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ABSTRACT

This project is concerned with the comparison of two algorithms used in groundwater management

models, based on Quadratic Programming (QP) and Non-linear Programming (NLP) models.

A quadratic objective function is used and solved in two different ways. The first one is the

application of the Karush–Kuhn–Tücker (KKT) conditions and Wolfe’s algorithm, which are used in

solving QP models. The second one is the Conjugate Gradient Method (CGM), which is used in solving

NLP models.

Two additional ‘shell programs’ are created to formulate the results of the management model.

These results are organized in a Mathematical Programming System (MPS) file. This is the

management model output and contains the response matrix coefficients and all the management

model details in a coded format. The MPS data file is formatted via the two shell programs,

constituting the import data file for the optimization procedure that takes place with the GINO model

and spreadsheets.

An application took place in an aquifer in Northern Greece, just on the border with the Former

Yugoslavian Republic of Macedonia (FYROM). The phreatic aquifer was divided into 271 small square

areas, 200 m wide. The total area of the aquifer was 10.84 km2. The time increment was equal to 1

month. Finally, the comparison of the two different optimization algorithms took place, concerning

the pumping rates, the managed head distribution and the optimum pumping cost.

Key words | simulation, management and optimization groundwater models, quadratic and

non-linear programming, KKT conditions, Wolfe’s method, CG method, response matrix

method

INTRODUCTION

Our planet is experiencing a long period of increasing

water demand and limited water resources. Water man-

agement, and specifically optimum water management in

industrial, agricultural and urban use, are the only means

we have in order to deal with this problem.

This study is concerned with minimizing pumping cost

in a phreatic aquifer. A quadratic objective function is

formulated and a solution is achieved, based on two

different optimization algorithms. The quadratic function

is used in order to avoid nonlinearity errors due to height

loss, Dh, that occurred in the Linear Programming

solution in previous research involving the same aquifer

(Psilovikos 1996).

The research is focused on the comparison of the two

different algorithms used, concerning the optimum pump-

ing rates, the managed head distribution and the optimum

pumping cost. The two different algorithms are:

1. The Karush–Kuhn–Tücker (KKT) conditions

(Bazaraa et al. 1993) and Wolfe’s algorithm (Wolfe
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1959; Winston 1995). This algorithm is often used for

Quadratic Programming Models.

2. The Conjugate Gradient Method (CGM) (Hestenes

& Stiefel 1952; Fletcher & Reeves 1964; Hestenes

1980; Tzimopoulos et al. 1998; Psilovikos 1999a).

This algorithm can be used for every non-linear

objective function that has a range R2.

The optimum solution of the quadratic objective func-

tion is formulated in three steps:

1. Simulation model: application of a

three-dimensional finite difference method. The

solution is achieved using the backward differences

method MODFLOW (McDonald & Harbagh 1988)

and the Slice Successive Over-Relaxation (SSOR)

(Moler 1969) procedure.

2. Management model: The response matrix

coefficients are calculated (MODMAN) using space

and time superposition. ‘Influence surfaces’

(Psilovikos & Tzimopoulos 1998) are produced in

the field of wells due to unit pumping rates from

individual pumping wells.

3. Optimization model:

(a) The KKT conditions and Wolfe’s algorithm are

used so as to solve the model as a Quadratic

Programming Model (QP).

(b) The CGM is used so as to solve the model as a

Non-Linear Programming Model (NLP).

The above model was used in the Eidomeni–Evzoni

phreatic aquifer in Northern Greece. The collected data

were based on 25 managed wells, over a period of 12

months. The quadratic terms in the objective function

appeared only in 8 of the 25 managed wells that were used

as control point wells. An extensive response matrix was

obtained during the management model procedure. Two

external shell programs were created in order to link the

results of the management model (MODMAN), which

were organized in an ‘MPS’ (Mathematical Programming

System) format and the two optimization procedures

based on KKT conditions, Wolfe’s algorithm (QP) and the

CG Method (NLP). Finally, from the comparison of the

two optimization algorithms, interesting and quite useful

conclusions were drawn which can be subjected to further

research.

