
Quasi-three-dimensional numerical model for flow

through flexible, rigid, submerged and non-submerged

vegetation

K. S. Erduran and V. Kutija

K. S. Erduran (corresponding author)
V. Kutija
WRSRL,
Department of Civil Engineering,
University of Newcastle,
Newcastle upon Tyne NE1 7RU,
UK
Tel.: +44 191 2225842;
Fax: +44 191 2226669;
E-mail: Kutsi.Erduran@ncl.ac.uk,
Vedrana.Kutija@ncl.ac.uk

ABSTRACT

The effects of the resistance caused by vegetation on flow velocity and water depth has become a

major interest for ecologists and those who deal with river restoration projects. Some numerical and

experimental works have been performed to analyse and formulate the drag effects induced by

vegetation. Here we introduce a quasi-three-dimensional (Q3D) numerical solution, which is

constructed by coupling the finite volume solution of the two-dimensional shallow water equations

with a finite difference solution of Navier–Stokes equations for vertical velocity distribution. The drag

forces are included in both sets of equations. Turbulence shear stresses are computed in two

alternative ways: the parabolic eddy viscosity approach with a correction term introduced in this

study, and a combination of the eddy viscosity and mixing length theories in the vertical direction. In

order to deal with flexible vegetation, a cantilever beam theory is used to compute the deflection of

the vegetation. The model COMSIM (complex flow simulations) has been developed and applied in

experimental cases. The results are shown to be satisfactory.

Key words | flexible and rigid vegetation, quasi-three-dimensional model, submerged and

non-submerged vegetation

INTRODUCTION
Understanding the behaviour of flow through vegetation is

of interest to designers dealing with wetland, floodplain

and river lining projects. Vegetation influences the flow

resistance, which is a major factor determining water level

and velocity distribution (Wu et al. 1999). The main impact

of vegetation on flow is that it causes a drag, resulting

in momentum losses (Fischenich 2000). Consequently,

vegetation causes sedimentation (Li & Shen 1973).

Many attempts have been made to find an accurate

representation of the behaviour of flow through veg-

etation. This is not a trivial task and most of the previous

work is based on experiments (Li & Shen 1973; Temple

1986; Fathi-Maghadam & Kouwen 1997; Wu et al. 1999)

and yet it is not clear how to estimate the flow resistance

(Fathi-Maghadam & Kouwen 1997; Darby, 1999). This may

be because there are so many factors that influence the

resistance. Stiffness, diameter, height, distribution, density

and type of vegetation and height of flow are examples of

these factors (Li & Shen 1973; Chow 1973; Wu et al. 1999).

Apart from these, there are some other conditions

that influence the resistance and consequently the flow

components, such as whether vegetation is submerged or

not (Fischenich 2000) and whether vegetation is flexible or

rigid (Kutija & Hong 1996). Moreover, Wu et al. (2001)

show that large vegetation, such as trees, causes not only a

drag effect but also a blockage effect.

The simplest approach to compute flow through

vegetation would be to use Manning’s formula together

with the most suitable constant Manning’s value specifi-

cally given for vegetated surface with different vegetation

types and arrangements by Chow (1973). One of the

earliest and commonly used methods to estimate

Manning’s n for flow through vegetation is known as the

n-VR method. The method was developed by the US
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Department of Agriculture (USDA 1947). Alternatively,

Kouwen (1992) proposes a method for the evaluation of

vegetative flow resistance. This approach is known as the

MEI (or relative roughness) method. The most important

feature of the method is that it takes account of bending of

vegetation. Petryk & Bosmajian III (1975) introduce a

method, which is based on conservation of momentum

for one-dimensional steady uniform flow, including drag

forces.

Among the numerical approaches previously devel-

oped, a model introduced by Kutija & Hong (1996) covers

a variety of cases, namely computation of flow through

submerged, non-submerged, flexible and rigid vegetation.

The model is based on the one-dimensional horizontal

momentum equation solved in the vertical direction. One

of the most innovative features of the model is that bend-

ing of the vegetation and the deflection caused by a

water load is computed using cantilever beam theory

(Timoshenko 1955). Saowapon & Kouwen (1989) also use

this theory for the same purpose. Darby (1999) describes a

one-dimensional (1D) model, Hmodel2, based on the

momentum and continuity equations. The model is con-

structed to be suitable for computation of flow through

vegetation under conditions of flexible and rigid veg-

etation. This model uses Kouwen’s (1992) approach in

order to compute flow resistance for the flexible veg-

etation and is suitable for steady uniform flow conditions.

