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Abstract

In the present review we will deal with the following questions: What are arithmetic 
facts? How are they related to other cognitive functions? What are characteristic features of 
fact retrieval performance in healthy adult subjects? Which typical patterns of breakdown 
can be observed in acalculia? How do current models account for the representation of and 
access to arithmetic facts? 
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Simple arithmetic problems, such as 3+6 or 5x4, are frequently encountered and rou-
tinely solved in every-day life. Those problems whose solution does not require further 
computational processes or strategies but can directly be retrieved from long-term memory 
are commonly referred to as arithmetic facts. Usually, problems with one-digit operands 
(2+4; 3x5; 6-3) are subsumed under this label, though a precise definition is rarely given. In 
the following, we will describe dissociations and associations of arithmetic fact retrieval and 
related cognitive functions, reviewing neuropsychological evidence as well as findings from 
experimental and developmental psychology. In this way we will try to characterize in more 
detail what arithmetic facts actually are. Finally, some approaches will be presented to model 
the acquisition, representation, and retrieval of arithmetic facts. 

Concepts, procedures, and facts 

Three main types of arithmetic knowledge can be distinguished: concepts, procedures, 
and facts (Delazer, 2003). Conceptual knowledge provides understanding of arithmetic  
operations and principles. This type of knowledge is the prerequisite to make inferences and 
to relate different information involved in arithmetic. Conceptual knowledge is flexible, can 
be adapted and applied to new tasks and thus provides adaptive expertise (Hatano, 1988). 
Procedural knowledge guides the execution of algorithms. It can only be applied in familiar 
contexts. Accordingly, it can be characterised as routine expertise (Hatano, 1988). Arithme-
tic facts, finally, can be conceptualised as stored in and directly retrieved from (declarative) 
long-term memory (e.g., Ashcraft, 1987; Campbell, 1995; Dehaene & Cohen, 1995; Rickard 
& Bourne, 1996; Siegler, 1988; for a different view see Baroody, 1994). During develop-
ment, arithmetic facts evolve from conceptual and procedural knowledge. For instance, it has 
been demonstrated that the pattern of response latencies and errors in the retrieval of simple 
multiplication facts of older children and adults reflects the number and type of errors made 
in the backup strategies used by children at an earlier developmental stage solving the same 
problems (Lemaire & Siegler, 1995; Siegler, 1988). 

Neuropsychological studies support the assumption that arithmetic facts are stored sepa-
rately from other numerical skills. In a seminal paper Warrington (1982) reported a patient 
who was no longer able to retrieve simple arithmetic problems from memory, but was able to 
give the approximate result of arithmetic problems, both in simple and more complex calculation, 
to estimate visually presented quantities of dots, to give adequate numerical cognitive estimates, 
to judge the relative size of a number and to give accurate definitions of arithmetic operations. 
Several later case reports confirmed the separate storage and selective vulnerability of arithmetic 
facts knowledge. However, other studies questioned the assumption that healthy, educated adults 
retrieve the solutions for all simple arithmetic problems from memory (i.e., as facts) (Lefevre, 
Bisanz, Daley, Buffone, Greenham, & Sadesky, 1996; Lefevre, Sadesky, & Bisanz, 1996; for 
methodological considerations see Kirk & Ashcraft, 2001). Lefevre and colleagues found that in 
single digit addition, non-retrieval strategies (e.g., counting) accounted for 29% of all trials and 
for about half the problems with sums above 10. In simple multiplication, up to 19% of all trials 
were solved by non-retrieval strategies (e.g., repeated addition). Furthermore, significant interin-
dividual differences became apparent as the relative amount of retrieval on simple multiplication 
problems varied from 23% to 100% across participants. 
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Double dissociations between fact knowledge and conceptual knowledge point to the 
relative independence of the two components within the cognitive system. It has been shown 
that patients may lose all conceptual understanding of arithmetic, but preserve part of the 
memorised fact knowledge including nearly all simple multiplication problems (Dehaene & 
Cohen, 1997; Delazer & Benke, 1997). Other patients showed severe deficits in retrieving 
multiplication facts despite excellent conceptual knowledge of arithmetic (Hittmair-Delazer, 
Semenza, & Denes, 1994). 

