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ABSTRACT

Process-oriented models driven by highly resolved meteorological inputs and comprising a short

internal time step are sometimes used to predict substance fluxes in air, soil and water over fairly

long periods of time. To ascertain whether regression-based input–output analyses in such cases can

provide adequate parametric models of the impact of daily and monthly fluctuations in inputs on

annual outputs, we studied the SOIL/SOILN model of vertical transport of heat, water and nitrogen

through arable soils. Annual leaching of nitrate from the root zone was regarded as the response

variable, and regressors were selected from among the set of all linear combinations of daily or

monthly values of five different meteorological inputs. We found that, although several of the

underlying processes described by the SOIL/SOILN model are non-linear, both ordinary and partial

least squares regression (OLS and PLS) identified the subsets of input variables with the strongest

influence on the model output, and the dominating time lags between model inputs and outputs.

Furthermore, highly resolved explanatory variables were a prerequisite for good performance of

linear predictors of temporally aggregated outputs and, to discern the full dynamic behaviour of the

model, it was necessary to analyse the response to artificially generated daily meteorological data

representing a very large number of different weather conditions. PLS had one advantage over OLS:

a smooth pattern in the regression coefficients facilitated physical interpretation of the derived

impulse–response weights.

Key words | deterministic models, nitrate leaching, partial least squares, process-oriented models,

regression analysis, temporal aggregation.

INTRODUCTION
In process-oriented, deterministic models of environ-

mental systems, the output is uniquely determined by the

initial state of the studied system, the inputs and a set of

model parameters. Nevertheless, it can be difficult to

comprehend how fluctuations in the inputs influence the

outputs. For example, it is often practically impossible to

trace the impact of natural fluctuations in weather through

each of the different processes and compartments of a

studied system. Hence, there is a strong need for pro-

cedures that can extract simplicity out of complexity and

thereby render models of environmental systems more

transparent (Young et al. 1996). Model simplifications

have been found to be particularly valuable when models

developed for small spatial units are to be extrapolated to

large areas (e.g. Bouzaher et al. 1993, de Vries et al. 1998),

and for incorporating the knowledge gained from process-

oriented modelling into decision support tools (Quinn

et al. 1999, Forsman et al. 2002a).

The present study was focused on elucidating the

influence of highly resolved inputs on the total outputs

over periods that are much longer than the internal time

step of the model under consideration. It is easy to show

that such aggregation of outputs can enable considerable

simplification of many process-oriented models. First,
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some inputs that mainly influence the short-term dynam-

ics of the outputs may be omitted. Secondly, temporally

aggregated outputs can be almost linear functions of the

inputs, even though several of the processes included in

the model are highly non-linear (Forsman & Grimvall

2002). Impulse–response weights in linear models are also

highly interesting because they are easy to comprehend,

whereas parameters of non-linear models, such as artifi-

cial neural networks (ANNs), can rarely be given a physi-

cal interpretation (Dawson & Wilby 2001). Hence, we

examined the use of regression analysis of large sets of

model inputs and outputs to estimate impulse–response

weights that describe the impact of highly resolved inputs

on temporally aggregated outputs.

Inasmuch as the total model output for a certain

period, for example one year, can be influenced by a very

large number of daily or monthly inputs for the current

and previous years, we need statistical procedures that can

clarify the response to a substantial number of strongly

correlated explanatory variables. Over the past decades a

variety of regression methods, such as principal compo-

nents regression, ridge regression and partial least squares

regression (PLS), have come to be widely used to resolve

such issues, and there is now a unified theory regarding

these techniques. In particular, it has been demonstrated

that there is a continuous spectrum of regression methods

that provide a link from principal components regression,

over PLS, to ordinary least squares regression (OLS)

(Stone & Brooks 1990). The relationship between PLS and

ridge regression has also been clarified (Sundberg 1993,

Björkström & Sundberg 1999).