Simoes & Wang (1997) introduce a Q3D model. They

achieve turbulence closure by means of an eddy viscosity

approach and they assume a parabolic eddy viscosity

distribution with an additional viscosity due to drag

effects. Their 3D model is suitable for simulation of flow

through rigid vegetation. Shimizu & Tsujimoto (1997) also

apply a turbulence model, applicable only for rigid veg-

etation. Recently, Fischer-Antze et al. (2001) introduce a

3D k − e turbulence model, which is suitable for rigid

non-submerged vegetation.

The above methods show a varying level of complex-

ity, from simple Manning’s formula to the more advanced

3D k − e turbulence model, and have at least one draw-

back. Manning’s formula is suitable for steady uniform

flow and the choice of Manning’s n is not well defined. The

applicability of the n-VR method is restricted and is found

to be not suitable for a bed slope less than 1–2% (Kouwen

& Li 1980). The MEI method requires several empirical

coefficients to be known before computation and it is only

one-dimensional. The remaining methods are also either

one-dimensional (not capable of capturing realistic flow

behaviour) or they are suitable only for rigid vegetation. In

nature a great deal of vegetation falls under herbaceous

species and they are flexible. To the authors’ knowledge

there is no 3D numerical model which is applicable for

flow through flexible vegetation.

Here we introduce a Q3D numerical method for the

simulation of flow through flexible, rigid, submerged and

non-submerged vegetation.

The adopted approach is mechanistic and not empiri-

cal, as in most of the other work in the field. Hence,

cantilever beam theory (Timoshenko 1955) is used for

estimation of the deflection of the vegetation. The

transition between rigid and flexible vegetation is smooth

as the same algorithms are used and behaviour depends on

the stiffness of the plants (stiffness of a material is its

resistance to deflection and is also known as the modulus

of elasticity) and the flow conditions.

In order to provide alternative solutions to turbulence

closure, the turbulent shear stresses are computed in two

different ways: the parabolic eddy viscosity approach with

a correction term introduced here, and the combination of

the eddy viscosity and the mixing length theories. Slip and

non-slip boundary conditions at the channel bottom are

also tested.

To test and apply the numerical techniques, a model

called COMSIM (complex flow simulations) has been

developed. The model has been tested and verified with

the experimental results provided by Tsujimoto &

Kitamura (1990).

METHODOLOGY

The Q3D numerical model, COMSIM, is constructed by

coupling the SWM (shallow water module) with a finite

difference based vertical unit. In the SWM, 2D shallow

water equations are solved using the finite volume method

with the Osher shock capturing scheme (Erduran et al.

2002). In the vertical unit the Navier–Stokes equations are
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solved in the vertical direction (in the z direction) using

the finite difference method on vertical grids situated in

the centres of the finite volume cells used in the SWM

(Figure 1). In order to establish a Q3D solution, the water

depth is obtained from the solution of the 2D shallow

water equations and used in the solution of the Navier–

Stokes equations with a hydrostatic pressure distribution

providing vertical distribution of velocities and shear

stresses.

Equations

The two-dimensional form of the shallow water equations

can be written as:

+ + = 0 (1)
∂t

∂h

∂x

∂(hnx)

∂y

∂(hny)

+ + = gh(Sox —Sfx)—Fx (2)
∂t

∂(hnx)

∂y

∂(hnxny)

∂x

∂(hn2
x + gh2/2)

+ + = gh(Soy —Sfy)—Fy (3)
∂t

∂(hny)

∂x

∂(hnxny)

∂y

∂(hn2
y + gh2/2)

where h is the water depth, vx, vy represent the depth-

averaged velocity components in the x and y directions

respectively, g is the acceleration due to gravity, Sox and

Sfx are the bed slope and friction terms, respectively, in the

x direction (similarly, Soy and Sfy are in the y direction)

and Fx and Fy are the averaged drag forces in the x and y

directions, due to vegetation.

