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Paradoxes in multidimensional contingency tables: 
What does this mean for CFA? 

JOACHIM KRAUTH1 

Abstract 

Lienert (1969, 1971a) justified his invention of Configural Frequency Analysis (CFA) by the ob-
servation that higher-order interactions may exist in three- and higher-dimensional data even if no 
correlations between any pairs of variables can be observed. In Lienert (1971b) Hierarchical CFA 
(HCFA) was proposed in order to find that subset of variables which shows the highest degree of inter-
dependence. In HCFA, the original contingency table is collapsed in a hierarchical way until two-
dimensional tables result and CFA is applied to all tables in this hierarchy. 

Now, it has been known for more than a hundred years that collapsing contingency tables may lead 
to strange results which are nowadays often denoted as Simpson’s paradox (Simpson, 1951). Another 
paradox studied first by Lord (1967) occurs when groups are compared which may differ in their base-
line values. Here, a contingency table version of this latter paradox is considered. Implications of these 
possible paradoxes for the interpretation of the results of CFA are discussed. 
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Introduction 
 
G.A. Lienert introduced CFA in a talk given 1968 at the Congress of the German Society 

of Psychology (Lienert, 1969). His main argument for proposing a new method of classifica-
tion was that with this method it was possible to allow not only for correlations for pairs of 
variables as this is the case for factor and configural analysis but also for higher-order asso-
ciations between more than two variables. In Lienert (1971a) it is argued that the invention 
of CFA was caused by a Figure in an article by Olmstead and Tukey (1947) illustrating a 
second-order interaction between three binary variables where no first-order interactions are 
present. This Figure could explain according to Lienert the structure of his LSD data pre-
sented in Lienert (1971a). According to Lienert the detection of the Figure in the Olmstead-
Tukey article would not have been necessary if he had understood the algebraic formulation 
of – in Lienert’s terminology – Meehl’s paradox (Meehl, 1950). Perhaps some little doubt is 
permitted with respect to this nice narrative by which Lienert tried to unveil the origins of 
CFA: Both articles by Meehl and by Olmstead and Tukey were cited already in Lienert 
(1969) where the newly invented CFA is applied to five items of the Hamburg Depression 
Scale and in this contribution neither Olmstead-Tukey’s Figure nor Meehl’s paradox are 
mentioned anywhere. 

 
 

1. Simpson’s paradox 
 
The denotion Simpson’s paradox was chosen after Simpson (1951) gave a simple exam-

ple of a paradoxical situation in a 2×2×2 table. Nowadays it is known that Simpson’s finding 
was a rediscovery because already Yule (1903) discussed problems of this kind. Meanwhile 
many authors have studied the effects which may occur if higher-dimensional contingency 
tables are collapsed as this is done e.g. in HCFA (Lienert, 1971b). The essence of Simpson’s 
paradox is that statistical inference in a low-dimensional table can distort seriously the real-
ity in a high-dimensional table from which it has been derived by collapsing. We cite here 
only the article by Guo, Geng and Shi (2001) as an example for the many papers which 
studied the conditions (here, the term collapsibility is used) which higher-dimensional tables 
must fulfill in order to guarantee that the statistical information in low-dimensional tables 
obtained by collapsing is not distorted. That Simpson’s paradox is by no means a theoretical 
phenomenon which can be ignored in practice is shown in the articles by Wainer (1986) and 
Wainer and Brown (2004) where just this paradox is exhibited in real data sets. 

In the following we restrict our attention to the most simple case where Simpson’s para-
dox can occur. This is the case of three binary variables X, Y, and Z constituting a 2×2×2 
table. The corresponding scheme is given in Table 1. 
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Table 1: 
Scheme for a 2×2×2 table with probabilities ijkπ  and frequencies ijkN for the  

8 configurations (n denotes the sample size) 
 

X Y Z ijkπ  ijkN  

1 1 1 111π  111N  
1 1 0 110π  110N  
1 0 1 101π  101N  
1 0 0 100π  100N  
0 1 1 011π  011N  
0 1 0 010π  010N  
0 0 1 001π  001N  
0 0 0 000π  000N  
 Sums:  1 n 

 
 

In the following a dot indicates that a sum is formed over the two possible values (1 and 
0) of the corresponding index, e.g. 1 0 100 110,• = +π π π  1 111 110 101 100•• = + + +π π π π π  etc. 

