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Combinatoric search for types and antitypes 
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Abstract 

The combinatoric strategy of searching for types, proposed by Kieser and Victor (1991), is embed-
ded into the frame of standard CFA methodology. As part of this approach, additional, new terms are 
included in the search procedure. Including these terms leads to clear improvements. A comparison of 
the new, combinatoric method with four other CFA test procedures shows the power of the new algo-
rithm. It performs better than the comparison methods under all simulated conditions. 
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1. Introduction 
 
In 1991, Kieser and Victor published “a test procedure for an alternative approach to 

Configural Frequency Analysis.” This procedure is based on Victor’s (1989) alternative 
statistical type concept. In this approach, types or antitypes are constituted by cells that pos-
sess an additional probability mass (in the case of types) or lack it (in the case of antitypes), 
compared to the expectation that is based on some base model which reflects the relation of 
the attributes of the remaining cells. In their 1991 article, Kieser and Victor considered the 
case of a single type or antitype, that is, the case of a single structural zero. The expected 
frequency for cell k, ˆke , was estimated using Goodman’s (1968) ML estimator (cf. Victor, 
1983). In the section on generalizations, Kieser and Victor formulated a general procedure 
for the exploratory search for types in a given contingency table, C with I cells. The authors 
write (1991, pp. 91 - 92) “ 
1. Fix a number, m, 1 ≤ m ≤ I, as the number of types to search for 
2. Search a minimal set U ⊂ I, |U| ≤ m, so that C(I\U) is quasi-independent and C(U) is a set 

of type configurations.”  
 
In their 1999 article, Kieser and Victor applied this concept in the context of log-linear 

modeling. The use of log-linear models has the advantage that new models and, thus, CFA 
base models, can be created with simple changes in the design matrix. Types are found as 
large residuals with a positive deviation, and antitypes are large negative residuals. A multi-
plicity issue arises from the fact that for types or antitypes to be constituted, both the null 
hypotheses for the non-type/non-antitype cells and the alternative hypotheses for the 
type/antitype cells must be retained. 

 
 

2. The pure combinatoric search algorithm 
 
Let a contingency table {nijk} be given with Nc cells (configurations, symptom configura-

tions) where nijk is the observed frequency of cases with symptom configuration (i, j, k). The 
dimension of the table is d ≥ 2, with I rows, J columns, and so forth. With Kieser and Victor, 
we assume that whereas most of the cells obey the base model of independence, only a few 
type cells or antitype cells are outliers. In the following paragraphs, we describe the combi-
natoric search algorithm. 

 
Step 1: Estimate the maximum number nt, max of types to search for. In this article, we 

used the formula nt, max = round(df 0.5 - 0.49), where df is the degree of freedom of the table. 
For example, if df has a value of 4 ≤ df ≤ 8, we find nt, max = 2. Then, mark a first cell of the 
table, and set number nt of actually assumed type cells to nt = 1. 

 
Step 2: Calculate the so-called Victor expectancies, ˆ*

ijke , of all cells using the Deming-
Stephan EM algorithm. Marked cells are assumed to be type cells or antitype cells. Then, 
calculate two X2 sums, the first from all marked cells, and the second from all unmarked 
cells: 

 



Combinatoric search for types and antitypes 403 

ˆ 2*
ijk ijk2

t *
ijkmarked

(  - )n e = X
e∑  
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Using 2

tX  and 2
nonX , calculate the F-statistic 

 
2
t c t

2
non t

(  - )N nXF = 
 nX

 

 
Step 3: Mark the next cell and repeat Step 2. Continue until all cells are tested. If nt, max > 

1 holds, continue with pairwise combinations of marked cells (case nt = 2), e.g., (1, 2), (1, 3), 
... If nt, max > 2 holds, continue with triples of marked cells (case nt = 3), e.g., (1, 2, 3), (1, 2, 
4), ... This combinatoric search continues until nt = nt, max holds. From all calculated F-values, 
we take the maximum value and store the vector of Victor expectancies ˆ*

ijke , but not the 
pattern of type cells. 

 
Step 4: The confirmatory hypotheses tests are performed using the local test of Dunkl 

and von Eye (1990) with the Victor expectancies ˆ*
ijke  that result in Step 3, 

 
ˆ*

ijk ijk

*2
ijk

 - n eX  = ,
(1 - K)σ

 

 
with variance ˆ ˆ ˆ* * **2

ijk ijk ijk ijk = (  + 0.5)/(  - 0.5).e e eσ  Here, K is the table-specific continuity correc-
tion introduced by von Weber, Lautsch, and von Eye (2003a; cf. von Weber, Lautsch, & von 
Eye, 2003b).  The significance threshold α can be adjusted using, for example, Holm’s pro-
cedure. 

 
 

3. Improvements of the F statistic 
 
In the simulations, the size of the tables was varied, that is, we used tables that differed in 

dimensionality, degrees of freedom, and mean frequencies (more detail follows below). The 
simulations showed that the simple F-statistic described above can be improved. The first 
improvement is based on the observation that type cells often are constituted by cells with 
above average frequencies. Antitypes often are constituted by cells with below average fre-
quencies. We formulated three different terms, called frequency bonuses, B1, B2, and B3  to 
evaluate this observation, 
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1 ijk

2
2 ijk

3 ijk

= |  - m | /m,nB

= (  - m /m,)nB

=  - m /m.nB

 

 
Each summand of 2

tX  was multiplied by either B1, B2, or B3. Simulating tests for tables 
of dimensions d = 2 and df = 8 resulted in β-errors as shown in Figure 1. The β-errors for 
tables with dimension d = 3 and df = 4 are shown in Figure 2. 