In a previous study (Forsman et al. 1998), we used PLS

to elucidate the dynamic behaviour of the soil nitrogen

model SOIL/SOILN (Johnsson et al. 1987, Jansson &

Halldin 1979), which is a process-oriented model of the

vertical transport of heat, water and nitrogen through

arable soils. More specifically, we showed that statistical

analysis of the response of the model to artificially gener-

ated meteorological inputs could explain the connection

between annual totals of nitrate leaching and monthly

mean values of air temperature, precipitation and other

meteorological variables. The present study was devoted

to a more thorough analysis of the feasibility of using

linear statistical approximations of basically non-linear

models to reveal possible effects of short-term fluctuations

in the inputs on temporally aggregated model outputs.

The focus was on using artificially generated inputs and

outputs of the SOIL/SOILN model to investigate the

following:

(i) the amount of data needed to discern statistical

relationships between the annual leaching of nitrate

and daily or monthly meteorological inputs;

(ii) the feasibility of handling regression models with up

to a thousand explanatory variables, corresponding

to different meteorological inputs at different times;

(iii) the goodness-of-fit of linear models based on either

daily or monthly meteorological inputs;

(iv) the possible advantages of PLS over OLS for

analysis of input–output data.

MODELS AND DATA

The SOIL/SOILN model

The SOIL/SOILN model comprises a soil water and heat

module (Jansson & Halldin 1979) and a nitrogen module

(Johnsson et al. 1987) coupled in series. The water and

heat module uses daily meteorological data (air tempera-

ture, cloudiness, precipitation, vapour pressure and wind

speed) as inputs to predict soil water and heat conditions

at any level in a soil profile; the main equations are derived

from Fourier’s and Darcy’s laws. The nitrogen module

includes the major processes that determine inputs, trans-

formations and outputs of nitrogen in arable soils (Figure

1). Nitrogen inputs can be in the form of commercial

fertiliser or manure added to the topsoil or atmospheric

deposition; harvesting, leaching, and denitrification con-

stitute the outputs. Litter, faeces and humus represent

different fractions of organic nitrogen. Moreover, organic

carbon pools are included for litter and faeces in order to

regulate nitrogen mineralisation.

The general structure of the SOIL/SOILN model

enables simulation of nitrate leaching from a great variety

of cropping systems. The model parameters in our study

were selected to represent cultivation of barley on a sandy

soil in southern Sweden. Commercial fertiliser was

170 Å. Forsman et al. | Estimation of the impact of short-term fluctuations Journal of Hydroinformatics | 05.3 | 2003



applied to the topsoil once a year in the middle of April, at

the same time as the barley was sown. The crops were

harvested in the middle of August.

Observed and synthetic meteorological data

Daily meteorological records from a station located close

to the city of Lund in southern Sweden were obtained

from the Swedish Meteorological and Hydrological

Institute. The observation period ranged from 1961 to

1994, and data were compiled for the following variables:

T = air temperature (°C)

C = relative cloudiness

P = precipitation (mm d − 1)

V = vapour pressure (Pa)

W = wind speed (m s − 1)

The observed time series of data can be considered to be

a realisation of a multivariate stochastic process. To be

able to generate other realisations of the same process,

it is necessary to identify the underlying multivariate

probability distributions. We used vector autoregressive

models to generate daily data (Forsman et al. 2002b) and

multivariate regression models to generate monthly data.

Seasonal fluctuations were taken into account by generat-

ing data separately for each month of the year. Non-

normality was handled by transforming the original data,

fitting a model to the transformed data and finally

transforming the generated data back to the original form.

REGRESSION METHODS

Feeding the SOIL/SOILN model with observed or syn-

thetic meteorological data produced values of the selected

response variable, that is, annual nitrate leaching.

Monthly or daily meteorological data for the current and

previous years were selected as explanatory variables in

the regression analysis. To enable identification of the

variables that had the strongest influence on the model

output, prior to the analysis, we standardised the data for

each meteorological variable to unit mean standard devia-

tion, where the mean was taken over the monthly values.

The results are presented as impulse–response weights

(regression coefficients) for the standardised explanatory

variables. All data were analysed by both PLS and OLS.