SIMULATION MODEL

The equation describing the groundwater flow is given by

McDonald & Harbagh (1988):

∂
∂x SKxx

∂h

∂xD�
∂
∂y SKyy

∂h

∂yD�
∂
∂z SKzz

∂h

∂zD�W�Ss

∂h

∂t
(1)

where

Kxx, Kyy, Kzz values of hydraulic conductivity

along the x, y, z coordinate axes

which are assumed to be parallel

to the major axes of hydraulic

conductivity [LT − 1],

W volumetric flux per unit volume. It

represents sources and sinks of

water [T − 1],

t time [T],

Ss specific storage [L − 1],

S∂h

∂xD , S∂h

∂yD , S∂h

∂zD space partial derivative with

respect to x, y, z coordinate axes,

respectively,

S∂h

∂t D time partial derivative.

The partial derivative differential equation in three

dimensions (Equation (1)) describes the groundwater flow

and is used by the simulation model. This equation

describes unsteady flow in heterogeneous and anisotropic

media, considering that the major axes of hydraulic con-

ductivity are identical to the Cartesian coordinate axes. Ss,

Kxx, Kyy and Kzz can be space functions [Ss = Ss(x,y,z),

Kxx = Kxx(x,y,z), Kyy = Kyy(x,y,z), Kzz = Kzz(x,y,z)] and W a

space and time function [W = W(x,y,z,t)].

NUMERICAL MODEL

Analyzing the first term of Equation (1), it can be

expressed as follows:

∂
∂x SKxx

∂h

∂xD
�

Kxx�i�1/2, j,k�h
i�1, j,k
n�1 �h

i, j,k
n�1��Kxx�i�1/2, j,k�h

i, j,k
n�1�h

i�1, j,k
n�1 �

Dx2

(2)
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The same substitutions can be obtained for the next

two terms of Equation (1). After space discretization in

the x, y, z directions, the differential Equation (1) is

transformed into a finite difference form in three

dimensions (Figure 1) and the form of a fully implicit

scheme (backward difference form) is obtained:

Kxx�i�1/2, j,k�h
i�1, j,k
n�1 �h

i, j,k
n�1��Kxx�i�1/2, j,k�h

i, j,k
n�1�h

i�1, j,k
n�1 �

Dx2

�

Kyy�i, j�1/2, k�h
i, j�1, k
n�1 �h

i, j,k
n�1��Kyy�i, j�1/2, k�h

i, j,k
n�1�h

i, j�1,k
n�1 �

Dy2

�

Kzz�i, j,k�1/2�h
i, j,k�1
n�1 �h

i, j,k
n�1��Kzz�i, j,k�1/2�h

i, j,k
n�1�h

i, j,k�1
n�1 �

Dz2

�W�i, j,k
�Ss�i, j,k

h
i, j,k

n�1�h
i, j,k

n

tn�1�tn . (3)

The time partial derivative, which is the right part of

Equation (3), is approximated with differences between a

specific time tn + 1, where the head is unknown and equal

to hn + 1
i,j,k , and just a previous time tn, where the head is

known and equal to hn
i,j,k, as shown in the formula below:

S∂h

∂t DU
n�1

�SDhi, j,k

Dt Dn�1

�

h
i, j,k

n�1�h
i, j,k

n

tn�1�tn . (4)

MANAGEMENT MODEL

The management model MODMAN (Greenwald 1994),

works as a link between the three-dimensional ground-

water simulation model and the various mathematical

programming–operations research–optimization models.

The major categories of groundwater management

models are two. The first is the embedding matrix method

(Remson & Gorelick 1980) and the second is the response

matrix method (Gorelick 1983). The response matrix

method is used in this project which has occurred from the

assumption of space superposition for steady state prob-

lems and both space and time superposition for unsteady

state–transient problems. According to the response

matrix method, an external numerical simulation model is

used to calculate coefficients. Each of the coefficients is

associated with theoretical unit rates in each pumping

well in the aquifer and unit drawdowns observed to the

wells that are used as control points.

The mathematical problem is to formulate an

algorithm according to which we will be able to compute

the loss of head Dhi that takes place at a determined

position i, which is the control point well i, and is due to

the pumping rates from N managed wells. This formula

can be written as follows:

• steady state problems (space superposition):

Hi�Ui�∑
j�1

N

aijQj (5)

• unsteady state problems (space and time

superposition) (Maddock 1971; Psilovikos 1996):