In the current literature there is general agreement that facts and procedures are proc-
essed separately and supported by different cognitive components. Dissociations between 
spared fact retrieval and impaired procedural skills, supporting this notion, have been re-
ported by several authors (Girelli & Delazer, 1996; Lucchelli & De Renzi, 1993; McClo-
skey, Caramazza, & Basili, 1985). A double dissociation between arithmetic facts and pro-
cedures was reported for two developmental cases of dyscalculia (Temple, 1991, for similar 
evidence in cases of acquired acalculia see McCloskey et al., 1985). Finally, there is also 
evidence for dissociating procedural and conceptual knowledge (Girelli & Delazer, 1996, 
van Lehn, 1986). 

Exact and approximate simple calculation 

The retrieval of arithmetic facts from memory always leads to an exact number. How-
ever, as already observed by Warrington (1982), exact and approximate calculation can 
dissociate. This was later replicated in a neuropsychological case study by Dehaene & Cohen 
(1991). They reported patient NAU who erred even with the simplest calculation problems 
(e.g., 2+2=3). In multiple choice tasks, however, he easily rejected distant false results 
(2+2=9), while he accepted false results close in magnitude to the correct one (2+2=5). In the 
light of these findings, Dehaene and Cohen suggested two distinct systems in number-
processing - one processing numbers as exact symbols (involved in fact retrieval) and one 
processing numbers as approximate magnitudes (involved, for instance, in approximate 
calculation and estimation). 

The distinction between exact and approximate calculation is somewhat related to the 
distinction between facts, procedures, and concepts: Whereas the exclusive use of fact re-
trieval or calculation procedures will always lead to an exact result, only conceptual knowl-
edge related to magnitude information can be used for approximation. In this way, concept-
based approximation can be used to monitor the output of exact fact retrieval or calculation 
procedures (Lochy, Domahs, & Delazer, 2004). However, approximate and conceptual 
knowledge are clearly distinguishable as the latter may also lead to exact results. For in-
stance, knowing the principle of commutativity in multiplication one can directly deduce that 
a x b gives exactly (not approximately) the same as b x a. 

Facts and rules 

Not all simple calculation problems are considered as arithmetic facts. McCloskey and 
coworkers (e.g., Dagenbach & McCloskey, 1992; McCloskey et al., 1985) distinguished 
between three subsets of simple multiplication problems: 0's problems (all problems involv-
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ing 0 as operand), 1's problems (involving 1 as operand) and 2-9 problems (2x2 through 
9x9). While the first two subsets (involving 0 and 1) are thought to be answered by a stored 
rule, only the problems of the last subset are thought to be stored and retrieved individually 
from memory. First evidence for a special status of rule based problems came from their 
specific RT characteristics which differs from other problems (Parkman, 1972; Stazyk, 
Ashcraft, & Hamann, 1982). Furthermore, analyses of data from neurologically impaired and 
normal subjects revealed that problems involving 0 or 1 typically show consistent error 
patterns and may be disrupted selectively in multiplication (e.g., nx0=n; nx1=1), addition 
(n+0; 0+n), or division (n:1) (Delazer, Domahs, Lochy, Karner, Benke & Poewe, 2004; 
McCloskey, Aliminosa, & Sokol, 1991; Pesenti, Depoorter, & Seron, 2000). 

Different operations – separate networks? 

Are the four basic operations of arithmetic represented in complete separation, are their 
representations interrelated or do they form a single common network of representations? 
Compelling evidence points to at least interrelated representations for the two operations 
most commonly thought to be solved by memory retrieval, i.e., multiplication and addition. 
Two main findings support this assumption. First, there is a substantial number of cross-
operation errors, i.e. ‘correct’ multiplication results stated for addition problems or vice 
versa (e.g., 2+4=8; 3x4=7). Miller, Perlmutter, and Keating (1984), for example, found that 
such cross-operation errors constituted about one quarter of the mistakes that adults made 
while performing separate blocks of simple additions and multiplications. Furthermore, when 
offered in verification tasks, ‘correct’ multiplication results lead to significant interference 
for addition problems and vice versa (Winkelman & Schmidt, 1974). Second, the acquisition 
of multiplication in school leads to a temporary increase of response latencies for (already 
acquired) addition (Miller & Parades, 1990). 