PLS is an indirect regression technique in which the

variation of a response variable is linked to a large number

of explanatory variables through a small or moderate

number of factors that are defined as normed linear com-

binations of the explanatory variables. The first version of

PLS was described as a numerical algorithm (Wold 1975).

The theoretical aspects of this method have now been

Figure 1 | State variables (boxes) and flows (arrows) included in the SOILN model. Boxes and arrows enclosed by the dashed line represent the top layer of the soil. The lower layers

have the same structure but have no direct input in the form of fertilisers or atmospheric deposition. Source: Johnsson et al. (1987).
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thoroughly investigated (Frank 1987, Helland 1988,

1990, Höskuldsson 1988, Garthwaite 1994) and PLS has

become a standard tool in chemometrics and multivariate

calibration (Martens & Naes 1989, Brown 1993).

The first factor in a PLS model is selected to maximise

the covariance with the response variable and is subse-

quently used as a regressor in an OLS regression model.

The next factor is selected to maximise the covariance

with the estimated residuals from the OLS model.

The results of the final PLS model are presented as

estimates, b̂PLS, of the regression coefficients, b, in the

linear regression model

y = y + (X − X )b + e

where y is a vector containing the response values, X is a

matrix of the explanatory variables and e is a vector of

uncorrelated errors with equal variance.

The number of factors to be used in the final PLS

model can be determined by employing cross-validation to

study the ability of different models to predict the response

variable. In the present study, the observations were

divided into two data sets: one was used to fit the model

and the other to validate the model by comparing pre-

dicted and true values. The prediction error sum of

squares (PRESS) was calculated for different numbers of

factors; the number of factors used in the model was no

longer increased when the addition of a new factor

resulted in only a small decrease in the PRESS value.

RESULTS

Analysis of the response to monthly fluctuations in

meteorological data

The results of PLS analysis of the response to

monthly fluctuations in synthetic meteorological data

are shown in Figure 2. Each meteorological variable gen-

erates 24 explanatory variables in the regression model.

Considering cloudiness as an example, the markers in

Figure 2 (from left to right) represent January of the

previous year to December of the current year. The pattern

Figure 2 | PLS analysis of annual nitrate leaching in response to monthly fluctuations in synthetic meteorological variables. The curve illustrates regression coefficients obtained by

applying a three-factor PLS model to analyse data representing a period of 400×30 years. The current and previous year are respectively denoted y and y−1 and the

coefficients in each group represent the twelve months of the year.
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of the regression coefficients illustrates that the variables

that had the greatest impact on the annual leaching of

nitrate were precipitation, followed by cloudiness and air

temperature. Moreover, there were rather simple mecha-

nistic explanations for the most pronounced patterns in

the estimated regression coefficients. The positive regres-

sion coefficients for monthly precipitation during the cur-

rent year reflect the obvious fact that a particularly heavy

rain or snowfall will result in elevated leaching of nitrate

the same year, and the seasonal pattern in the same

coefficients indicates that the percentage of precipitation

that generates runoff is lower in summer than in the other

parts of the year. Closer examination of the regression

coefficients revealed that there were also plausible expla-

nations for minor details. For example, the comparatively

low value of the coefficient for precipitation in February of

the current year can be explained by the accumulation of

snow, whereas the negative coefficients for precipitation

in October and November of the previous year suggest

that, after a heavy autumn rain, there is less nitrate in the

soil that can be washed out by subsequent rainfalls.

In an attempt to estimate the amount of data needed

to identify the most influential input variables, we com-

pared two PLS models, one based on 30 years of observed

meteorological data and the other on 400 × 30 years of

synthetic meteorological data. Figure 3 shows that the

large set of synthetic input data produced a pronounced

pattern in the regression coefficients, whereas the

observed meteorological data resulted in more irregular

variation in the coefficients. Closer examination of the

regression coefficients obtained for different subsets of

synthetic meteorological data (Figure 4) showed that 30

years of such data do not provide estimates stable enough

to reveal the most influential input variables or the major

time lags between inputs and outputs.