The reader may refer to Erduran et al. (2002) for

the solution to Equations (1)–(3). The Navier–Stokes

equations, including the drag forces, can be given as

+ + = 0 (4)
∂x

∂ux

∂y

∂uy

∂z

∂uz

g —gSox = 0 (5)

∂z

∂tx

∂y

∂ux

∂x

∂ux— +Fx +ux +uy +uz∂t

∂ux

ρ
1

+
∂z

∂ux

∂x

∂h

g —gSoy = 0 (6)

∂z

∂ty

∂y

∂uy

∂x

∂uy— +Fy +ux +uy +uz∂t

∂uy

ρ
1

+
∂z

∂uy

∂y

∂h

where ux, uy and uz are velocity components in the x, y and

z directions, respectively, r is the density of water, tx and

ty are vertical shear stresses in the x and y directions,

respectively, and Fx and Fy are the drag forces per unit area

due to vegetation in the x and y directions, respectively.

The vertical shear stresses are represented in terms of

vertical viscosity and the vertical gradient of horizontal

velocities, as shown in Equation (7):

(7)
ρ

tl

∂z

∂ul= el , l=x, y

where ex and ey are vertical eddy viscosities along the x

and y directions respectively.

We also assume that the horizontal turbulent shear

stresses are negligible as they are very small compared to

the vertical turbulent shear stresses (Tan 1992). However,

their effects can be important, especially for a partially

vegetated flow domain; this needs to be further investi-

gated. The momentum equation in the vertical direction is

also omitted. Hence, a solution is Q3D.

Figure 1 | Grid implementation.
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The drag forces, Fx and Fy, in the x and y directions

due to vegetation are zero above the vegetation and inside

the vegetative water zone they can be computed as

(8)Fx =m
2∆z

hrCdux ∫u2
x +u2

yd Fy =m
2∆z

hrCduy ∫u2
x +u2

yd

where m is the density of vegetation (i.e. number of

vegetations per unit area), Cd is a drag coefficient, d is the

diameter of a vegetation and hr is effective height of a

vegetation (see Figure 2).

The vertical shear stresses (more specifically, the com-

putation of the vertical eddy viscosity) are computed in

two different ways, called method 1 and method 2 and

explained below.

Method 1: a parabolic eddy viscosity approach with a

correction term

For non-vegetated flow conditions, a parabolic eddy

viscosity approach, given in Equation (9), had been

previously used by Jin & Kranenburg (1993):

(9)el = κ  (u*
bl)  Z , l=x, y1 —

h

Zfi ^
where k is the von Karman coefficient (k = 0.41), Z is the

vertical elevation from the bottom and u*
bl is the bed

friction velocities.

Our experiences show that Equation (9) produces

excessively large velocities over the tip of the submerged

vegetation. Hence, a correction term based on our

numerical experiments has been added. The resulting

expression for the computation of the vertical viscosity is

(10)el = κ  (u*
bl)  Z +Z*Cd*ul , l=x, y1 —

h

Z

u*
bl

∆ulfi ^
Since Equation (10) is based on numerical experiments, it

requires physical experimental justification.

The bed friction velocity can be computed by first

applying the law of the wall rule (meaning that a logarith-

mic velocity distribution is assumed between the first grid

point and the grid point above it), which can be given as

(11)ul = , l=x, yln
Z0

Z

κ
uo

l fi ^
where Z0 is the equivalent roughness height which should

be prescribed for every finite volume cell, and uo
x and uo

y

are reference friction velocities related to the bottom shear

stresses.

Jin & Kranenburg (1993) show that uo
x and uo

y can be

computed by

(12)(ul)k=1 = , l=x, yln
Z0

Z1

κ
uo

l fi ^
where Z1 is the vertical elevation at grid point k = 1, and

(13)(u*
bl) =Z

Z0

uo
l , l=x, y1 —

h

Zfi ^
Now, uo

x and uo
y can be computed using Equation (12) in

the x and y directions. Thus, u*
bx and u*

by are computed by

using Equation (13). Once they are known, the vertical

distribution of the eddy viscosity can be computed using

Equation (10) and hence the vertical shear stresses can

also be computed.

