not 
part of the PCFA base model. This model is thus [VD][P]. This model is illustrated in the 
first data example, in Section 1, and depicted in Figure 3. 

The model that also includes the interaction among all three variables, [VDP], is satu-
rated. If the outcome variable is binary, this model is equivalent to a logit model with an 
interaction between the predictors, V and D. This model describes the data well if, for in-
stance, the VP odds ratio varies across the categories of D. In the present context, this model 
is of lesser interest. Because it is saturated, the corresponding PCFA base model would be 
the same as for Models 1 and 3. This model can be contradicted by any predictor - criterion 
interaction. Table 4 summarizes the logistic regression and the PCFA base models that were 
discussed in this section. The design matrices for each of the models are given in the appen-
dix. The base models are hierarchical log-linear. 
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Figure 3: 
Graphical representation of the logistic regression model [VD][VP] [DP] and the PCFA base 

model [VD][P] 
 
 

Table 4: 
Logistic regression models and corresponding PCFA base models 

 
Model in 
hierarchy 

Log-linear 
representation 

Logit model Corresponding 
PCFA base 
model 

Terms not part of 
PCFA base modela 

1 [VD][P] α  [VD][P] [VP][DP][VDP] 
2a [VD][VP] V

iα β+  [VD][DP] [VP][VDP] 

2b [VD][DP] D
jα β+  [VD][VP] [DP][VDP] 

3 [VD][VP][DP] V D
i jα β β+ +  [VD][P] [VP][DP][VDP] 

4 [VDP] V D VD
i j ijα β β β+ + +  [VD][P] [VP][DP][VDP] 

aIn this column, the lower order terms are included in addition to the higher order terms, although they are 
redundant; this was done to illustrate the predictor-criterion relationships not included in the PCFA base 
models. 
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Table 4 shows that, from a PCFA perspective, the first and the third models in the hierar-
chy are equivalent. The first model states that neither predictor is related to the criterion. The 
third model states that both predictors are related to the criterion. The base model for both 
states that neither predictor is related to the criterion. Both models can be contradicted only 
if predictor-criterion relationships exist. Thus, if types and antitypes emerge, the first model 
can be interpreted as contradicted. In contrast, types and antitypes for the third model con-
firm the model, suggesting that, at least locally, the predictors and the criterion are related to 
each other. 

 
 

4. Data examples 
 
In this section, we present a data example for the models 1 through 3 in Table 4. We use 

the example from Section 1. For each model, we present results from logistic regression and 
PCFA. 

The PCFA results for Model 1 were already given in Table 1. Therefore, we start with 
the equivalent logistic representation. 

 
 

Table 5:  
Observed and expected cell frequencies for the logistic regression Model 1  

 
 

 1.00Pp =  1.00Pp =   
V D Observed Expected Observed Expected Total 
1 1 593 570.09 14 36.91 607 
1 2 284 302.42 38 19.58 322 
2 1 25 24.42 1 1.58 26 
2 2 272 277.06 23 17.94 295 

 
 
Only the intercept parameter α is included in the model. This representation leads to a 

goodness-of-fit statistic of X2 = 35.95 (df = 3; p < 0.01), and a rejection of the model. The 
parameter statistics are given Table 6.  

 
 

Table 6:  
Regression table for Model 1 

 
 b S.E. Wald df Sig. Exp(b) 

Const 2.737 .118 535.997 1 .000 15.446 
 
 
The next models in the hierarchy emanating from Table 1 are the Models 2a and 2b. The 

PCFA base Model 2a is [VD][DP], which leads to the frequencies given in Table 7. 
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Table 7:  
PCFA of Model 2a 

 
 Configuration m m* z p Type/antitype? 
 VDP 
 111 593 592.62 .016 .494 
 112 14 14.38 .100 .460 
 121 284 290.17 .362 .359 
 122 38 31.83 1.093 .137 
 211 25 25.38 .075 .470 
 212 1 .62 .482 .315 
 221 272 265.83 .378 .353 
 222 23 29.17 1.142 .127 

 
 
Since this base model fits the data well (X2 = 3.03; df = 2; p = 0.220), no types and anti-

types are detectable. The logistic regression representation and the parameter statistics are 
given in Table 8 and Table 9, respectively. The model fit indicated by a X2-value of 36.43 (df 
= 2; p < 0.01) is again not tenable. 