Concerning the relationship between multiplication and division, learning studies with 
healthy subjects yielded somewhat conflicting results. Campbell (1997) reported highly 
correlated RTs and error characteristics for multiplication and division as well as priming of 
multiplication errors by previous division trials, compatible with the notion of multiplication 
at least used to check division. Similar results have been described by Lefevre and Morris 
(1999), who found closely related error and latency patterns and cross-operational facilita-
tion by complementary problems (more so from division to multiplication). Moreover, on 
large division problems, participants reported that they ‘recast’ problems as multiplication. 
These findings are taken to support the hypothesis that multiplication and division are stored 
in separate mental representations but that solution of difficult division problems sometimes 
involves access to multiplication. On the other hand, little if any transfer from multiplication 
training to division was observed by Rickard, Healy, and Bourne (1994, but see Campbell, 
1999 a). Individual differences may play some role in a unifying interpretation of these data, 
as discussed, for example, by Rickard et al. (1994). 

A number of neuropsychological case studies highlighted the relative autonomy of repre-
sentations for different arithmetic operations. A detailed description of a profound deficit in 
fact retrieval differently affecting basic operations was provided by Singer and Low (1933, see 
also Girelli, 2003). Their patient suffered a carbon monoxide poisoning which lead to several 
neuropsychological deficits including apraxia, agraphia and acalculia. In ‘mental figuring’ (fact 
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retrieval) the patient was unable, even after six months of daily instruction, to make the simplest 
subtractions and divisions. In additions, he preserved the ability to add two digits the sum of 
which was less than 10 (4+3=7) and to add a digit to 10 or 20 (10+8=18). Only in multiplication 
he showed an improvement after four months of intensive daily training. In fact, the patient was 
able to answer problems such as 7x2 or 6x12 with very few mistakes. Thus, performance clearly 
varied across operations in terms of error rates, but also in terms of reaction times, multiplication 
being fast and automatic, addition being slow. 

Some decades later, McCloskey et al. (1991) tested a group of acalculic patients and 
found that for most patients performance was consistently worse for multiplication than for 
addition and subtraction. One might assume that multiplication is simply more difficult than 
subtraction and addition and that the pattern of preserved and impaired performance reflects 
differences among operations in premorbid ‘strength’ of the stored facts. However, various 
patterns of impaired and preserved operations have been observed and a simple operation-
difficulty effect cannot account for the results. While, indeed, impaired multiplication tables 
with better or entirely preserved addition and / or subtraction have been repeatedly reported 
(see also Hittmair-Delazer et al., 1994; van Harskamp & Cipolotti, 2001), the reverse disso-
ciation has been observed as well (Dehaene & Cohen, 1997; Delazer & Benke, 1997; Singer 
& Low, 1933; van Harskamp & Cipolotti, 2001). Furthermore, subtraction has occasionally 
been found to be better preserved than multiplication and addition (Dagenbach & 
McCloskey, 1992; McNeil & Warrington, 1994; Pesenti, Seron, & Van der Linden, 1994). 
The opposite dissociation, i.e., selectively impaired subtraction was reported by van Har-
skamp and Cipolotti (2001). Van Harskamp & Cipolotti also observed a case of selectively 
impaired addition, but, in contrast to other cases, this patient (FS) made predominantly op-
eration errors, producing in most cases the ‘correct’ multiplication result to the addition 
operands. In their reanalysis of this case Dehaene, Piazza, Pinel, and Cohen (2003) argue 
that the problem of FS may have been the correct choice of operation or the insufficient 
inhibition of multiplication rather than poor addition itself. This interpretation is supported 
by the fact that despite his frequent operation errors, FS was able to add correctly in as much 
as 100/108 trials in which no operation error occurred. Finally, a selective deficit for division 
was described by Cipolotti and de Lacy Costello (1995). However, a complementary disso-
ciation between impaired simple multiplication and spared simple division has not yet been 
observed. This leaves open the possibility that division problems are not represented as facts 
in memory but may be solved by translating them into multiplication as has also been sug-
gested by some of the above described experimental findings with healthy subjects. 