Comparison of a three-factor PLS model and an OLS

model is illustrated in Figure 5. The pattern of the regres-

sion coefficients is more irregular with OLS than with

PLS, especially regarding the variables of temperature and

vapour pressure. To determine whether this difference

between the OLS and PLS coefficients was due to

uncertainty in the parameter estimates, we divided the

total data set into four subsets of equal size and then

estimated the coefficients for each subset. The results,

presented in Figures 6 and 7, indicate slightly larger vari-

ability in the OLS estimates than in the PLS estimates, but

Figure 3 | PLS analysis of annual nitrate leaching in response to monthly fluctuations in synthetic (solid line) and observed (dashed line) meteorological variables. The curve illustrates

regression coefficients obtained by applying a three-factor PLS model.
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the same overall pattern is seen for each regression model

in all four estimates. Notably, regression coefficients

for strongly correlated explanatory variables, such as

contemporaneous temperature and vapour pressure, were

approximately equal in the PLS analysis but were in some

cases markedly different in the OLS analysis.

Figure 4 | PLS analysis of annual nitrate leaching in response to monthly fluctuations in synthetic meteorological variables. Each of the four curves illustrates the regression coefficients

obtained by applying a three-factor PLS model to analyse data representing a period of 30 years.

Figure 5 | OLS and PLS analysis of annual nitrate leaching in response to monthly fluctuations in synthetic meteorological variables. The regression coefficients shown were obtained by

a three-factor PLS analysis (solid line) and OLS analysis (dashed line).
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Figure 8 illustrates predicted versus simulated nitro-

gen leaching for two OLS models. In the first model (a),

annual nitrate leaching is used as the response variable,

and monthly meteorological data for two years are

selected as explanatory variables. The second model (b)

describes nitrogen leaching aggregated to two-year means

Figure 6 | PLS analysis of annual nitrate leaching in response to monthly fluctuations in synthetic meteorological variables. Each of the four curves illustrates the regression coefficients

obtained by applying a three-factor PLS model to data representing a period of 100×30 years.

Figure 7 | OLS analysis of annual nitrate leaching in response to monthly fluctuations in synthetic meteorological variables. Each of the four curves illustrates the regression coefficients

obtained by applying an OLS model to data representing a period of 100×30 years.
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in response to monthly meteorological data representing a

period of three years.

Since the output from the SOIL/SOILN model is

determined entirely by the input variables, there are three

different reasons for the differences between estimated

and observed nitrogen leaching: (i) the temporal resolu-

tion of the input data has been reduced from daily values

in the model simulations to monthly values in the regres-

sion analyses; (ii) non-linear parts of the relationship are

not captured by the regression models; (iii) the output

from SOIL/SOILN for a specific year depends on all

previous inputs, and we restricted the time-lagged data in

our study to a single previous year.

Figure 8 shows no severe non-linearities in the rela-

tion between the estimated and observed nitrogen leach-

ing. There is only slight non-linearity when the response is

annual nitrogen leaching (Figure 8a). In particular, large

simulated values from the SOIL/SOILN model are under-

estimated by the regression model. When nitrogen leach-

ing is aggregated to two-year means (Figure 8b), the

response becomes even more linear and the residuals are

smaller. The R2 values for the models in Figure 8(a, b) are

0.67 and 0.70, respectively.

Analysis of the response to daily fluctuations in

meteorological data

The number of explanatory variables increased dramati-

cally when the analysis of the response to fluctuations in

Figure 8 | Regression analyses of temporally aggregated nitrogen leaching versus

monthly meteorological data for the corresponding time period and one

previous year. The diagrams show predicted versus simulated nitrogen

leaching when the response is aggregated to one-year (a) and two-year (b)

values. The analysis in (a) is based on 12,000 observations and 120

explanatory variables, and the analysis in (b) on 5,800 observations and 180

explanatory variables.

Figure 9 | OLS and PLS analysis of annual nitrate leaching in response to daily

fluctuations in synthetic precipitation. The regression coefficients shown

were obtained by a one-factor PLS analysis (shaded line) and by OLS analysis

(solid line).