H
i

T�U
i

T�∑
k�1

T

∑
j�1

N

a
ij

T�(k�1)Q
j

k (6)

where:

i control point well,

j managed pumping well,

UT
i unmanaged head obtained in control point well i

at the end of the last managing period T [m],

HT
i managed head obtained in control point well i at

the end of the last managing period T [m],

aT-(k − 1)
ij average drawdown in each i control point well,

at the end of the last managing period T, due to a

Figure 1 | Space discretization in x, y and z coordinate axes.
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unit pumping rate at the j managed well, applied

throughout the k managing period,

Qk
j pumping rate at well j during the k managing

period [m3/d].
The management model simulated the numerical

model (N + 1) times, where N is the number of managed

wells (Figure 2). During the first simulation the unman-

aged heads U are computed with the assumption that no

pumping takes place in the aquifer. During the next N

simulations, the response matrix coefficients are com-

puted, containing the unit head drawdowns referred to

specific control point wells. In order to avoid scaling

problems in calculating the response matrix coefficients,

the theoretical unit pumping rates are chosen to be equal

to 1,000 m3/d because the real pumping rates have a range

of 1,000–5,000 m3/d.

The results of the (N + 1) simulations that occur

during the management procedure are contained in the

MPS file, which is an international code and can be read

and processed directly as an input file from optimization

models like LINDO (Schrage 1991). The LINDO model

solves only Linear Programming (LP) and Mixed-Integer

Programming (MIP) models and it was used in previous

studies involving the same aquifer (Psilovikos 1996, 1999b;

Psilovikos & Tzimopoulos 1998).

In the present study, two additional programs were

used for the solution of the quadratic objective function,

as is described in the optimization model below. These

two programs (GINO and spreadsheets) cannot read the

MODMAN MPS file results as an input file. The construc-

tion of two separate ‘shell programs’ in FORTRAN90 code

(Psilovikos 1999b) gives us the opportunity to format the

MPS data file into a compatible form, so it can be read as

an input data file from the two programs (GINO and

spreadsheets) used in the optimization procedure.

OPTIMIZATION MODEL

Quadratic programming model

The first solution is based on the KKT conditions and

Wolfe’s algorithm and is solved as a Quadratic Program-

ming model.

The KKT conditions are the necessary and sufficient

conditions for X = (X1, . . ., Xn) to be an optimum solution

for the following Quadratic Programming Model:

max (or min) f(X1, X2, . . ., Xn) (7)

subject to the constraints, which can be linear, non-linear

or both:

g1(X1, X2, . . ., Xn)≤b1

g2(X1, X2, . . ., Xn)≤b2

. . . . . . . . .

gm(X1, X2, . . ., Xn)≤bm. (8)

If X = (X1, . . ., Xn) is an optimum solution to (7) then

X = (X1, . . ., Xn) must satisfy the m constraints in (8) and

there must exist multipliers l1, l2, . . ., lm satisfying the

KKT conditions given below:

∂f(X )

∂Xj

�∑
i�1

i�m

li

∂gi(X )

∂Xj

�0

li �bi�gi(X )	�0
li�0
i=(1,2,...,m),j�(1,2,...,n)

6<<�>> Maximization model
<<�>> Minimization model

(9)

Figure 2 | Optimization procedure flowcharts in QP and NLP models.
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where

l1, l2, . . ., lm

Lagrange multipliers

X = (X1, . . ., Xn)

solution vector matrix.

After application of the KKT conditions (Equation

(9)), the quadratic programming model is transformed

into a linear one and is solved according to Wolfe’s

algorithm. The GINO program is used (Liebman et al.

1986) to read the formatted data of the MODMAN MPS

file via the shell program shell.for (Figure 2).

Non-linear programming model

The second algorithm is based on the Conjugate Gradient

Method, proposed by Hesteness & Stiefel (1952) and

transformed by Fletcher & Reeves (1964). This is an

iterative algorithm.

According to this algorithm, at the kth step, a

direction s
→

k is derived as a linear combination of 7f(x
→k)

and the previous directions s
→a, (a = 1, 2, . . ., k − 1),

where f is the objective function (Tzimopoulos et al.

1998).

The coefficients of linear combinations are chosen

in such a way that the derived directions must be

conjugate with respect to the Hessian matrix of f

(Hesteness 1980):

�T
si

· H · �
sj=0. (10)

Only the current gradient 7f(x
→k) and the previous

7f(x
→k − 1) are used for the estimation of these coefficients.