 
 

 
 

Figure 1:  
β-errors of types for different frequency bonuses over mean cell frequency m,  

for d = 2 and FG = df = 8 

 

 
 

Figure 2:  
β-errors of types for different frequency bonuses over mean cell frequency m,  

for d = 3 and FG = df = 4 
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Both figures suggest that the β-errors are minimal for B2. Therefore, B2 was selected to 
become part of the search statistic F. 

Detecting antitypes is much more difficult than detecting types. We use the type strength 
τ (see below and von Weber, 2000, von Weber et al., in press) to declare the lack of prob-
ability density. A type strength of τ = 2 multiplies the base frequency *

ijke  by (1 + τ) = 3, 
and, for antitypes, divides the base frequency by (1 + τ). Consider, for example, a base fre-
quency of cell ijk of *

ijke  = 20. A type cell is then expected to contain eijk = 20⋅3 = 60 cases. 
An antitype cell is then expected to contain eijk = 20/3 = 7 cases. Calculating the X2-

component for the type cell, one obtains 
2

2 (60 - 20 )=  = 80X 20
. For the antitype cell, one 

gets
2

2 (7 - 20 ) =  = 8.5.X 20
 Obviously, the X2-component is much larger for type cells. We 

performed simulations in which we varied bonuses that would make the search for antitypes 
easier. The resulting optimal bonus is 

 
ˆ*

ijk

ijk

eA =  .
n

 

 
 (If nijk < 3, we use A = ˆ*

ijke /3.) The antitype bonus follows from the relation 

ˆ*
ijkijk = (1 + ),ne τ  for antitypes. To obtain the same X2 component as in the type case, one 

would have to use the factor A2 = (1 + τ)2. However, our simulations suggest that bonus A 
leads to better results than bonus A2. Bonus A is multiplied with each summand of 2

tX , if for 
the cell marked as possible antitype nijk < ˆijke  holds. Here, ˆijke  is the common expectancy of 
independence. The following figures 3 and 4 illustrate the effects of the bonuses A and B. 

The figures suggest that 
- Antitypes are detectable only if the mean cell frequency is m > 20 
- Types become harder to detect if an antitype bonus with  m < 20 is used. 

 
Therefore, our algorithm uses the antitype bonus A in the calculation of the F-statistics 

only for tables with m ≥ 20. 
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Figure 3: 
β-errors of types and antitypes for different frequency-bonuses over mean cell frequency m, 

for FG = df = 8 and d = 2 
  

 
 

 
 

Figure 4:  
β-errors of types and antitypes for different frequency-bonuses over mean cell frequency m, 

for FG = df = 4 and d = 3 
 
 



Combinatoric search for types and antitypes 407 

3. Test data generation for simulations 
 
Data were generated with the same characteristics as in von Weber et al. (2003a). The re-

sulting tables varied in the number of variables, d, that span the table, the degrees of free-
dom, df, and the sample size, N, specifically, the average number of cases per cell, m = N/Nc 
with Nc indicating the number of cells. In addition, type strength, τ, and distribution type, 
DT, were varied as in the earlier studies. 

The type strength, τ, describes the weight of a type or an antitype. τ is the main determi-
nant for the estimation of the magnitude K of the continuity correction. The concept of type 
strength can be derived from Lienert’s (1969) definition of a contingency type: a cell that 
constitutes a type contains more cases than expected based on the assumption of variable 
independence. In more general terms, types can be defined as constituted by cells in which 
the discrepancy between the observed relative frequency and expected probability that was 
estimated using some base model is large, given a particular definition of deviation from 
independence (Goodman, 1991;von Eye, Spiel, & Rovine, 1995). 

Let nijk be the observed cell frequency and ˆ*
ijke  the expected frequency, estimated using 

Victor’s log-linear models of quasi-independence (Kieser & Victor, 1999; Victor, 1989; cf. 
Lautsch & von Weber, 2003). Then, the ratio ˆ*

ijk ijk/  n e  is an estimate of τ + 1 (see also the 
discussion of relative risk in von Eye & Gutiérrez Peña, in this issue). The difference nijk -
ˆ*

ijke  represents the surplus frequency in Cell (i, j, k) that constitutes a type. A cell with nijk 

= ˆ*
ijke  thus carries a type strength of zero, and τ = 0. If nijk is twice as large as ˆ*

ijke , one ob-

tains ˆ ˆ* *
ijk ijk ijk = (  - )/n e eτ , etc. A cell constitutes an antitype if nijk < ˆ*

ijke . The strength τ of an 

antitype is defined by τ = ( ˆ*
ijke  - nijk)/nijk. If the strength of an antitype is τ = 1, the observed 

frequency of Cell (i, j, k) is half the size of the expected frequency. 
There is an obvious asymmetry in the formulation of types and antitypes, as was noted 

already in earlier publications (Lautsch & von Weber, 2003; von Weber et al., 2003a). The 
reason for this asymmetry is that a type strength of τ → ∞ should, in principle, be possible 
for antitypes. However, the logical lower limit for cell frequencies is zero, for two reasons. 
First, small cell probabilities can result in zero observed cases unless samples are very large, 
because observed frequencies manifest in natural numbers. Second, probabilities can be zero 
as in the case of structural zeros. In either case, there are natural limits to the specification 
that the observed frequency be half the size of the expected frequency if the strength of an 
antitype is τ = 1. This applies accordingly to greater strength values. 