Figure 10 | OLS and PLS analysis of annual nitrate leaching in response to daily

fluctuations in synthetic precipitation. The regression coefficients shown

were obtained by a three-factor PLS analysis (shaded line) and by OLS

analysis (solid line).
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meteorological data was extended from monthly averages

to daily data, and so we analysed the meteorological

variables separately. Figure 9 shows the nitrate leaching

response to daily fluctuations in precipitation for an OLS

model and a one-factor PLS model. The PLS coefficients

appear to be biased, but the overall pattern is similar for

the two methods. With three factors in the PLS analysis,

the regression coefficients are almost the same (see Figure

10). In Figure 11, daily temperatures are the explanatory

variables and the differences between the two methods are

more evident due to the large autocorrelations in tempera-

ture, as compared to precipitation. Closer examination of

the larger variability in the OLS estimates indicated that

this was due to considerable statistical uncertainty; when

the regression coefficients were estimated separately for

two subsets of the original data, there were distinctly

different patterns in the coefficient estimates.

Predicted versus simulated nitrate leaching for two

models based on daily inputs is depicted in Figure 12. Both

of the illustrated models predict two-year means of nitrate

leaching; explanatory variables are three years of daily

precipitation for the first model and three years of daily

precipitation and temperature for the second model. The

R2 values for the two models are 0.81 and 0.87, respec-

tively. Accordingly, employing daily instead of monthly

data clearly improves the models, and this is even more

evident considering that the models with daily data do not

include all meteorological inputs.

The impact of smoothing day-to-day variation in

meteorological data

When using monthly averages of the meteorological data

as explanatory variables, the required daily input to

the SOIL/SOILN model was generated by spreading

the monthly precipitation uniformly over the days of the

month. We have already seen that such smoothing of the

model input resulted in lower R2 values. Further analysis

demonstrated that the cumulative values of nitrate leach-

ing obtained in SOIL/SOILN simulations decreased sig-

nificantly when the day-to-day variation in meteorological

inputs was removed (see Figure 13). Hence, smoothing of

the inputs can also jeopardise the physical interpretation

of the coefficients derived by regressing annual leaching

on monthly averages of the meteorological inputs.

Figure 11 | OLS and PLS analysis of annual nitrate leaching in response to daily fluctuations in synthetic temperature. The regression coefficients shown were obtained by a one-factor

PLS analysis (shaded line) and by OLS analysis (solid line).
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Hydrologists have long known that, for a given amount of

precipitation, the water flow in soil will be lower if there is

the same amount of precipitation every day rather than

larger amounts on a limited number of days. Since nitrate

is dissolved and transported in the water, the reduced

water flow will also lead to a decrease in nitrate leaching.

DISCUSSION

The present results demonstrate that regression analysis

of input–output data can explicitly explain the effects

of random weather fluctuations on annual outputs of

process-oriented models driven by daily or monthly

meteorological data. Provided the available data repre-

sented a sufficient number of different weather conditions,

the derived impulse–response weights allowed identifica-

tion of both the most influential input variables and

the characteristic time lags between inputs and outputs.

Moreover, as indicated in our comments on Figure 2, there

were plausible mechanistic interpretations of both major

and minor features of the pattern of impulse–response

weights.

Superficially, non-linear models such as artificial

neural networks (ANNs) seem to provide appealing solu-

tions to the problem of relating outputs to inputs of

complex models (Govindaraju & Ramachandra Rao 2000,

Dawson & Wilby 2001). However, it has also been recog-

nised that linear methods such as PLS can be competitive

(Hadjiiski et al. 1999). In the introduction, it was men-

tioned that physical interpretation of impulse–response

weights in a linear model is often possible, whereas non-

linear models such as neural networks have a pronounced

black-box character. Secondly, we found that temporally

aggregated model outputs could be accurately predicted

by linear expressions in highly resolved inputs, even

though the model under consideration involved several

markedly non-linear processes. For example, we obtained

an R2 value of 87% when the total leaching of nitrogen

over a period of two years was regressed on daily precipi-

tation and temperature values. Thirdly, there are linear

regression techniques that have been designed specifically

to handle a substantial number of strongly correlated

predictors, whereas, in such cases, ANNs and other pro-

cedures involving very large classes of models may lead to

overfitting if extensive precautions are not taken during

model identification (Bishop 1995). Finally, it should be

mentioned that the performance of linear predictors

involving highly resolved (daily) inputs was superior to

that of linear predictors based on temporally aggregated

(monthly) inputs.