Divergent explanations have been offered to account for the operation specific deficits 
observed. While Dagenbach and McCloskey (1992) explained selective deficits of their 
patient in terms of damage to segregated representations for the arithmetic operations, 
McNeil and Warrington (1994) interpreted operation and modality specific deficits by a 
visual and a verbal calculator dedicated to different operations. Addition and multiplication 
would be preferentially elaborated in the verbal calculation system, subtractions in the vis-
ual/Arabic system. Thus, damage to one of the systems (or impaired access to it) would 
result in operation and modality specific deficits. A somewhat related interpretation was 
proposed by Dehaene and Cohen (1995). However, these authors emphasise the different 
processing components employed in answering the four basic operations. Multiplications are 
taught systematically and depend heavily on rote memory, whereas subtractions and divi-
sions, which are not taught systematically, rely on back-up strategies. Thus, patterns of se-
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lectively preserved and selectively disrupted operations are thought to reflect problems in 
specific processing components rather than damage to selectively stored representations. 
Accordingly, disruption of memory representations should result in a severe deficit in multi-
plication, but not in subtraction. A problem in executing back-up strategies, on the other 
hand, should lead to problems in subtraction and division, but not in the overlearned multi-
plication tables. Since the operations are thought to differ in their representation format 
(multiplications processed in a verbal-auditory code, subtractions in an analog magnitude 
code) as well as in the processing component used, patterns of modality- and operation-
specific deficits can be accounted for (Dehaene & Cohen, 1997). According to this approach 
simple additions can be solved both via fact retrieval from memory and via quantity manipu-
lations (e.g., Dehaene et al., 2003). Therefore, individual performance is hard to predict. 
However, one prediction is derived from their model by the Dehaene et al. themselves: Addi-
tion cannot dissociate from both subtraction and multiplication together as it relies on at least 
one of the systems used for those operations. Until now, we are not aware of any evidence 
challenging this prediction. 

It is clear from this brief review of neuropsychological data, that operation difficulty 
cannot account for all reported operation specific deficits. So far, two main hypotheses have 
been proposed to explain the observed dissociations, the first assuming segregated memory 
networks (e.g., Dagenbach & McCloskey, 1992), the second assuming that the four opera-
tions are subserved by two different main processing components (e.g., Dehaene & Cohen, 
1995; Dehaene & Cohen, 1997). This latter hypothesis seems consistent with findings from 
developmental and experimental psychology, briefly reviewed in the initial part of this sec-
tion, which have shown that networks at least of addition and multiplication are interrelated. 
While not completely excluding the existence of such relations, the former hypothesis had to 
be modified to account for these data. 

Arithmetic facts and language functions 

In the last decades of the 19th century it was generally assumed that calculation problems 
were only one aspect of the complex constellation of deficits present in aphasia (for a his-
torical review see Boller & Grafman, 1983). The first observation of a specific calculation 
disorder independent of aphasia was reported by Lewandowsky and Stadelmann (1908). 
They suggested that calculation may be impaired without reduced general intelligence or 
aphasic problems and described numerical difficulties as a distinct and isolated neuropsy-
chological deficit. Later on, also Henschen (1919; 1920) stated that acalculia constitutes an 
independent symptom although he observed that acalculia and aphasia are often related. 
Moreover, he recognised that agraphia and acalculia are frequently associated symptoms 
which arise after lesions to the left angular gyrus. 

Dissociations between language and fact retrieval performance in both directions were 
described afterwards in a number of case studies. While, for instance, Warrington (1982) and 
Delazer et al. (2004) presented cases of impaired simple calculation in the light of spared 
linguistic abilities, the opposite pattern was reported by Rossor, Warrington, and Cipolotti 
(1995). Rossor and colleagues examined a severely aphasic patient whose ability to answer 
simple as well as complex problems (addition, subtraction, multiplication) was not compro-
mised by his language impairment. This patient possibly compensated verbally supported 
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calculation skills by non-verbal ones. Also Whalen, McCloskey, Lindemann, and Bouton 
(2002) argue against a purely language based account of fact retrieval. Their patients suc-
cessfully retrieved answers to simple arithmetic problems from memory even when they 
were unable to generate the phonological representation of either the problem itself or its 
answer.

While these cases provide compelling evidence for the view that language and calcula-
tion skills are, in principle, functionally separable, it should not be neglected that language 
disorders and impairments of arithmetic fact retrieval frequently co-occur and can be sys-
tematically related (for a review see Delazer & Bartha, 2001). In the following, some evi-
dence supporting this notion will be shortly reviewed. 