Method 2: Kutija and Hong’s approach

For computation of the viscosity values for vegetated flow,

Kutija & Hong (1996) combine the eddy viscosity and

Figure 2 | Effective height of vegetation used in the computation of drag forces.
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mixing length theories. The border between the two layers

(one using the eddy viscosity and another using the mixing

length theory) is defined by a product of a parameter pr

(less than unity) and the effective vegetation height, hr.

The parameter pr was introduced by Kutija & Hong (1996)

as a better representation of flow behaviour near the tip of

the vegetation by reducing the eddy viscosity layer. The

vertical eddy viscosity inside the layer below the point prhr

is computed using Equation (14), introduced by Tsujimoto

& Kitamura (1990):

(14)el =aslul, l=x, y

where a is an empirical coefficient and sx and sy are

the distances between the vegetations in the x and y

directions, respectively.

Above the point prhr, the vertical eddy viscosity is

computed using the mixing length theory (Jansen et al.

1979) expressed as

(15)el = l2m ∂z

∂ul

where lm is a mixing length which can be expressed as

0.5

lm = κZ 1 —
h

Z& /
Apart from the use of two different methods, two alterna-

tive boundary conditions for the bottom boundary are also

applied in the solution of the Navier–Stokes equations.

The first one is a non-slip boundary, where the velocities

(ux, uy) at Z0 above the bed vanish. The second boundary

condition expresses the bottom shear stresses as functions

of the average velocities and Manning’s coefficient, n (Tan

1992). The former is applied for method 1 and the latter is

used for method 2. The differences between these two

methods are summarized and given in Table 1.

Bending

Kutija & Hong (1996) introduce a solution for flow

through flexible vegetation. The solution is based on the

relationship between load acting on the vegetation, result-

ing from the flow velocity, and the deflection of the

vegetation due to that load. This solution is explained

here.

The load on the vegetation is caused by the flow and

the magnitude of the load depends on the velocity. The

load is represented by discrete portions of constant load

distributed over the height of the vegetation and can be

computed for the x direction as

(16)(qlx) =
2

Cdd(ux)∫(ux)2 + (uy)2

For the y direction, the subscript x is replaced by y and y is

replaced by x. Note that the load is computed at every

(i,j,k) point in the vegetated layer.

The deflection at any point along the vegetation height

is computed using cantilever beam theory (Timoshenko

1955). According to this theory, together with a super-

position method, the deflection of a beam (in this case the

vegetation) at any point, caused by individual loads acting

separately, is equal to the sum of the deflections caused by

these loads.

Kutija & Hong (1996) state that, depending on the

position of a point relative to the position of the load, the

deflection of the point on the cantilever beam is expressed

in different ways. For instance, Equation (17) is applied

when the point is inside the border of the fixed end of the

beam and the beginning of the load, whereas Equation

(18) is applied when the point is between the loads and the

free end of the beam (see Figure 3). As Kutija & Hong

(1996) explain, the deflection of a point inside the load is

not needed due to the discrete nature of the solution.

Table 1 | Differences in available solutions in COMSIM for Q3D flow simulation

Solution Shear stress computations Bottom boundary

Method 1 Parabolic eddy viscosity and
additional formula

Non-slip

Method 2 Empirical formula and mixing
length theory

Friction formula
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For z≤a:

(17)
b

a
(3c — z)dc, l=x, yd/

l = ∫
6EI

(qll)z2

For z≥b:

(18)
b

a
(3z —c)dc, l=x, ydl

// = ∫
6EI

(qll)c2

where EI is the stiffness of the beam, and d9
l and d0

l are

deflections at the points z≤a and z≥b, respectively.

It should be noted that Equations (17) and (18) are

derived based on an assumption that the deflection is

small. The deflection is calculated for every point halfway

between two discretisation points (kth points). The total

deflection at a point m is given by

(19)
m

k=1
∑

k1

k= m+1
∑ //(dT

m) = d/
m,k + dm,k

where dT
m denotes the total deflection at point m.

The net deflection of each element, dN
k , is expressed as

(20)dk
N = dT

k+5
—dT

k—5

After the deflection, the vegetation length inside each kth

element is computed as

(21)lk = ∫(dk
N)2 + (∆z1)2

where lk is the vegetation length for the kth element and

Dz1 is the space step within the vegetative water course.