Figure 3 | The Eidomeni–Evzonoi phreatic aquifer. •: control point pumping wells, v: non-control point pumping wells.
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This method started with an initial approach x
→0 and

the steepest descent direction is chosen to be the first

direction of minimization:

�0
s ��,f��0

x �. (11)

For the next point the following equation is chosen:

�1
x �

�0
x �l0

�0
s (12)

where l0 is a parameter, obtained by the Optimum Step

Size Procedure (OSSP). The next direction →s 1 is obtained

by the formula below:

�1
s ��,f��1

x ��v1
�0
s (13)

which is a linear combination of 7f(x
→1) and the previous

direction 7f(x
→0). The parameter v1 is chosen using the

property of conjugate directions (Equations (10) and (14))

and is given in Equation (15):

�T
s1 · H ·

�
s0=0 (14)

v1�Hi,
�1
x i

i,
�0
x i
J2

. (15)

A convergence criterion is examined at every iteration

step and the general algorithm appears in the three

formulae below:

�k
s ��,f��k

x ��vk
�k�1
s (16)

�k�1
x �

�k
x �lk

�k
s (17)

vk�H i,
�k
x i

i,
�k�1
x i

J2

. (18)

Spreadsheets are used for the solution of the algor-

ithm. There is an embedded NLP solver routine in the

Excel package that uses the CGM method, as described

above, and reads the formatted data of MODMAN MPS

files via the shell program shell1.for (Figure 2).

RESULTS AND DISCUSSION

The application of the combined simulation–

management–optimization model was carried out in the

Eidomeni–Evzoni phreatic aquifer in northern Greece

(Psilovikos et al. 1996), just on the border with the Former

Yugoslavian Republic Of Macedonia (FYROM).

The Axios River flows through this area with a direc-

tion from north to south. In Figure 3 the map of the

phreatic aquifer is shown divided into 271 small areas,

200 m square. The total area of the aquifer is 10.84 km2.

The labelled filled circles represent the pumping wells and

the largest of them represent the control point pumping

wells. The white areas in the northwest and south repre-

sent boundary conditions of constant charge and all the

other boundary square areas are conditions of vertical

impermeable limits.

The data used for construction of the simulation–

optimization model were precipitations, specific irrigation

recharge, injections of 26 wells for 12 months, average

head in the river, specific storage, porosity, hydraulic

conductivity, ground levels and well base level. The aver-

age depth of the phreatic aquifer is 18 m. The time incre-

ment of Dt is equal to 1 month. The management period

involves a period of 12 months (March 1996–March

1997), during which the 25 wells operate only during the

four months of the irrigation period (k = 3rd month (June

1996), . . ., 6th month (September 1996) and the water

supply well G2414 is operating continuously.

The 8 control point wells are G1284, G1318, G1267,

E1 + E2, G2459, G2460, G2461 and G2538 (Figure 3). They

are chosen as control point wells because of their

extended pumping rates (Table 1), which are responsible

for the extended loss of head DhT
i in these wells.

The application of the optimization model consists of

the steps given below:

1. formulation of a quadratic objective function,

2. constraints in piezometric level in control point

wells,

3. balance constraints,

4. constraints in minimum and maximum pumping

rates.

Each one of the steps can be analytically written as

follows:
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1. Formulation of a quadratic objective function,

considering negative rates for pumping. The aim is

for the pumping cost to be minimized. The objective

function is given below:

max f(X )�∑
k�1

12

C
1

kQ
1

k�∑
i�2

26

∑
k�4

7

C
i

kQ
i

k . (19)

The water supply well G2414, which is operated

continuously, is added as a fixed cost S12
k = 1Ck

1Qk
1 in

the objective function and represents the first term

of Equation (19).

2. Constraints in piezometric level in the 8 control

point wells of the aquifer in the end of the last

managing period T. These constraints can be written

as

Dh
i

T�U
i

T�H
i

T�∑
k�1

T

∑
j�1

N

a
ij

T�(k�1)Q
j

k�b
i

T�U
i

T�H
i, min

T (20)

Table 1 | Optimum pumping rates obtained through the two models (m3/d)

Wells

Congugate gradient method—
non-linear programming solution

KKT conditions and Wolfe’s algorithm—
quadratic programming solution

Mar–May,
Oct–Feb June July Aug Sept

Mar–May,
Oct–Feb June July Aug Sept

G2414–fixed 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800

Control point wells (i = 1, . . ., 8)