Berger (1926) reported calculation problems due to language deficits and classified them 
as secondary acalculia. Similarly, Hécaen, Angelergues, and Houllier (1961) reported calcu-
lation problems due to alexia or agraphia for numerals. Benson and Denckla (1969) identi-
fied paraphasias as a source of calculation errors in two aphasic patients. Their calculation 
deficits appeared rather severe when verbal or written answers had to be given. When con-
fronted with multiple choice tasks, however, the patients were able to select correct solu-
tions. Calculation difficulties in different aphasic groups were investigated in the study of 
Dahmen, Hartje, Bussing, and Sturm (1982), as well as in the study of Rosselli & Ardila 
(1989). A more recent study aimed to evaluate the relation between language impairment on 
the one hand and number processing, mental and written calculation on the other hand 
(Delazer, Girelli, Semenza, & Denes, 1999). In contrast to previous studies tasks were de-
signed taking into account current calculation models and assessed the single components 
separately. Importantly, all aphasic patients performed worse than controls in answering 
arithmetic facts. However, these difficulties could not be explained by verbal production 
problems, since different answer modalities were allowed. Overall, the error rate in various 
tasks correlated with the severity of the language deficit, global aphasics being most im-
paired. More interestingly, qualitative differences were found between aphasic groups, par-
tially reflecting the nature of the specific language problems. In all patient groups (Amnesic 
aphasia, Broca's aphasia, Wernicke's aphasia, Global aphasia) addition was better preserved 
than subtraction and multiplication. Multiplication tables were particularly difficult for 
Broca's aphasics who scored significantly lower in multiplication than in subtraction. This 
result is in line with previous reports that indicate a high incidence of multiplication deficits 
in patients with language impairment. It is also consistent with the assumption of verbally 
supported multiplication tables as suggested by McNeil and Warrington (1994) or Dehaene 
and Cohen (1995). 

A recent training study with healthy, bilingual subjects conducted by Spelke & Tsivkin 
(2001) also demonstrated that there is some language influence on numerical facts. While 
their Russian-English bilinguals retrieved information about approximate numbers and non-
numerical facts with equal efficiency in both languages, they retrieved information about 
exact numbers more effectively in the language of training. 

In sum, although there are, in general, systematic correlations between performance in 
linguistic tasks and simple arithmetic problems, single neuropsychological cases point to a 
relative autonomy of both domains. 
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Some characteristics of arithmetic fact retrieval 

Some stable effects have been observed in simple arithmetic, neither reaction times nor 
error rates are randomly distributed over problems. In general, problems involving large 
operands (8x7) yield longer reaction times and higher error rates than problems involving 
small numbers (2x3). This problem size effect is well known in the developmental and ex-
perimental literature (Ashcraft, 1992; Ashcraft, 1995; Campbell & Graham, 1985; Groen & 
Resnick, 1972; Siegler, 1988) and frequently observed in acalculic patients (e.g., Hittmair-
Delazer et al., 1994). However, the term problem-size effect has been heavily criticised for 
several reasons. Ashcraft (1992), for example, states that larger numbers have nothing inher-
ent that makes them more difficult to process, but problems with large operands are simply 
less frequently presented and thus more difficult to answer. Siegler (1988), on the other 
hand, argues that the problem-size effect arises from the more complex and thus more error-
prone back-up strategies used for large problems during development. Interestingly, the 
problem size effect does not hold for all simple arithmetic problems in the same manner. 
Rather, tie problems (e.g., 7x7) are solved faster and more accurately than would be pre-
dicted by their problem size (Blankenberger, 2001; Campbell & Gunter, 2002). Moreover, 
there is a size x tie interaction, i.e., the size effect is weaker for ties than for non-ties. 

Furthermore, errors in fact retrieval are highly systematic, too. In multiplication, a large 
proportion of them are multiples of one of the operands, e.g. 5x4=24 (Campbell & Graham, 
1985; Siegler, 1988; Sokol, McCloskey, Cohen, & Aliminosa, 1991). These operand errors
are mostly close to the correct result - typically they do not differ by more than two operands 
(Campbell & Graham, 1985; McCloskey, 1992). Operand errors are also the most frequent 
error type in acalculic patients. However, error patterns may differ across patients. Some 
patients also presented with a high incidence of close miss errors (5x6=31; Girelli, Delazer, 
Semenza, & Denes, 1996) or of non-table errors (3x4=37; Domahs, Bartha, & Delazer, 
2003). Interestingly, such highly implausible error types may disappear in favour of more 
plausible operand errors during remediation (Domahs et al., 2003; Girelli et al., 1996). 