 
 

Table 8:      
Observed and expected cell frequencies for the logistic regression Model 2a 

 
 1.00Pp =  1.00Pp =   

V D Observed Expected Observed Expected Total 
1 1 593 573.02 14 33.98 607 
1 2 284 303.98 38 18.02 322 
2 1 25 24.06 1 1.94 26 
2 2 272 272.94 23 22.06 295 

 
 

Table 9: 
Regression table for Model 2a 

 
 b S.E. Wald df Sig. Exp(b) 

V (1) .310 .256 1.464 1 .226 1.363 
Const 2.737 .118 535.997 1 .000 15.446 
 
 
The effect parameter 1

Vβ  provides no significant contribution for the model. Concerning 
PCFA, Model 2b differs from Model 2a in that it includes the interaction [VP] instead of 
[DP]. Regarding the logistic regression, the effect of Race of Defendant, 1

Dβ , is included. 
The corresponding observed and expected frequencies for PCFA and logistic regression are 
given in Table 10 and Table 11, respectively, and the regression statistics appear in Table 12.  
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Table 10:  
PCFA of Model 2b 

 
 Configuration m m* z p Type/antitype? 
 VDP 
 111 593 573.02 .834 .202 
 112 14 33.98 3.428 .000 Antitype 
 121 284 303.98 1.146 .126 
 122 38 18.02 4.707 .000 Type 
 211 25 24.06 .192 .576 
 212 1 1.94 .675 .250 
 221 272 272.94 .570 .284 
 222 23 22.06 .200 .420 

 
 
The model fit is poor (X2 = 36.44; df = 2; p < 0.01) and, as expected, types and antitypes 

are detected: A black victim and a black defendant allow one to predict that the death penalty 
is not issued. In contrast, a black victim and a white defendant allow one to predict that the 
death penalty is issued. 

 
 

Table 11:  
Observed and expected cell frequencies for the logistic regression Model 2b 

 
 1.00Pp =  1.00Pp =   

V D Observed Expected Observed Expected Total 
1 1 593 592.62 14 14.38 607 
1 2 284 290.17 38 31.83 322 
2 1 25 25.38 1 .62 26 
2 2 272 265.83 23 29.17 295 

 
 

Table 12: 
Regression table for Model 2b 

 
 b S.E. Wald df Sig. Exp(b) 

V (1) 1.509 .294 26.317 1 .000 4.522 
Const 2.210 .135 268.304 1 .000 9.116 
 
 
The goodness-of-fit value of X2 = 3.03 ( df = 2; p = 0.22) indicates that the observed and 

expected frequencies match and the contribution of the effect parameter 1
Dβ is significant. 
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As obvious from Table 4, the PCFA representation of Model 3 is equivalent to Model 1. 
Therefore, the corresponding expected frequencies are as given in Table 1. Furthermore, the 
logistic regression outputs for Model 3 are already given in Table 2 and 3. 

Extensions. The ordinary binary logistic approach is only applicable for a binary re-
sponse variable. For a polytomous response, the generalization of this model is straightfor-
ward: The multinomial logistic regression model. If more than one response variable is part 
of a model, the logistic regression approach is not appropriate anymore, since the approach 
to regression used above allows only one dependent variable on the left side of the linear 
model equation. Thus, only the log-linear and the PCFA representations are feasible. An 
extension of the current example could be an additional variable that indicates whether the 
trial went into retrial, denoted by R (1 = yes, 2 = no), which acts as additional response vari-
able. Thus, we use V and D to predict P and R. The models corresponding to the model 
hierarchy given in Table 4 are given in Table 13. 

 
 

Table 13: 
log-linear representations, logit models, and corresponding PCFA base models 

 
Model in 
hierarchy 

Log-linear representation Logit 
model 

Corresponding PCFA base 
model 

1 [VD][PR] - [VD][PR] 
2a [VD][PR][VP][VR] - [VD][PR][DP][DR] 
2b [VD][PR][DP][DR] - [VD][PR][VP][VR] 
3 [VD][PR][VP][DP][VR][DR] - [VD][PR] 

 
 
These models are consistent with the figures in Section 3. It should be noted, however, 

that on the response side, the interaction between the criteria must be part of the model since 
the aim of PFCA with more response variables is to predict patterns of the response variables 
(e.g., patterns of PR) from predictor patterns (e.g., patterns of VD). 

 
 

5. Discussion 
 
Thus far, the prediction models that were discussed for CFA were rather simple, and the 

correspondence to other prediction models for categorical variables was not known. The 
article by von Eye and Bogat (2006, in this issue) was the first to specify the relationship 
between PCFA and logistic regression. The present work extends this discussion by defining 
various models of PCFA and by showing the correspondence of these models with logit 
models. 

It is only natural to ask whether this approach to PCFA can be carried even further. For 
example, one can ask whether mediator and moderator models can be distinguished at the 
level of PCFA, and if they can be translated into CFA base models. Such models would 
carry the idea of local relationships (Havránek & Lienert, 1984) further, and apply it to the 
level of relations among three or more variables, none of which shares status with any other. 
In the extreme, three-variable case, one variable could be external, the second variable could 
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be both external and internal, and the last variable could be internal. Based on this classifica-
tion, mediator models can be defined. In these models, variable relations are defined at the 
level of local associations that manifest in types and antitypes. Accordingly, chains of vari-
able relations can be considered, and patterns of causal relationships (as originally proposed 
by von Eye & Brandtstädter, 1997). 