G1284, G1318 0 4,500 4,500 4,500 4,500 0 4,500 4,500 4,500 4,500

G1267 0 1,600 1,600 1,600 1,600 0 1,600 1,600 1,600 1,600

E1 + E2 0 2,100 2,100 2,100 2,100 0 2,100 2,100 2,100 2,100

G2459 0 1,120 1,120 1,120 1,120 0 1,600 1,600 1,600 183

G2460 0 1,600 1,600 1,600 1,600 0 1,600 1,600 1,600 1,441

G2461 0 1,006 1,006 1,006 1,006 0 1,600 1,600 1,600 1,096

G2538 0 3,500 3,500 3,500 3,500 0 3,500 3,500 3,500 3,032

Non control point wells (j = 9, . . ., 25)

E13, G13 0 1,100 1,100 1,100 1,100 0 1,100 1,100 1,100 1,100

G14 0 726 726 726 726 0 0 0 0 1,100

G15, G16 0 1,100 1,100 1,100 1,100 0 1,100 1,100 1,100 1,100

G17 0 0 0 0 0 0 1,100 1,100 1,100 1,100

G18,G19,G20,G21,E9,E28 0 1,100 1,100 1,100 1,100 0 1,100 1,100 1,100 1,100

G22 0 1,100 1,100 1,100 1,100 0 0 0 0 1,100

G23 0 1,100 1,100 1,100 1,100 0 752 752 752 1,100

G24, E9, E28 0 1,100 1,100 1,100 1,100 0 1,100 1,100 1,100 1,100
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where

HT
i min

the imposed minimum head in the end of the last

managing period T [m]. All the other terms have

been explained above.

3. Balance constraints, concerning the total amount of

pumping water:

∑
k�1

T

∑
j�1

N

Q
j

k�B (21)

where B is a constant quantity.

These constraints represent the total amount of

pumping water per month, which has to be equal to

irrigation and water supply demands in every

pumping period month.

4. Constraints in minimum and maximum pumping

rates (negative values for pumping) in each

managing period:

0>Qk
j >Qk

j max (22)

where

i = 1,2, . . ., 8

control point wells,

j = 1,2, . . ., 25

all the pumping wells,

k = 1,2, . . ., T

pumping periods: months,

T = 6

end of irrigation period,

T = 12

end of management period.

The cost coefficient is given by the following formula:

C�
K

Qunit

Hman (23)

where

Qunit unit pumping rates equal to 1,000 m3/d, applied

in the management model to avoid scaling prob-

lems in calculating the response matrix coeffi-

cients, because the real pumping rates have a

range from 1,000–5,000 m3/d,

K coefficient that contains the cost of electric

energy for the operation of the pumps and the

cost of maintenance.
The total head is equal to

HmanT
i = LT

i + DhT
i + ct (24)

where the above terms are

LT
i the beginning head difference between the

surface ground level and the unmanaged heads

U [m],

DhT
i the height loss—drawdown—between the unman-

aged heads U and the heads H [m] obtained

after the application of the simulation model,

equal to

Dh
i

T�U
i

T�H
i

T�∑
k�1

T

∑
j�1

N

a
ij

T�(k�1)Q
j

k. (25)

This expression (Equation (25)) is responsible for the

quadratic terms of Q appearing in the objective function.

These terms are expressed only for the control point wells

(i = 1, . . ., 8). For all the other pumping wells that are not

considered to be control points (j = 9, . . ., 25) we cannot

express the loss of head Dh as a linear combination func-

tion of the response matrix coefficients and the pumping

recharges (Equation (25)), so we consider Dh to be equal

to an average Dh. So Hman remains a constant quantity

for the non-control point wells.

ct the additional manometric head (62 m) for

operation of the irrigation network [m].

So the cost coefficients used for the control point wells

(i = 1, . . ., 8) in the optimization model are

C
i

T�
K

Qunit
SL

i

T�∑
k�1

T

∑
j�1

N

a
ij

T�(k�1)Q
j

k�ctD (26)

and the cost coefficients used for the non-control point

wells (j = 9, . . ., 25) are

C
j

T�
K

Qunit
SL

j

T�Dh
j

T
�ctD . (27)
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The assumptions considered for the construction of the

model are:

1. The G2414 well is used only for water supply

demands. The cost coefficients and the pumping

rates are considered constant throughout the

management periods, so the terms are added as a

fixed cost in the objective function.

2. After the above assumption, the management

periods are identical to the four months of the

irrigation period (k = 3rd month (June 1996), . . .,

6th month (September 1996), where all the pumping

rates take place.