The maximum type strength, τmax, of a contingency table is estimated by 
ˆmax *

ijk ijk ijk(  - )/mn e , where ijk goes over all cells in the table, nijk is the observed cell fre-

quency, ˆ*
ijke  is the expected cell frequency, estimated under a suitable base model, and m is 

the average cell frequency. In simulations, tables with a priori determined type strength can 
be created. The above measures can then be used to estimate the value of τmax for an ob-
served table. 

The distribution type, DT, indicates whether the cell-specific residuals are normally (DT 
= 0) or binomially (DT = 1 or DT = 2; see below) distributed. Another distribution type that 
can be considered is the hypergeometric distribution. The hypergeometric and the binomial 
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distribution approximate each other if the size of the population is much larger than the size 
of the sample. 

 
The simulation. Data for the following simulations were generated in the following seven 

steps. 
 
Step 1: Contingency tables with d = 2, 3, 4, and 5 were created. Of the resulting tables, 

only those were kept that had degrees of freedom within an a priori-specified interval. These 
intervals were [4, 5], [8, 10], [16, 20] for d = 2 and d = 3, [8, 10] and [16, 20] for d = 4, and 
df = 26 for d = 5. 

 
Step 2: This step involved the random generation of the probabilities of the marginal dis-

tributions under the usual constraint that 0 < p < 1 and Σp = 1. Cell frequencies were then 
estimated under the assumption of variable independence, that is, for four variables, pijkl = pi 
pj pk pl. Thus far, the data conform exactly to the model of variable independence. 

 
Step 3:  This step involves determining the number of types and antitypes, Nt. The upper 

limit of this number is given by 1 ≤ Nt ≤ df and 1 ≤ Nt ≤ round(df1/2 - 0.49). The second of 
these conditions was chosen arbitrarily. However, it is conform to Kieser and Victor’s 
(1999) concepts of CFA. The df of a table indicates the maximum number of independent 
hypotheses in a contingency table (Perli, 1985; Perli, Hommel, & Lehmacher, 1985). 

 
Step 4.  The position of each of the Nt types and antitypes was selected randomly. How-

ever, two constraints were placed. First, no marginal sum could contain summands adding up 
to more than 50% of its cases from type or antitype cells. Thus, for example, in 2 x 3 tables, 
no column can contain more than one type or more than one antitype. The second constraint 
was that type cells had to have an a priori frequency of nijk > m, and antitype cells had to 
have an a priori frequency of nijk < m. 

The second constraint is new. In former papers it was not used for type cell or antitype 
cell generation. The reason is that observed tables (compare e.g. the tables in section 6 ) 
follow in a wide range this pattern, and the simulation results, especially the calculated β-
values, will be closer to reality. For example, in Table 1 which presents Lienert’s LSD data, 
the mean frequency is m = 65/8 = 8.1. The only type found by the combinatoric search has 
the observed frequency 20, the only antitype the frequency 0. It should be noted that this is 
not by necessity. Tables can be found in which below-average frequencies constitute types. 
Consider, for example, Table 2, the cancer data of Havemann et al. (1987). The mean fre-
quency is m = 1127/16 = 70.4. The two types found have frequencies 64 and 703. Frequency 
64 is somewhat smaller than m, i.e. the only exception from the rule in three tables. A third 
example can be found in Table 4, the crime data of Lautsch (2000). Here, the average cell 
size is m = 1952/27 = 72.3. The three types found have all frequencies greater than m (192, 
105, 83), all seven antitypes have frequencies smaller than m (4, 5, 4, 40, 2, 45, 63). 

 
Step 5.  To obtain types and antitypes, the probabilities pijkl were now multiplied by fac-

tors of the form (1 + τ). Thereby, the type strength is an even random number between 1 and 
τmax, where τmax was set to 2 for the present simulations. Thus, only the values of τ = 1 and τ 
= 2 were used. For τ = 1, the observed frequency is twice as large as the Victor-estimated 
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expected frequency. The ratio of thus randomly created types and antitypes was set to be 2:1. 
The first type was assigned the value of the maximum strength type, that is, τmax = 2. When 
there was more than one type, the following types were assigned linearly decreasing values, 
with the constraint that these values be greater or equal to one. For example, for a table with 
4 types and antitypes, and a maximum type strength of τmax = 2, the four τ-values are 2, 1, 1, 
1. The reason for the lower limit of τ = 1 lies in the control of β. When a weight of τ is too 
small, the chance of reliably identifying a type and, even more so, an antitype, is very small. 

 
Step 6.  This step is needed to make sure that the condition Σp = 1 holds. After adding a 

constant to each cell, this condition holds no longer. Therefore, a correction is needed. Con-
sider the cell for which the a priori probability is p = 0.055. If, for this cell, the weight τ = 1 
is used, that is, if this cell is randomly selected to constitute a type, its probability changes to 
be p* = 0.055⋅2 = 0.11, and the sum of all cell probabilities increases from Σp = 1 to Σp = 
1.055. Therefore, we reduce the probability for each cell proportionally by the factor 
1/1.055. The type-cell then has a probability of p** = 0.11/1.055 =  0.1043, and the sum of 
the thus corrected cell probabilities is Σp = 1 again. This applies accordingly when more than 
one type or antitype is in a table. 