Independence of X and Y is given  if 11 1 1 ,• •• • •=π π π  independence of X and Z holds if 

1 1 1 1,• •• ••=π π π  independence of Y and Z means that 11 1 1.• • • ••=π π π  The independence of X, 
Y, and Z is assumed if ijk i j k•• • • ••=π π π π  for all possible selections of i, j, k ∈{0, 1}. 

From the independence of X, Y, and Z it follows that no second-order interaction is pre-
sent and that the 3 pairs of variables (X, Y; X, Z; Y, Z) are independent. The reverse is also 
true. 

If the 3 pairs of variables are independent and if X, Y, and Z are dependent (i.e. not inde-
pendent) then a second-order interaction is present. 

Several different definitions of second-order interaction in 2×2×2 tables have been pro-
posed. According to Bartlett (1935) no second-order interaction is assumed if 

111 100 010 001 110 101 011 000.=π π π π π π π π  A different definition due to Lancaster (1969) is given for 
this situation by 

 
111 1 1 1 1 11 1 1 1 1 1 1 1 1 11 1( ) ( ) (•• • • •• •• • • • •• • • • •• •• •• • ••= + − + − + −π π π π π π π π π π π π π π π  1 ).• •π  

 
An idealized version of Lienert’s LSD data (Lienert 1971a) is given in Table 2. 
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Table 2: 
Idealized version of Lienert’s LSD data 

 
X Y Z ijkπ  ijkN  

1 1 1 .25 16 
1 1 0 0 0 
1 0 1 0 0 
1 0 0 .25 16 
0 1 1 0 0 
0 1 0 .25 16 
0 0 1 .25 16 
0 0 0 0 0 
 Sums:  1.00 64 

 
 
Here, X and Y are independent (.25 .5 .5),= ×  X and Z are independent (.25 .5 .5),= ×  and 

Y and Z are independent (.25 .5 .5).= ×  However, X, Y, and Z are dependent 
(.25 .5 .5 .5 for 1)i j k≠ × × = = =  and therefore a second-order interaction exists. Bartlett’s 
definition gives .25 .25 .25 .25 0 0 0 0× × × ≠ × × ×  and Lancaster’s definition 
.25 .5 .5 .5 .5(.25 .5 .5) .5(.25 .5 .5) .5(.25 .5 .5).≠ × × + − × + − × + − ×  

In order to show more clearly the possible dramatic loss of information which can occur 
if a 2×2×2 contingency table is collapsed in the presence of a second-order interaction, we 
consider the following example which is an adaptation of an example by Kendall and Stuart 
(1961, pp. 544-545). Here (cf. Table 3), we assume that X denotes gender (1 = male, 0 = 
female), Y denotes treatment (1 = treatment, 0 = no treatment), and Z denotes recovery (1 = 
recovery, 0 = no recovery). We observe for the males (first 4 configurations) a positive asso-
ciation between treatment and recovery (.12×.12 – .50×.01 > 0), while for the females (sec-
ond 4 configurations) a negative association between treatment and recovery results 
(.04 .04 .14 .03 0).× − × <  In other words: The treatment is good for males but bad for fe-
males. 

 
Table 3: 

Adaptation of an example by Kendall and Stuart 
 

X Y Z ijkπ  ijkN  

1 1 1 .12 12 
1 1 0 .50 50 
1 0 1 .01 1 
1 0 0 .12 12 
0 1 1 .04 4 
0 1 0 .14 14 
0 0 1 .03 3 
0 0 0 .04 4 
 Sums:  1.00 100 



J. Krauth 308 

If we collapse the 2×2×2 table in Table 3 with respect to gender (X) we obtain Table 4. 
In this table no association between treatment and recovery is observed 
(.16 .16 .64 .04 0).× − × =  This means that treatment has no effect at all. 