3. Quadratic terms are included in the objective

function, due to the application of the response

matrix method, referred to control point wells (i = 1,

. . ., Icontrol).

4. The other managed wells that are non–control

points (j = Icontrol + 1, . . ., Jmax), do not contain

quadratic terms and the Dh terms are considered

constant, as they are obtained from the simulation

model.

Finally the objective function has the form below:

Quadratic terms referred to control points

max f(X )=
K

Qunit5∑
i�1

Icontrol

∑
k�1

T 1L
i

k�∑
k�1

T

∑
j�1

Jmax

a
i, j

T�(k�1)Q
j

k�ct2Q
i

k6
� ∑

j�Icontrol�1

Jmax

∑
k�1

T SL
j

k�Dh
j

T
�ctDQ

j

k� ∑
fixed�1

12

CfixedQfixed

Linear Terms referred Fixed cost due to the

in non-control points water supply well G
2414

(28)

where Icontrol = 8, Jmax = 25, T = 4 and fixed = 12.

The results obtained from both models are demon-

strated in the tables and diagrams and are analytically

described below.

The pumping rates obtained by solution of the two

specific models are shown in Table 1. The two solutions

give different optimum pumping rates for the wells G2459,

G2460, G2461, G2538, G14, G17, G22 and G23, comparing the

two optimization models mentioned. Specifically, using

the CG method and being solved as a NLP model, the

optimum pumping rates for each one of the wells are the

same during the four management periods (months). On

the other hand, using KKT conditions and Wolfe’s

algorithm—the QP model—the optimum pumping rates are

minimized only during the fourth month for the control

point wells G2459, G2460, G2461 and G2538. This fact leads

the control point wells to a higher piezometric level for the

QP model than the NLP one.

As we can see in Figure 4, three curves are depicted.

The first one refers to the minimum imposed heads Hi,min

that appeared in the constraints in the piezometric level

(Equation (20)) for the 8 control point wells. The second

and third curves represent the solution obtained through

the CG method (NLP) and Wolfe’s algorithm (QP),

respectively. The heads in the QP solution are kept at

Figure 4 | Comparison of head levels distribution obtained by the two models.

Figure 5 | Cost percentage comparison between NLP and QP models.
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higher piezometric levels because the pumping rates from

the 8 control point wells in the last managing period

(fourth month) are much smaller than the rates obtained

from the NLP solution. In order for the balance constraint

to be satisfied for the fourth month in the QP solution, the

non-control point wells G14, G17, G22 and G23 are

pumped at rates equal to 1,100 m3/d, which are the

maximum imposed pumping rates that are given in the

constraints in Equation (22).

The comparison cost between the NLP and QP model

is referring to the percentage cost rate (Figure 5). The

optimization cost does not refer to the total but to the

non-constant pumping cost that is due to the terms L + Dh

(Equations (25)–(28)). The constant term ct is due to the

additional manometric head, which is necessary for the

irrigation network operation. It is the same for both of

the models used in this study and it is equal to 62 m. So

the non-constant pumping cost obtained from the CG

method—the NLP model—is reduced to 89% of the cost

obtained through Wolfe’s method—the QP model—giving

an 11% better optimization cost (Figure 5).

CONCLUSIONS

A quadratic objective function of minimizing the pumping

cost in a phreatic aquifer is solved with two separate

algorithms. The first one is the application of the KKT

conditions and Wolfe’s algorithm and the model is solved

as a QP optimization model. The second one is the appli-

cation of the CG method and the model is solved as a NLP

optimization model.

Finally in the present study, the NLP model, which is

solved with the CG method, is more preferable than the

QP one which is solved with Wolfe’s algorithm.

The optimum piezometric heads obtained through the

NLP model are kept in lower levels for G2459 and G2461

control point wells than the solution obtained through the

QP–Wolfe algorithm (Figure 4).

The constraints concerning the objective function are

satisfied. These constraints are the balance constraints

(Equation (21)), the minimum and maximum imposed

pumping rates (Equation (22)) and the minimum imposed

piezometric levels (Equations (20) and (25)).

Furthermore, from the solution of the NLP model a

better cost optimization was obtained, which was 11%

reduced from the non-constant optimum pumping cost

obtained from the QP model.

Further research can be carried out for other confined

or phreatic aquifers and groundwater catchments areas,

contributing to optimum water management policy.
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