 
Step 7. The last step of the simulation involves calculating the estimated expected cell 

frequencies. Each cell is multiplied by the a priori determined sample size, N = Ncm. The 
values of m used in this simulation were m = 5, 10, 20, 30, and 50. The estimated expected 
cell frequencies where thus ˆijk ijk = Npe , where ijk goes over all cells in the table. A drawing 

error was then added to each cell, depending on the distribution type, DT. 
 
The term drawing error is used here to denote the discrepancy between observed and ex-

pected frequencies that can be observed even under optimal sampling conditions. The distri-
bution of this error depends on the selected model. The resulting values were rounded to be 
integers. Negative values were set to zero. It should be noted that this drawing error is the 
main source of errors in weakly frequented contingency tables. It prevents researchers from 
reliably identifying types and antitypes, in particular if they are of minor strength. Please 
note that the term sampling error denotes additional errors that may be hard to quantify. 
These errors reflect discrepancies between model and reality. 

 
 

4. Tests and test procedures 
 
The tests compared in this simulation are (1) the new combinatoric search (CS) proposed 

in this article, (2) Lautsch and von Weber’s (2003) new test procedure (nPr), (3) Lienert’s χ-
component test (Chi), (4) Lehmacher’s (1981) asymptotic hypergeomeric test with Küchen-
hoff’s (1986) continuity correction (LK), and (5) the asymptotic test of Perli, Hommel, and 
Lehmacher (1984) (Pe). Each test was performed under the two-tailed null hypothesis that 
cell ijk constitutes neither a type nor an antitype. Holm’s (1979) sequential test procedure 
was implemented, with the relaxed constraint that the first test was performed under α* = 
α/df instead of the usual α* = α/ Nc (see Perli et al., 1985). 
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The continuity correction turned out to be an essential component of the last simulation 
studies of the present authors. The correction factor, K, can be adjusted so that the nominal 
level α prevails asymptotically, that is, for large numbers of tables with the same characteris-
tics. In contrast, Küchenhoff’s (1986) continuity correction involves subtracting the constant 
of 0.5 from each difference between observed and expected cell frequencies. The effect of 
this correction is minimal for large cell frequencies, and can be dramatic for small frequen-
cies and differences (von Eye, 2002). The continuity correction proposed by von Eye and 
Dunkl (1990) increases the estimate of the standard error in the denominator, *

ijke , by the 

factor ( *
ijke  + 0.5)/( *

ijke  - 0.5). Here again, the effect of the correction is stronger for small 

frequencies *
ijke . In both cases, Küchenhoff’s correction and von Eye and Dunkl’s correc-

tion, the magnitude of the resulting test statistic is reduced (note again, that von Eye, 2002b, 
pp. 71, 76, showed that Küchenhoff’s correction can have the opposite effect when the dif-
ference between the observed and the expected cell frequencies is less than the correction 
constant). 

The constant K is estimated iteratively. Let α be the a priori specified, nominal type I er-
ror level for the multiple level hypothesis concerning the existence of types and antitypes in 
a contingency table, and α̂  the estimate of the factual error level for the M contingency 
tables created in the simulation. The estimate α̂  is a function of the parameters d, m, τmax, 
etc., but also of the table-specific constant K. If the simulation varies K while keeping all 
other parameters constant, the estimate becomes α̂  = f(K) + err, where f is an unknown, 
typically nonlinear (and for M → ∞ assumed to be monotonic and differentiable) function, 
and err is an error of unknown magnitude and distribution. The iteration attempts to estimate 
the equation α̂  = f(K) as precisely as possible, in spite of the error element. 

The algorithm used in the present simulations employs only one α-level, α = 0.05. For 
this α, the constant K = K(α) is estimated. The estimation process itself begins by specifying 
the boundaries of the search interval [Kmin, Kmax]. The lower limit, Kmin, is specified such that 
the estimate of α will be extremely conservative, that is, α̂  → 0%. The upper limit, Kmax, is 
specified such that the estimate of α will be extremely non-conservative, that is, α̂  → 100%. 
During the iteration, this interval is reduced. Between 10 and 20 estimates ˆ ii( )Kα are identi-
fied, each of which is located close to the a priori specified nominal level α. Because of 
computational constraints, the number M of tables that are generated in the simulation is M ≤ 
2000, and because err > 0, an exact correspondence α = α̂  is extremely unlikely. The estima-
tor of K(α) is the weighted sum of the 10 to 20 Ki identified for each table. A weight of 1 is 
assigned if α = α̂ i. Otherwise, the weights shrink exponentially with the square of the dif-
ference α - α̂ i. 

The five tests and test procedures used in the simulation will be described in the follow-
ing paragraphs. Equations are given for the sample case of a three-dimensional table. The 
presentation for tables with different dimensions is straightforward. The equations given here 
differ from the equations given in other sources, because we indicate the location of the 
continuity correction, K. 