The height of the vegetation is then distributed over

the lengths of the elements to calculate the effective veg-

etation height, hr. The load causes a reduction in the

effective vegetation height due to the bending but when

the effective vegetation height is reduced the load acting

on the vegetation is also reduced. The reduced load causes

less bending than the previous load does. In order to deal

with these interrelated processes, an iterative procedure is

applied. In each step, the new load and the new effective

height are computed. Iteration ceases when there is not

much change (i.e. 0.01 m) between the effective vegetation

heights computed at two consecutive steps.

Solution to the Navier–Stokes equations

Acceleration terms, drag forces and computation of the

shear stresses are discretised using an implicit scheme.

The remaining terms are treated explicitly to decrease the

computational effort. In the discretisation of advective

terms, ordinary upwind discretisation is used (Tan 1992).

The horizontal gradients of water depth are approximated

using a forward difference approximation. Following Jin &

Kranenburg (1993), the advective terms are also approxi-

mated in such a way that the occurrence of non-

orthogonal grids as a result of the water level variation in

the vertical directions is taken into account. Although the

use of non-orthogonal grids increases the computational

effort, it was deemed to be the best option because it

allows the model to be set up with the same number of grid

points above each finite volume cell.

The unknown velocities are computed at all the dis-

cretisation points but the vertical shear stresses are com-

puted halfway between each set of two grid points (see

Figure 1).

In method 1, the vertical grid spacing (Dz2) used is

constant and an equal number of grid points is used for all

verticals. However, as shown in Figure 4, the first grid

point, k = 0, is placed Z0 above the bottom and the final

grid point, k = kk, is placed half a grid spacing below the

free surface.

In method 2, due to the computation of the vertical

turbulent shear stresses in two different ways along the

vertical direction, the grid points are placed in such a way

Figure 3 | The points on the vegetation, where the deflection is computed.
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that a discretisation point is maintained at the boundary

between the regions using eddy viscosity and mixing

length theory. Consequently, for each region, the space

interval size is separately computed (see Figure 5).

For region 1 (below the point prhr):

(22)
prhr

k1 + 0.5
∆z1 =

where subscript 1 denotes the region number and k1 refers

to the number of grid points in region 1.

For region 2 (above the point prhr):

(23)
h —prhr

k2 + 0.5
∆z2 =

where subscript 2 denotes the region number and k2 is the

number of grid points in region 2.

The final discretised form of the x momentum

Equation (5), for the case ux, uy and uz all less than zero

(different cases occur due to upwind discretisation, which

depends on the sign of flow direction), can be given for

method 1 as shown in Equation (24):

(24)

n+1 n+1

n+1

A(i,j,k)(ux)(i,j,k—1) +B(i,j,k)(ux)(i,j,k) +

C(i,j,k)(ux)(i,j,k+1) =D(i,j,k)

where

A(i,j,k) =— r2

n n n[(ux)(i,j,k)]2 + [(uy)(i,j,k) ]2

1+ r1 + r2 +

2∆z

∆tmCd

fi
^∫

B(i,j,k) =

d(i,j,k)(hr)(i,j,k)

C(i,j,k) =— r1

n n

n(ux)(i,j,k—1)(r2 — r4)—

D(i,j,k) = (ux)(i,j,k)(1— r1 — r2 + r3 + r4)+ (ux)(i,j,k+1)(r1 — r3)+

nn
n∆t(ux)(i,j,k) ∆x

(ux)(i+1,j,k) — (ux)(i,j,k)fi
^& /

—

—

nn

∆z

(ux)(i,j,k+1) — (ux)(i,j,k)

∆x

Z(i+1,j,k) —Z(i,j,k)

nn
n∆t(uy)(i,j,k) ∆y

(ux)(i,j+1,k) — (ux)(i,j,k)fi
^& /

—

—

nn

∆z

(ux)(i,j,k+1) — (ux)(i,j,k)

∆y

Z(i,j+1,k) —Z(i,j,k)

Figure 4 | Vertical grid used in method 1.