Representation and retrieval of arithmetic facts according
to cognitive models 

Various models have been advanced to explain the storage and retrieval of arithmetic 
facts. Though each single model can account for relevant empirical findings, they differ with 
respect to the perspective taken and to phenomena neglected. 

Siegler’s (Lemaire & Siegler, 1995; Siegler, 1988) distribution of associations model, for 
example, is able to describe the acquisition of arithmetic facts and to account for the size 
effect and operand related errors. Both are described as the result of the backup strategies 
used during development. According to this account, more complex strategies are used for 
large than for small problems during an early developmental stage, causing more errors for 
large than for small problems. As all results ever produced for a specific problem create or 
strengthen associations with this problem, more errors produced during early developmental 
stages result in more interference in the retrieval of that specific arithmetic fact later on – 
leading to an effect of problem size. Furthermore, errors made during the execution of 
backup strategies are highly systematic, leading to a majority of operand related errors which 
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are preserved through the distribution of problem-answer associations. The tie effect, accord-
ing to Siegler, is related to the frequency of exposure, ties being more frequently encoun-
tered in elementary textbooks of arithmetic. In addition to explaining the development of 
memory retrieval, the strategy selection process which decides between memory retrieval 
and the use of backup strategies is addressed by this model. 

In other network retrieval models, as proposed by Ashcraft (1987) and by McCloskey 
and Lindemann (1992) retrieval is conceptualized as spreading activation between operand 
nodes and answer nodes. Spreading activation to neighboring answer nodes naturally ac-
counts for operand related errors. The size effect is attributed to the lower presentation fre-
quency of problems with larger operands during education. Evidence for higher frequency of 
exposure for small as compared to large problems is, indeed, provided by Ashcraft and 
Christy (1995). The same explanation should also hold for the tie effect. Yet, there are some 
problems for frequency-based explanations of the size and tie effects. As noted by 
McCloskey, Harley, and Sokol (1991), it is not clear how frequency of text book presenta-
tion in childhood can account for problem difficulty observed in adults. More importantly, 
however, a closer look reveals that ties actually do not appear to be more frequent than non-
ties in elementary textbooks (for further discussion, see Verguts & Fias, in press). 

In Campbell’s network interference model (Campbell, 1995), so called problem nodes 
are activated depending on the activation of their constituents. If a subject is, for example, 
confronted with the problem 3x8, problem nodes like {3, 7, 21}, {4, 8, 32}, or {3, 8, 24} 
become activated, the latter one (in case of a correct response) most strongly. The activation 
of one of the former problem nodes, however, would result in an operand error. In addition 
to the activation of problem nodes, a magnitude code approximating the size of the result is 
calculated. Thus, the presentation of a small problem activates the problem nodes of several 
other small problems, while the presentation of a large problem activates the problem nodes 
of several large problems. According to Campbell, the existence of a magnitude code can 
explain the problem size effect, provided that it is represented in a compressed way (e.g., 
Dehaene, 2003). Given a compressed magnitude representation, a large magnitude code 
would activate more problems than a small magnitude code, leading to more interference and 
inferior performance. However, the explanation of the tie effect needs an additional assump-
tion. Campbell (1995) argues for a separate representation of ties. As pointed out by Verguts 
and Fias (in press), this assumption is problematic, because it would predict that most errors 
to tie problems should result in answers to other tie problems, a prediction which is not borne 
out by empirical data. 