The test of Dunkl and von Eye with Victor-expectancies ˆ*
ijke  is used by the combinatoric 

search (CS) and by the new procedure of Lautsch and von Weber (2003)(nPr), 
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*

2*

ˆ

(1 )
ijk ijk

ijk

n e
X

Kσ

−
=

−
,  

 
with variance ˆ ˆ ˆ* * *2*

ijk ijk ijk ijk = (  + 0.5)/(  - 0.5)e e eσ . In the combinatoric search, the local test statis-
tic X is multiplied by the antitype bonus A (see Section 2), if the average cell frequency is m 
≥ 20 and nijk < ˆijke . 

The χ-component test of Lienert (1969)(Chi), 
 

ˆ

(1 )
ijk ijk

ijk

n e
e K

χ
−

=
−

. 

 
Lehmacher’s (1981) hypergeometric residual test with Küchenhoff’s continuity correction, 
(LK), 
 

2

ˆ

(1 )
ijk ijk

ijk
n e

z
N Kσ

−
=

−
,  

with  
σ2 = Vijk = Npijk(1 - pijk - (N - 1)(pijk - *

ijkp )), and *
ijkp  = (Ni.. - 1)(N.j. - 1)(N..k - 1)/(N - 1)3. 

 
Küchenhoff’s continuity correction subtracts 0.5 from the numerator if it is positive, and 

adds 0.5 to the numerator, if it is negative. 
The asymptotic test of Perli, Hommel, and Lehmacher (1985)(Pe), 
 

2

ˆ

(1 )
ijk ijk

ijk
n e

W
N Kσ

−
=

−
,  

 
with σ2 = pijk(1 + 2pijk - (pi..p.j. + pi..p..k + p.j.p..k)), where this equation can be used only under 
simplifying assumptions. 

 
 

5. Simulation results 
 
In the following paragraphs, we present simulation results. Each set of simulations is pre-

sented in a line graph. Each connected dot represents an average of about 20.000 simulated 
contingency tables. Parameters under variation are number of variables (dimension), d, de-
grees of freedom, df, and average cell frequency, m. The graphs represent β-curves that show 
how the β-error decreases with m, for various combinations of d and df. The type II, or β-
error indicates the percentage of types and antitypes placed in a table that was not detected. 
If β = 100%, none of the types or antitypes was detected (worst result). If β = 0%, all types 
or antitypes are detected (best result). Using the continuity correction presented by von We-
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ber et al. (2003), the percentage of falsely labeled types or antitypes (α-error) was fixed to 
asymptotic 5%, in all runs. 

To report one of the more important results right here, before the details: The new com-
binatoric search method (CS) was the only one that detected antitypes with a percentage 
greater than 0.1 (β <  99.9 %). It is known from empirical studies and earlier simulation 
results that antitypes are hard to detect when α is controlled (von Weber et al. 2003a, p. 366), 
but in these reports, the percentage of detected antitypes was not reported, and was small 
also (compare also the discussion of antitype strength in Section 3 on improvements of the F 
statistic). By controlling the α, we place high hurdles which can be taken only by the better 
performing type cells. The fact that the combinatoric search is able to detect antitypes in 
spite of these hurdles, is a consequence of the antitype bonus which is forcing the test statis-
tic in the right direction. 

The following graphs are presented such that the results for the tables with small num-
bers of variables and degrees of freedom are reported first, and df is the fastest varying vari-
able. 

Figure 5 shows the results for the 2-dimensional small tables with 4 or 5 degrees of free-
dom. For an average cell frequency of 5, the combinatoric search detects 50% of all types 
but no antitype. When m increases to 50, CS finds 73% of all types and 30% of all antitypes. 
Ranking the tests based on the magnitude of their β-errors, we find the rank order CS, nPr, 
Chi, LK, Pe. The combinatoric search is the only one able to detect antitypes under the con-
ditions that led to the graph in Figure 5. 

The results for tables with still d = 2 but more degrees of freedom, presented in Figures 6 
and 7, emphasize the good performance of the combinatoric search. CS keeps its top position 
in the rank order, followed by Chi, nPr, and Pe. The last two methods perform about equally 
well. LK detects about as many types as CS detects antitypes. Figures 8 - 10 show the β-
errors for three-dimensional tables.  

 
 

 
 

Figure 5: β-errors for d = 2 and df = 4 - 5 
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Figure 6:  
β-errors for d = 2 and df = 8 - 10 

 
 
 

 
 

Figure 7:  β-errors for d = 2 and df = 16 - 20 
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Figure 8:  
β-errors for d = 3 and df = 4 - 5 

 
 
 

 
 

Figure 9:  
β-errors for d = 3 and df = 8 - 10 
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Figure 10:  
β-errors for d = 3 and df = 16 - 20 

 
 
Under the conditions realized for the 3-dimensional tables, the best performing test is 

again CS, followed by nPr, Chi, and Pe. The test at the end of the rank order is, again, LK. 
For larger samples, it finds even fewer types than CS finds antitypes. For m = 50, CS finds 
up to 77% of all types and up to 40% of all antitypes. Figures 11 - 13 show similar results, 
for four-dimensional tables. 