 
 

Table 4: 
Table 3 collapsed with respect to variable X 

 
Y Z jk•π  jkN•  

1 1 .16 16 
1 0 .64 64 
0 1 .04 4 
0 0 .16 16 

Sums:  1.00 100 
 
 
In the example depicted in Table 3 a second-order interaction is present according to 

Bartlett’s definition (.12 .12 .14 .03 .50 .01 .04 .04)× × × > × × ×  and according to Lancaster’s 
definition 

 
(.12 .75 .80 .20 .75(.16 .80 .20) .80(.13 .75 .20) .20(.62 .75 .80)).> × × + − × + − × + − ×  

 
Simpson (1951) argued that it is obvious which strategy should be followed if a second-

order interaction is present: In this case, the six possible 2×2 tables (X × Y for Z = 1, X × Y 
for Z = 0, X × Z for Y = 1, X × Z for Y = 0, Y × Z for X = 1, Y × Z for X = 0) have to be stud-
ied with respect to possible associations. However, paradoxical situations can arise also if no 
second-order interactions are present and this is what is called nowadays Simpson’s paradox. 
An adaptation of Simpson’s example is given in Table 5, where again we identify X with 
gender, Y with treatment, and Z with recovery. 

 
 

Table 5: 
Adaptation of Simpson’s example 

 
X Y Z ijkπ  ijkN  

1 1 1 .16 8 
1 1 0 .08 4 
1 0 1 .08 4 
1 0 0 .06 3 
0 1 1 .24 12 
0 1 0 .32 16 
0 0 1 .02 1 
0 0 0 .04 2 
 Sums:  1.00 50 
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According to Bartlett’s definition, no second-order interaction is present: 
.16×.06×.32×.02 = .08×.08×.24×.04. The same holds for Lancaster’s definition: .16 = 
.38×.80×.50 + .38(.40 – .80×.50) + .80(.24 – .38×.50) + .50(.24 – .38×.80). 

For the males we observe a positive association between treatment and recovery (.16×.06 
– .08×.08 > 0) and this holds also for the females (.24×.04 – .32×.02 > 0). In other words: 
The treatment is benign for the males as well as for the females! In Table 6 we have col-
lapsed Table 5 with respect to gender (X). Contrary to our expectation there is no association 
between treatment and recovery (.40×.10 – .40×.10 = 0) though we observed positive asso-
ciations for both subpopulations. Above we mentioned that Wainer (1986) and Wainer and 
Brown (2004) presented real data sets where this kind of paradox occurred. 

 
 

Table 6: 
Table 5 collapsed with respect to variable X 

 
Y Z jk•π  jkN•  

1 1 .40 20 
1 0 .40 20 
0 1 .10 5 
0 0 .10 5 

Sums: 1.00 50 
 
 

3. Lord’s paradox 
 
Lord’s paradox was first described by Lord (1967) and has been discussed by many au-

thors (e.g. Lord, 1969, 1976; Holland and Rubin, 1983; Wainer, 1991). In Wainer and 
Brown (2004) real data are presented where not only Simpson’s paradox but also Lord’s 
paradox are observed. 

Lord (1967) considered the following example: In a large university the administration is 
interested in studying the effects which the diet provided in the university dining halls has on 
the students and whether any gender difference can be observed for these effects. Beside 
other variables the weight (Y) of each student at the time of arrival in September and the 
corresponding weight (Z) in the following June are recorded. The two scatterplots for boys 
and girls can be described by intersecting ellipses which are both symmetric with respect to 
the 45° line through the origin. From this follows that the centers of the ellipses lie on the 
45° line through the origin. Naturally, the center of the boys’ ellipse is shifted to the right in 
comparison with that of the girls because, in general, the weight of boys is higher than that 
of girls. By projecting the ellipses to the Y and Z axes we find that there is no difference 
between the distributions of the September and June weights and this is true also if the 
weights for boys and girls are considered separately. As a consequence we can conclude that 
the diet had no effect on the weight of the boys and girls. 