Only recently, Verguts and Fias (in press) proposed a model which does not rely on fre-
quency based explanations of the size and tie effects and which does not assume independent 
representations of ties. In the model’s core component, the semantic field, the representation 
of multiplication problems is internally organized according to the size of their operands. 
Only one of the complement problems is stored (max x min or min x max order). For the 
model itself it does not matter which operand order is stored as long as this is consistent 
within a person. The semantic field activates answer nodes which are separate for decades 
and units. Following this assumption, the size effect can result from more consistent coop-
erative activation of decades from smaller operands than from larger operands, consistent 
meaning that the same decade is activated. For example, the problems 5x2, 6x3, and 4x3, 
which are neighbors in the semantic field to the target problem 5x3, consistently activate the 
same decade (1) whereas only the neighboring problem 5x4 activates another decade (2). For 
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large problems, less consistent cooperative activation of a decade in the answer nodes will 
occur, leading to more competition of different decades and accordingly to slower and more 
error-prone responses, i.e., the size effect. In this model, the tie effect is due to representa-
tional characteristics of the semantic field, tie problems having fewer (competing) neighbors 
than non-tie problems. The Verguts and Fias model is silent about how the assumed repre-
sentations are acquired. On the one hand, its frequency-independent explanation of the size 
and tie effect can be seen as the model’s biggest advantage. On the other hand, it is not clear 
how the recent version of it can account for the findings of Graham (1987) who showed that 
the size effect can be influenced by the order in which arithmetic facts are acquired. 

Most of the models reviewed so far neither address the representation of different opera-
tions nor the specific format of storage and retrieval. Concerning the latter point, it can be 
assumed that storage relies on some kind of abstract representations (for an exception to this 
view see Campbell, 1994). The neuropsychological models, which will be presented in the 
following, deal with these questions, largely ignoring the acquisition and RT phenomena of 
arithmetic fact retrieval like the problem size effect or attributing them to peripheral factors. 

McCloskey and colleagues (1985; see also McCloskey, 1992) assume a central semantic 
system which is accessed in all calculation processes independently from the format of the 
input. All number formats (spoken, written, Arabic) are converted into abstract representa-
tions which specify the magnitude of the number and serve as input for the calculation sys-
tem (consisting of an arithmetic fact component, procedural knowledge and the processing of 
arithmetic signs). Accordingly, the McCloskey model predicts that the processing of arith-
metic facts is independent from the input format, e.g. 3x4 (Arabic script) and three times four
(spoken or written number words) are processed in the same central system. Only the input 
and output are processed in modality specific components. Within the calculation module of 
the central system, operations are assumed to be represented separately. However, there is 
evidence questioning both the assumption of a central, amodal calculation system (e.g., 
Campbell, 1999 b; Campbell & Fugelsang, 2001) and the separate representation of opera-
tions (e.g., Dehaene et al., 2003). 

An alternative to McCloskey et al.'s model has been proposed by Dehaene and col-
leagues (1992; Dehaene & Cohen, 1995). They suggest a triple-code model of number proc-
essing, comprising a visual-Arabic number code, an auditory-verbal code and an analog-
magnitude representation. Each code is dedicated to specific tasks in number processing and 
calculation. The visual-Arabic code is thought to mediate digital input and output, multi-digit 
operations and parity judgements. The analog magnitude code represents the quantity asso-
ciated with a number as local distributions of activation on an oriented and compressed num-
ber line. The analog magnitude representation underlies number comparison, approximate 
calculation, estimations and contributes to subitizing. The auditory-verbal code, finally, 
represents numbers as syntactically organised sequences of words (Dehaene & Cohen, 1995 
following McCloskey, Sokol, & Goodman, 1986). The auditory-verbal code mediates verbal 
input and output, counting and memorised arithmetic facts. The model postulates that multi-
plication tables and some additions are stored as verbal associations which cannot be re-
trieved unless the problem is converted into a verbal code. Thus, problems presented in 
Arabic numerals (3x4) are (at least subvocally) converted into a verbal format (three times 
four) before the answer is retrieved. The direct verbal route is used for overlearned calcula-
tions, in particular for multiplication problems. However, Dehaene and Cohen (1997) also 
propose a second, indirect route for answering simple calculation problems. Operands are 
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not only represented as verbal forms, but also as quantities on the oriented number line, on 
which operations can be performed. This indirect semantic route is employed when no verbal 
association is available, typically for subtraction problems. The core assumption of the tri-
ple-code-model concerning storage and retrieval of arithmetic facts is that it exclusively 
relies on the verbal modality. However, there are some problems with this assumption, which 
were already discussed in the ‘Arithmetic facts and language functions’ section. 