 
 

 
 

Figure 11:  
β-errors for d = 4 and df = 8 - 10 
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Figure 12:  
β-errors for d = 4 and df = 16 - 20 

 
 

 
 

Figure 13:   
β-errors for d = 5 and df = 26 

 
 
A series of simulation runs was also performed for five-dimensional tables. In these runs, 

the rank order is CS, nPr, Pe, Chi, and LK. For m = 50, nPr yields the same results as CS. 
The probability of detecting antitypes decreases with the number of dimensions and degrees 
of freedom. This implies that antitypes are more likely to be detected in smaller tables with 
deeper dimensionality. 
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6. A comparison of the combinatoric search with the log-linear approach using 
empirical data 

 
In this section, we re-analyze two of Kieser and Victor’s (1999) examples, using the here 

proposed combinatoric search method. The authors (Kieser &Victor, 1999) report two ex-
amples of the use of log-linear models in the search for types and antitypes. The first in-
volves the analysis of Lienert’s (1969) LSD data. In Lienert’s experiment, the incidence 
rates of Leuner’s Psychotoxic Base Syndrome after administration of acid diethylamide 
(LSD) was studied in a sample of 65 participants. The reaction (Leuner, 1962) is dominated 
by a pattern of clouded consciousness, disturbed thinking, and altered affectivity. These 4 
symptoms were scored as either present (1) or absent (2). Table 1 presents these data and 
results obtained with the combinatoric search, CS. 

 
 

Table 1:  
The combinatoric search for types and antitypes in Lienert’s (1969) LSD data 

 
Dimension............          3 
Degrees of freedom...          4 
Maximal type strength       5.70 
Alpha                       0.05 
Continuity correction K  -0.4423  
  
 i j k      Nijk     Eijk     Vijk    Tw    CEP      T/A 
 
 1 1 1      20     12.51    0.69   5.75  <6.0x10-9 type 
 1 1 2       1      6.85    2.12  -0.68   
 1 2 1       4     11.40    3.65   0.11   
 1 2 2      12      6.24   11.24   0.15   
 2 1 1       3      9.46    2.92   0.00  
 2 1 2      10      5.18    8.97   0.22   
 2 2 1      15      8.63   15.44  -0.08   
 2 2 2       0      4.73   47.51  -4.73  <1.3x10-6 antitype 
 
 
To be able to perform the local tests, the program fixed before calculating the test statis-

tics the Victor expectancies to values 3.0 and greater, but the originally calculated Victor 
expectancies are given in the Table 1. In Kieser and Victor’s article, the results are essen-
tially the same as here. However, the critical error probabilities (CEP) are smaller here. New 
is also, that the combinatoric search algorithm found this type-antitype pattern without pos-
tulating it as an a priori hypothesis, that is, in a fully exploratory run. 

The large estimated expected cell frequency ˆ*
222 = 47.51e   comes as a surprise, and so 

does the small ˆ*
111 = 0.69.e In addition, the sum of the estimated expected cell frequencies is 

not equal to the observed sample size. The latter result, however, is typical of the Victor-
Kieser method of analysis which does not necessarily reproduce the sample size. The reason 
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for this result is that the Victor-Kieser method does not need the assumption that the ob-
served sample was drawn from the same parent population. The sample size is thus not fixed. 
In contrast, the sum of the expectancies from the log-linear model of variable independence 
must lead to *̂  = Neijk

ijk
∑ . 

To illustrate, we calculate the marginal sums for the Victor-Kieser results and the classi-
cal results. We obtain V1.. = 17.7, V2.. = 74.84, V.1. = 14.7, V.2. = 77.84, V..1 = 22.7, and V..2 = 
69.84. The total sum is  = 92.54V ijk

ijk
∑ , a value clearly greater than the observed sample 

size of N = 65. We also calculate ˆ* 2
111= 17.7 14.7 22.7/92.  = 0.689754V ∗ ∗ , and  

ˆ* 2
222 = 74.84 77.84 69.84/92.  = 47.5096554V ∗ ∗ , as reported in Table 1. For the classical, 

first order CFA, we obtain *̂
ijk

ijk

e∑  = 65. This method always reproduces the sample size 

because N is considered fixed. 
The logical consequence of the extreme expectancies ˆ ijkV  is that the six remaining cells 

define a mean level of action. Cell (111) can thus be viewed as an outlier in the sense that the 
action of the drug is amplified in participants of that type to the extent that any non-affected 
behavior becomes impossible. Accordingly, Cell (222) is an outlier in the sense that many 
more participants were expected to show non-affected reactions. These two outliers show 
that the psychotoxic effect of LSD does not follow a simple log-linear pattern. 

The second example that is re-analyzed using the CS involves data that describe a pattern 
of metastases in small-cell lung cancer (Kieser & Victor, 1999). Four types of chemotherapy 
were compared in clinical trials with a total of 1127 patients (Havemann et al., 1987; Wolf et 
al., 1987; Pritsch et al., 1987). It was one goal of this study to investigate whether the early 
formation of distant metastases in liver, skeleton, brain, and bone marrow, which is observed 
frequently in this type of carcinoma, occurs preferably in certain location patterns. 

For the configural analyses, the four variables (1) metastases in the liver, (2) metastases 
in the skeleton, (3) meastases in the brain, and (4) metastases in the bone marrow were 
crossed. Each of the symptoms was scored as either present = 1 or absent = 2. Table 2 shows 
results of the combinatoric search procedure. 

Kieser and Victor (1999) marked the same three cells as indicated in Table 2; however, 
error probabilities differed greatly. For cell (1121), their error probability is 0.022 (compared 
to < 0.001 as indicated by the nPr of Lautsch and von Weber, 2003). For cell (2212) Kieser 
and Victor indicate an error probability of 0.0016 (0.02 for the nPr), and for cell (2222) an 
error probability of less than 0.001 (< 0.001 for the nPr). Results suggest that the new com-
binatoric search detects two of the three types that had been detected by Kieser and Victor. 
The New Procedure found the same three cells, but with more emphasis on cell (1121). 
Based on our simulations, we trust the results created using the Combinatoric Search more 
than the results from the nPr. 