Predicting the June weights by the September weights using linear regressions separately 
for boys and girls it is found that the slopes of the two regression lines are identical but that 
the intercepts differ. In fact, the boys exhibit a larger intercept. If an analysis of covariance 
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would be performed with the September weight as a covariate it would be found that the 
boys show more gain in weight than the girls. 

These two contradictory interpretations of the same data constitute Lord’s paradox. It is 
very difficult to decide which answer is the correct one in an empirical situation and many 
authors have discussed Lord’s and other examples. 

According to Lienert one important application of CFA is the analysis of change (e.g. 
Lienert, 1971b; Lienert and Krauth, 1973a, b). In Lienert (1971b) it is proposed to code an 
increase of a variable between two points of time by a „+“, a decrease by a „–“, and no 
change by a „0“ and to use this change score with 3 categories in CFA. An obvious question 
is whether Lord’s paradox is also important for contingency table analyses where we do not 
have metric variables and cannot use regression and covariance analysis. The answer is yes, 
if we consider the example in Table 7 which is an adaptation of Lord’s example for contin-
gency tables. Here, X denotes again gender (1 = boys, 0 = girls), Y denotes the September 
weight (0 = at most 55 kg, 1 = more than 55 kg and less than 70 kg, 2 = at least 70 kg), and Z 
denotes the June weight with the same categories. 

 
 

Table 7: 
Adaptation of Lord’s example for a 2×3×3 table 

 
X Y Z ijkπ  ijkN  X Y Z ijkπ  ijkN  

1 0 0 .00 0 0 0 0 .08 4 
1 0 1 .12 6 0 0 1 .00 0 
1 0 2 .00 0 0 0 2 .12 6 
1 1 0 .00 0 0 1 0 .12 6 
1 1 1 .06 3 0 1 1 .06 3 
1 1 2 .12 6 0 1 2 .00 0 
1 2 0 .12 6 0 2 0 .00 0 
1 2 1 .00 0 0 2 1 .12 6 
1 2 2 .08 4 0 2 2 .00 0 

Sums: .50 25 Sums: .50 25 
 
 
By collapsing the subtable with X = 1 (boys) with respect to Z (June weights) we derive 

Table 8 (distribution of September weights for the boys). By collapsing the subtable with X 
= 1 (boys) with respect to Y (September weights) we get Table 9 (distribution of June 
weights for the boys). By collapsing the subtable with X = 0 (girls) with respect to Z or Y, 
respectively, we obtain Tables 10 and 11. We see at once that the distributions of June and 
September weights do not differ, and this is true for boys (Tables 8, 9) and girls (Tables 10 
and 11), though, naturally, boys and girls exhibit different distributions. Thus, we may con-
clude that the diet had no effect and that this non-effect is observed as well for the boys as 
for the girls.  
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Table 8: 
Distribution of September weights for the boys 

 
X Y ij•π  ijN •  

1 0 .24 6 
1 1 .36 9 
1 2 .40 10 

Sums: 1.00 25 
 
 

Table 9: 
Distribution of June weights for the boys 

 
X Z i k•π  i kN •  
1 0 .24 6 
1 1 .36 9 
1 2 .40 10 

Sums: 1.00 25 
 
 

Table 10: 
Distribution of September weights for the girls 

 
X Y ij•π  ijN •  
0 0 .40 10 
0 1 .36 9 
0 2 .24 6 

Sums: 1.00 25 
 
 

Table 11: 
Distribution of June weights for the girls 

 
X Y i k•π  i kN •  
0 0 .40 10 
0 1 .36 9 
0 2 .24 6 

Sums: 1.00 25 
 
 
Now, we define for each subject a change score (C) as this was proposed in Lienert 

(1971b). This means that we set C = „–“ for (Y = 1, Z = 0), (Y = 2, Z = 0), and (Y = 2, Z = 1), 
we set C = „0“ for (Y = 0, Z = 0), (Y = 1, Z = 1), and (Y = 2, Z = 2), and we set C = „+“ for  
(Y = 0, Z = 1), (Y = 0, Z = 2), and (Y = 1, Z = 2). This yields Table 12. 
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Table 12: 
Rescaling of Table 7 by replacing (Y, Z) by C 