 We conclude that the correspondence between log-linear models and CFA base 
models carries farther than just stating that the original CFA base model is a log-linear main 
effect model. We see that more complex models can be derived. As will be seen in the dis-
cussion of mediator models (von Eye, 2006), some of these base models will even be non-
hierarchical. 

 
 

References 
 

1. Agresti, A. (2002). Categorical data analysis, 2nd ed. New York: Wiley. 
2. Fienberg, S. E. (1980). The analysis of cross-classified categorical data. (2nd ed.). Cambridge, 

MA: MIT Press. 
3. Havránek, T., & Lienert, G. A. (1984). Local and regional versus global contingency testing. 

Biometrical Journal, 26, 483 - 494. 
4. Lienert, G. A. (1968). Die "Konfigurationsfrequenzanalyse" als Klassifikationsmethode in der 

klinischen Psychologie. Paper presented at the 26. Kongress der Deutschen Gesellschaft für 
Psychologie in Tübingen 1968. 

5. Lienert, G. A., & Krauth, J. (1973). Die Konfigurationsfrequenzanalyse als Prädiktionsmodell 
in der angewandten Psychologie. In H. Eckensberger (Ed.), Bericht über den 28. Kongress 
der Deutschen Gesellschaft für Psychologie in Saarbrücken 1972 (pp. 219 - 228). Göttingen: 
Hogrefe. 

6. von Eye, A. (1985).  Konfigurationsfrequenzanalyse bei gerichteten Variablenbeziehungen 
(GKFA).  EDV in Medizin und Biologie, 16, 37-40.   

7. von Eye, A. (2002). Configural Frequency Analysis - Methods, Models, and Applications. 
Mahwah, NJ: Lawrence Erlbaum. 

8. von Eye, A. (2006). Configural mediator analysis. (in preparation) 
9. von Eye, A., & Bogat, G.A. (2006). Logistic regression and prediction Configural Frequency 

Analysis - A comparison. (This issue) 
10. von Eye, A., & Brandtstädter, J. (1997). Configural Frequency Analysis as a searching device 

for possible causal relationships. Methods of Psychological Research - Online, 2, 2, 1 - 23. 
11. von Eye, A., & Gutiérrez-Peña, E. (2004). Configural Frequency Analysis - the search for 

extreme cells. Journal of Applied Statistics, 31, 981 - 997. 
 
 

APPENDIX 
 
Here, the design matrices for the Models 1- 3 are presented. We use dummy coding with 

Category 2 as reference, for every variable in the model. For each model, just one design 
matrix is produced. The vectors needed for logistic regression (and its corresponding log-
linear representation), and for PCFA, will be indicated. 
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Model 1 
 

Const V D P VD 
1 1 1 1 1 
1 1 1 0 1 
1 1 0 1 0 
1   1 0 0 0 
1 0 1 1 0 
1 0 1 0 0 
1 0 0 1 0 
1 0 0 0 0 

 
 
For model 1, the design matrix is the same for the log-linear and the PCFA representa-

tion. 
 
 

Model 2a 
 

Const V D P VD VP DP  
1 1 1 1 1 1 1 
1 1 1 0 1 0 0 
1 1 0 1 0 1 0 
1   1 0 0 0 0 0 
1 0 1 1 0 0 1 
1 0 1 0 0 0 0 
1 0 0 1 0 0 0 
1 0 0 0 0 0 0 

 
 
The log-linear and the PCFA model differ with respect that for the latter DP is required 

instead of VP. The logistic regression approach needs the intercept, as always, the main 
effects of all three variables, and the interactions between V and D and between V and P. 
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Model 2b 
 

Const V D P VD VP DP  
1 1 1 1 1 1 1 
1 1 1 0 1 0 0 
1 1 0 1 0 1 0 
1   1 0 0 0 0 0 
1 0 1 1 0 0 1 
1 0 1 0 0 0 0 
1 0 0 1 0 0 0 
1 0 0 0 0 0 0 

 
 
The design matrix as a whole is the same as in Model 2a. In Model 2b however, the log-

linear and logistic regression design vectors are the same as the PCFA representation for 
Model 2a. In turn, the PCFA Model 2b requires the same vectors as the log-linear Model 2a. 

 
 

Model 3 
 
Const V D P VD VP DP  
1 1 1 1 1 1 1 
1 1 1 0 1 0 0 
1 1 0 1 0 1 0 
1   1 0 0 0 0 0 
1 0 1 1 0 0 1 
1 0 1 0 0 0 0 
1 0 0 1 0 0 0 
1 0 0 0 0 0 0 

 
 
Again, the design matrix as a whole is the same for Model 3. The log-linear and logistic 

regression representations need the whole design matrix, whereas the PCFA model is defined 
by the same vectors (i.e., main effects plus VD interaction) as the PCFA Model 1. 

 