Noël and Seron (1993) introduced a preferred-entry code hypothesis. As they observed in 
neuropsychological case studies, subjects may prefer a particular code in order to access 
number meaning and to perform numerical tasks. Some subjects prefer a verbal entry code 
(as did the patients described by Noël & Seron, 1993; 1995), others a visual entry code. If 
transcoding from a specific notation (e.g., Arabic) to the preferred entry code (e.g., verbal) is 
impaired, all numerical tasks (e.g., number comparison or calculation) presented in this 
notation (e.g., Arabic) will be impaired. However, as this hypothesis lacks a satisfying de-
gree of elaboration, specific predictions about acquired disturbances of arithmetic cannot be 
derived from it. For instance, it remains unclear whether damage to the preferred entry code 
should result in the complete inability to perform calculations or whether a non-preferred 
entry code could – at least partly – take over this function. 

In sum, models developed from developmental or experimental perspectives focus on 
typical findings observed in fact retrieval. They differ, for instance, in their explanation of 
the size effect. Neuropsychological calculation models, on the other hand, are in particular 
concerned with the relationship of different operations and the representational format of 
arithmetic facts. They disagree as to whether facts are stored as verbal sequences or as ab-
stract memory representations. 

Concluding remarks 

Due to space restrictions, this brief review was doomed to neglect some domains of evi-
dence concerning simple arithmetic. For example, neuro-imaging studies have not been 
discussed, but will certainly be of increasing importance in the coming years (for an over-
view see Dehaene et al., 2003, and references cited therein). Furthermore, the rehabilitation 
of facts knowledge in acquired disorders of arithmetic could not be addressed. Interested 
readers may find the overviews of Girelli and Seron (2001) and Lochy et al. (2004) helpful. 

It has to be questioned whether all the studies investigating fact retrieval truly assess sim-
ple calculation as used in every day life or whether they just assess performance under labo-
ratory conditions. In fact, several differences may be found between studies specifically 
designed to study fact retrieval and simple calculation in every day life. First of all, in ex-
perimental studies simple calculation is presented without context and without meaning. 
Thus, arithmetic facts may be recited without reference to the meaning (for example quan-
tity, money, distance) they represent. It is questionable whether ‘normal’ fact retrieval is 
done in that way. One the one hand, some errors frequently appearing in experimental stud-
ies seem less likely in real life situations. For example, it may be speculated that cross-
operation errors occur less frequently when a real context is given. Evidence showing that 
real life context can, indeed, help doing calculation is, for instance, provided in an investiga-
tion of Brazilian street children by Nunes, Schliemann, and Carraher (1993). On the other 
hand, the complexity of every day situations can also have detrimental effects on number 
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processing as shown in a study with Alzheimer’s patients by Martini, Domahs, Benke, and 
Delazer (2003). 

Second, experimental studies commonly present hundreds of problems within one ses-
sion. Such a high number of trials may critically influence the characteristics of fact re-
trieval. Cognitive models depict memory for arithmetic facts as related networks with fluctu-
ating levels of activation. Importantly, it is assumed that repeated retrieval changes the acti-
vation level of the network. This is, for example, instructively illustrated in studies of prim-
ing performed by Campbell and colleagues (Campbell, 1991; Campbell & Arbuthnott, 
1996). Thus, constant activation of the network or parts of it may alter the characteristics of 
retrieval.

Finally, operations are frequently presented in blocked order. Only few studies presented 
calculation problems in mixed order (Miller & Parades, 1990; Rubinstein, Meyer, & Evans, 
2001). In these studies, it has been shown that the presentation in mixed order influences 
accuracy and error types. It may thus be questioned whether the presentation of long blocks 
of just one operation is representative of ‘true’ fact retrieval. 

After all, it may be asked why, over several decades, dozens of researchers investigate 
the representation of a few memory associations. In fact, most studies focus on the small set 
of 64 multiplication facts only. This question is all the more so justified, as some of the basic 
problems are still not unequivocally answered, as for example the role of language in fact 
retrieval, the origin of the problem size effect or the role of intentional control. One of the 
reasons why arithmetic facts are continuously investigated may be that arithmetic consists of 
semantic knowledge shared by adults in virtually all cultures, though the level of expertise 
clearly varies interindividually. Moreover, arithmetic fact knowledge is the only domain 
where not only the single pieces of information are exactly defined, but also the relations 
between these single pieces. Thus, cognitive models may be developed at a level of precision 
which is not possible in other domains. Accordingly, the assessment of fact retrieval allows 
to study in great detail a small portion of semantic knowledge, the characteristics of retrieval, 
as well as the acquisition in childhood and the dissolution in acquired disorders of arithmetic. 
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