Substantively, the results in Table 2  indicate that metastases in the brain alone are more 
likely than expected based on the frequency of metastases in the other three organs. The 
good  news is that no metastases at all are far more likely than the base model would lead 
one to believe. 
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Table 2: 
CS for types and antitypes in the lung cancer data 

 
Dimension............         4 
Degrees of freedom...        11 
Maximal type strength      3.71 
Alpha                      0.05 
Continuity correction K   -1.04  
 
 i j k l  Nijkl  Eijkl  Vijkl  Tw    CEP   T/A 
 
 1 1 1 1    2    0.33   2.27  -0.24 
 1 1 1 2    8    3.22   8.16  -0.03 
 1 1 2 1   31    3.32  18.89   1.33  0.09  
 1 1 2 2   53   32.33  67.84  -0.87 
 1 2 1 1    2    1.65   3.22  -0.28 
 1 2 1 2   15   16.07  11.57   0.36 
 1 2 2 1   20   16.59  26.80  -0.63 
 1 2 2 2  104  161.49  96.25   0.36 
 2 1 1 1    3    1.25   2.12   0.00 
 2 1 1 2    8   12.21   7.63   0.06 
 2 1 2 1   16   12.61  17.66  -0.19 
 2 1 2 2   67  122.72  63.43   0.21 
 2 2 1 1    0    6.27   3.01  -0.72 
 2 2 1 2   64   61.00  10.82   7.55 <10-13 type 
 2 2 2 1   31   62.98  25.05   0.46 
 2 2 2 2  703  612.96  89.99  31.42 <10-40 type 
 
 

7. A re-analysis of tables by Indurkhya and von Eye (2003), and by Lautsch (2003) 
 
It is not surprising that two different test procedures yield different results. Sometimes, 

both results can be meaningful, in other cases, researchers may have to make decisions. 
Indurkhya and von Eye (2003) published a small frequency table with N = 20 and a random 
distribution. The results of a re-analysis using the Combinatoric Search are presented in 
Table 3. 

The z-statistic used by Indurkhya and von Eye led to the identification of cell (222) as a 
type with the critical error probability CEPz = 0.0036. Cell (221) was marked as a weak 
antitype with CEPz = 0.016. The Combinatoric Search marks cell (221) as a strong antitype, 
but does not mark cell (222). What is the reason for this discrepancy? The z statistic was 
used in the context of expected cell frequencies that had been estimated under the assump-
tion of variable independence. This implies that a surplus of cases in type cells, or a lack of 
cases in antitype cells is contained in the expected values. Victor’s CFA model tries to iden-
tify types without this surplus and antitypes without this lack of cases. That is, Victor’s 
model tries to find a log-linear model without residuals. 
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Table 3:  
Re-analysis of a frequency distribution published by Indurkhya and von Eye (2003) 

 
ijk  Nijk  Eijk   Vijk     TW   CEPCS   Z     CEPZ  
 
111   3   1.32   0.25   0.00         1.46 
112   0   1.08   0.05  -1.20        -1.04   
121   3   1.98   2.50   0.00         0.72 
122   0   1.62   0.46  -1.20        -1.27  
211   5   3.08   4.19   0.29         1.09 
212   0   2.52   0.77  -1.20        -1.59 
221   0   4.62  42.01  -5.24  <10-7  -2.15  0.016 
222   9   3.78   7.72   0.35  0.36   2.685 0.0036 
 
 
We note here again the fundamental differences between Victor’s approach to CFA and 

the classical, Lienert approach to CFA (cf. von Eye, 2002). Victor attempts to identify that 
part of the observed density mass that conforms to the base model. Those parts that differ 
significantly can surface in the form of types and antitypes. The classic approach assumes, in 
its null hypothesis, that the population under study is homogeneous. Therefore, Victor’s and 
Lienert’s approaches differ in the assumptions that are made in the base model concerning 
the number of populations a sample was drawn from. One implication of this difference is 
that in the classic approach, the sample size is the same in the observed and the estimated 
expected frequency distributions. In Victor’s approach, the estimated expected sample can 
differ in size from the observed sample. This was illustrated in the first empirical data exam-
ple, above. 

It is important to note that the number of populations considered in neither approach is 
clear. As soon as one type or one antitype is detected, the number of populations is greater 
than one. However, the reason why types or antitypes emerge can be that the cases in type or 
antitype cells can be mixtures from two or more populations. CFA does not ask questions 
concerning the number of populations. In both, Lienert’s and Victor’s approaches, the num-
ber of populations is assumed to be one only if there is no type and no antitype. Types and 
antitypes are assumed to stem from different populations than the cases in cells that conform 
to the base model. In Victor’s CFA, expected cell frequencies are estimated under the as-
sumption that in particular cells types or antitypes may exist. In Lienert’s approach, this 
estimation is fully exploratory. 