 
X C ijπ  ijN  
1 – .12 6 
1 0 .14 7 
1 + .24 12 
0 – .24 12 
0 0 .14 7 
0 + .12 6 

Sums: 1.00 50 
 
 
From Table 12 we can conclude that for the boys the probability for an increase in 

weight (.24) is twice the probability of a decrease in weight (.12) while for the girls just the 
opposite is true. This indicates that the diet has a considerable effect on weight and that this 
effect is different for boys and girls. This observation contradicts the results of our analysis 
above where no weight changes were found for boys and girls. 

 
 

4. Results of CFA 
 
For getting more distinct results we double all frequencies in Tables 5, 6, 7, and 12. Of 

course, this does not alter the structure of these tables. Then we perform a CFA using exact 
hypergeometric tests (Krauth, 1993, pp. 30-34). 

For Table 5 (Simpson’s paradox) we find types for (X = 0, Y = 1, Z = 0) i.e. treated fe-
males without recovery (p = .006131) and (X = 1, Y = 0, Z = 1) i.e. untreated males with 
recovery (p = .016806). In Table 6 (Table 5 collapsed with respect to gender) we do not 
detect any type. 

For Table 7 (Lord’s paradox) we find types for (X = 0, Y = 0, Z = 2) i.e. girls with low 
September and high June weight (p = .000764), (X = 0, Y = 1, Z = 0) i.e. girls with normal 
September and low June weight (p = .002770), (X = 0, Y = 2, Z = 1) i.e. girls with high Sep-
tember and normal June weight (p = .002770), (X = 1, Y = 0, Z = 1), i.e. boys with low Sep-
tember and normal June weight (p = .002770), (X = 1, Y = 1, Z = 2) i.e. boys with normal 
September and high June weight (p = .002770), (X = 1, Y = 2, Z = 0) i.e. boys with high 
September and low June weight (p = .000746). For Table 12 (Table 7 with (Y, Z) replaced by 
change scores) we detect types for (X = 0, C = „–“) i.e. girls with a decrease in weight (p = 
.010648) and for (X = 1, C = „+“) i.e. boys with an increase in weight (p = .010648). 
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5. Discussion 
 
What can we learn from the examples above which illustrate Simpson’s and Lord’s para-

doxes? Our conclusions are as follows: 
An important argument for introducing CFA was that higher-order interactions are no 

longer a danger for the interpretation of the data resulting from collapsing contingency tables 
(Lienert, 1969, 1971a). However, Simpson’s paradox (Simpson, 1951) does not require the 
existence of such interactions and this means that the interpretation of CFA results for col-
lapsed tables may be distorted with respect to the original table even if no higher-order inter-
actions are present. Therefore, Lienert’s proposal to find better interpretable types by means 
of HCFA (Lienert, 1971b) may sometimes yield interpretations of the data which are not 
really justified. This can be seen e.g. by comparing the CFA results for Tables 5 and 6. A 
further problem is that each multivariate contingency table which we analyze by means of 
CFA can be considered as a table which resulted from collapsing a table with a higher di-
mension because we can consider always only a restricted set of variables and infinitely 
many possible other variables are not considered by us. 

The measurement of change is an important problem in psychology and other fields. In 
Lienert (1971b) and other articles a CFA based on measures of change is proposed. As we 
have seen, this kind of analysis can yield results which are quite different from those which 
we get by applying a CFA to the original data. A reason for this can be Lord’s paradox 
(Lord, 1967). It does not exist a simple solution for this paradox and sometimes the first kind 
of analysis sems to be more appropriate and sometimes the second kind (cf. Holland and 
Rubin, 1983; Wainer, 1991). In our example, we found that the results of CFA for Table 7 
(original data) are far more difficult to interpret than the CFA results for Table 12 where 
change scores were used. But we are not sure that this a valid argument to prefer a CFA 
based on change scores. 
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