The two regression methods we investigated, PLS and

OLS, produced regression coefficients that were almost

identical for the variable precipitation but differed greatly

for the other variables, especially temperature and vapour

pressure. Closer inspection of the results presented in

Figure 5 revealed that the major differences appeared

when two or more explanatory variables were strongly

correlated to each other but weakly correlated to the

Figure 12 | Regression analyses of temporally aggregated nitrogen leaching versus daily

meteorological data for the corresponding time period and one previous

year. The diagrams show predicted versus simulated two-year nitrate

leaching when the explanatory variables are precipitation (a) or precipitation

and temperature (b). The analyses are respectively based on 1,095 and

2,190 explanatory variables and 6,000 observations.
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response variable. For example, the largest negative coef-

ficients for temperature in the OLS analysis are seen for

the months with strongly positive coefficients for vapour

pressure. The patterns of the PLS coefficients were

smoother, because, in that type of regression, strongly

correlated explanatory variables normally result in almost

identical regression coefficients. Smooth patterns are

easier to interpret in terms of underlying mechanisms:

thus PLS is superior to OLS, if the main objective of the

input–output analysis is to reveal the dynamic properties

of a complex mechanistic model. Furthermore, it should

be stressed that smoothing the OLS coefficients over time

will not produce PLS-like coefficients, since there may be

strong correlations both within and between meteorologi-

cal variables. Principal components analysis was tested

during an initial stage of the work but was subsequently

abandoned, because a large number of principal compo-

nents were needed to adequately represent the total vari-

ation in the input variables. Ridge regression would most

probably be a viable alternative to PLS (Sundberg 1993,

Björkström & Sundberg 1999), but a comparison of those

two techniques was outside the scope of the present study.

When a parametric model is derived solely for the

purpose of prediction, a set of input–output data of

moderate size may suffice. The present investigation was

also focused on the parameters of the fitted model and, in

such cases, much larger data sets are needed. We noted

that a readily interpretable pattern in the regression coef-

ficients did not emerge until considerable amounts of

input–output data were analysed. When data representing

a period of ‘only’ 30 years were used, the uncertainty of the

estimated coefficients was so large that it was difficult to

identify even the most influential input variables (Figure

4). This implies that, in practice, artificially generated

weather data must be employed to reveal the dynamic

properties of models as complex as SOIL/SOILN.

Artificial weather data can be generated in many dif-

ferent ways. For example, a large number of new time

series can be obtained by resampling of a set of observed

data. Our approach was slightly more sophisticated in the

sense that it enabled generation of new weather events

that were consistent with observed univariate distribu-

tions of each of the meteorological variables, and that

it had realistic cross- and autocorrelations. However, it

should be emphasised that we made no attempt to take

into account the uncertainty involved in estimating

the multivariate distribution of the different weather

variables.

CONCLUSIONS

The impact of short-term fluctuations in inputs on tempo-

rally aggregated outputs can be estimated by regression

analysis of large sets of model inputs and outputs.

High resolution of model inputs is a prerequisite of

obtaining a good linear approximation of the process-

oriented model.

Both PLS and OLS permit identification of the

meteorological variables that have the strongest impact on

model outputs and the characteristic time lags between

model inputs and outputs.

If the input variables are strongly correlated, smoother

regression coefficient patterns will be produced by

PLS than by OLS. Thus PLS will facilitate the search

for mechanistic explanations for derived patterns of

regression coefficients.
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