The last example to be given here involves a re-analysis of data that had been presented 
by Lautsch (2003) with a total of 1952 respondents. The author crossed the three variables 
(1) fear of crime, (2) risk of crime, and (3) indirect victimization. Each variable was ordi-
nally scored at three levels. Lautsch’s original analysis involved using Lehmacher’s (1978) 
z-test. The search focused on types at the exclusion of antitypes. Our re-analysis is presented 
in the first six columns of Table 4. It is based on a multiple level of α = 0.01 and Holm’s 
procedure of α protection. In the last two columns, we repeat the results of the original 
analysis that was based on the z-test and the Bonferroni-adjusted α = 0.05 of α* = 0.025/20 = 
0.00125 for a two-sided test and the corresponding significance limit of z = 3.05 (Lautsch, 
2000). 
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 Table 4:  
Fear of crime, risk of crime, and indirect victimization, a re-analysis of  

Lautsch’s (2000) data 
 
ijk  Nijk    Eijk      Vijk    TW              Z     T/A 
 
111  192   54.57    3.70  30.74 type     21.07  type 
112  105   38.71    3.05  17.80 type   11.68  type 
113   83   44.87    3.80  12.81 type     6.27  type 
121   74  103.78   31.56   1.14     -3.50   
122   45   73.63   26.00   0.76     -3.84   
123   63   85.34   32.41   0.98       2.81 
131    4   68.76   21.96  -7.40 antitype -8.98  antitype 
132    5   48.78   18.09  -3.89 antitype -6.96  antitype 
133    4   56.54   22.55  -7.75 antitype -7.86  antitype 
211   20   72.03   17.21   0.20   -7.10  antitype 
212   27   51.10   14.18   0.62   -3.73   
213   27   59.23   17.67   0.51   -4.72  antitype 
221  209  136.99  146.87   1.84    7.70  type 
222  154   97.19  120.99   1.08    6.90  type 
223  167  112.65  150.82   0.47    6.23  type 
231   40   90.77  102.17  -5.62 antitype -6.30  antitype 
232   53   64.40   84.17  -1.93    1.56 
233   62   74.64  104.92  -2.54    1.64 
311    9   58.65   14.01  -0.72   -7.34  antitype 
312    4   41.61   11.54  -2.21   -6.39  antitype 
313    2   48.23   14.39  -5.44 antitype -7.40  antitype 
321   72  111.54  119.59  -2.59   -4.54  antitype 
322   45   79.14   98.51  -4.22 antitype -4.46  antitype 
323   63   91.72  122.81  -3.77 antitype -3.53   
331  151   73.90   83.19   2.66   10.39  type 
332  109   52.43   68.53   1.75    8.74  type 
333  163   60.77   85.43   3.00   14.91  type 

 
 
Lautsch’s data are unusual because of the large number of types and antitypes found by 

both approaches. It seems that there is no simple base model for these data. Another unusual 
aspect is that the number of types and antitypes found by the two approaches differs greatly. 
Each of the types and antitypes found by the combinatoric search was also found by the 
classic method. However, the classic approach marks all cells as types or antitypes, with the 
exception of three. If a stricter significance level is used, the number of unmarked cells in-
creases only to seven. 
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8. Discussion and recommendations 
 
This article presents the first application of the Combinatoric Search Procedure for CFA 

that had been proposed by Kieser and Victor (1991). This procedure works convincingly 
well. The direct comparison with four other tests showed that the Combinatoric Search Pro-
cedure is better than the comparison methods in all cases that were studied. In the cases of 
small mean frequencies (m = 5), the Combinatoric Search detects about 50% of all types, 
whereas the other methods find only 30-40%. In the cases of mean cell  frequencies of m = 
20 or m = 30, the Combinatoric Search is performing about 10 to 20% better than the next 
method. An exception we find for tables with high dimensionality (d = 5). Here, the New 
Procedure (nPr) is performing at the same level. For well-occupied tables (m = 50) the Com-
binatoric search detects about 70% of all types, this is about 20% more than the other meth-
ods. Here again, the New Procedure performs at the same level as the Combinatoric Search, 
but only in cases of high dimensionality. The Combinatoric Search finds, in addition, about 
30-40% of all antitypes in tables with m = 50. Only in the case of high dimensionality (d = 
5), this value is reduced to 25% detected antitypes. 

Most of the improvements over the other procedures are due to the inclusion of addi-
tional terms in the search statistic. These terms are new. They lead to an improvement in the 
detection of types and antitypes in tables with relatively large observed cell frequencies and, 
in particular, in tables with three or more dimensions. 

Another result of the present research is the ranking of the five tests included in the simu-
lations. The Combinatoric Search Procedure was number one under all conditions, followed 
by Lautsch and von Weber’s (2000) New Procedure. A tie was found between Lienert’s X2-
test and Perli et al.’s w-test. Whereas the w-test seems to perform better if the table is 
spanned by more than two variables, in lower-dimensional tables and in tables with fewer 
degrees of freedom, the X2-test works better. 

The performance of the Combinatoric Search Procedure comes with a price. It is very 
computer-intensive. 99.99% of the computational time that is used by this procedure is 
needed for the estimation of the continuity correction constant K. This constant is important 
because it helps keep the error probability α at the a priori determined level. Without K, we 
have no indication as to whether a test suggests conservative or non-conservative decisions, 
and there is no kit to repair this problem. Future research will focus on devising more com-
puter-efficient methods of estimating K. The current algorithm needs about 20.000 simulated 
tables when α = 0.05. We hope to reduce this number without loss of accuracy. In addition, 
we hope that the increasing speed of computers will help minimize this problem. 
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