Figure 5 | Grid spacing used in method 2.
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nn
n∆t(uz)(i,j,k) ∆z

(ux)(i,j,k+1) — (ux)(i,j,k)fi —

∆tg + ∆tgSox

n+1n+1

∆x

(h)(i+1,j) — (h)(i,j)fi ^
^

(ex)(i,j,k+5), r3 = (ex)(i,j,k+5), r2 =r1 =
(∆z)2

θ∆t

(ex)(i,j,k—5),(∆z)2

θ∆t

(∆z)2

∆t

(ex)(i,j,k—5)r4 =
(∆z)2

∆t

O is a weighting coefficient, taken to be 0.51, and

ex(i,j,k+5) ≈ , ex(i,j,k—5) ≈
2

ex(i,j,k+1) + ex(i,j,k)

2

ex(i,j,k) + ex(i,j,k—1)

The coefficients A(i,j,k), B(i,j,k), C(i,j,k) and D(i,j,k) defined

above have all values known at the time level n and the

water depth, hn + 1, is taken from the 2D depth-averaged

model so it is also known. Equation (24) is written for

each discretisation point in the vertical direction. This

provides a system of linear algebraic equations. The

number of equations is equal to the number of grid

points in the vertical direction. The unknown horizontal

velocities can be computed using a double-sweep algor-

ithm (Abbott & Minns 1998) since the matrix of the system

is tri-diagonal. The discretised equations for method 2 are

in exactly the same form as that given by Equation (6).

However, for method 2, the coefficients A(i,j,k), B(i,j,k),

C(i,j,k) and D(i,j,k) are redefined and computation of the

coefficients is achieved by considering seven different

cases resulting from the estimation of the shear stresses in

different ways and applying boundary conditions. For

details consult Kutija & Hong (1996) and Erduran (2001).

The solution requires two boundary conditions, one at

the bed and another at the free surface. For both methods

we use a slip boundary condition (no shear stress, i.e.

tx(i,j,kk + 1/2) = 0) at the free surface. At the bottom, a

non-slip boundary condition is used for method 1. This

means that the horizontal velocity, (ux)i,j,0), at the vertical

point k = 0, is taken to be zero. Hence, the coefficients,

A(i,j,0) and B(i,j,0), are set to zero. Apart from the above

condition, the law of the wall rule is used. Therefore,

a logarithmic velocity distribution is assumed between

the non-slip grid point (k = 0) and the grid point above

(k = 1). In method 2, bottom friction is computed using a

resistance law (Tan 1992). For instance, in the x direction,

it can be given as

(25)=ρ
tbx

h4/3

n2(ux)∫(ux)2 + (uy)2

where ux and uy are the depth-averaged velocities in the

x and y directions respectively and n is Manning’s

coefficient.

The average velocities can be computed as

(26)

kk

k=0
∑

ul = , l=x, y

(ul)(i,j,k)

kk +1

The solution in the y direction can be achieved in the same

way. Note that these averaged velocities should be equal

to the depth-averaged velocities obtained from the SWM.

However, the solution in the SWM is based on the finite

volume method whereas the solution used in the vertical

unit is based on the finite difference method. Moreover,

different approximations are used in the SWM and the

vertical unit. Thus, the depth- averaged velocities obtained

from solution of the shallow water equations are slightly

different than the depth-averaged velocities computed

using Equation (26). These initially small differences can

result in larger differences (cumulative error) as the com-

putation proceeds. Therefore, the correction procedure

for the velocities obtained from the vertical unit has to be

applied (Jin & Kranenburg 1993).

The vertical velocity at each grid point can be com-

puted from the continuity equation (4). Note that correc-

tions of the discretised terms in Equation (4), due to the

occurrence of non-orthogonal grids, should also be made.

Coupling

A Q3D module is constructed by coupling the shallow

water module (SWM) with the vertical unit. The SWM and
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the vertical unit are coupled by passing data between

them. These are the water depth, the bottom shear stresses

(if method 1 is used) and the averaged drag forces. The

water depth is computed in the SWM and used as input

into the vertical unit. Receiving the water depth from the

SWM is the main feature of the Q3D solution. The bottom

shear stresses and the averaged drag forces are evaluated

in the vertical unit and are fed back into the SWM using

the splitting technique (Toro 1997; Erduran et al. 2002).

The averaged drag forces can be computed by

(27)

kk

k=0
∑

Fl = h , l=x, y

(Fl)(i,j,k)

kk +1

The bottom shear stresses are computed as

(28), l=x, yρ
tbl = u*

bl u*
bl

Note that, when method 1 is selected, Equation (28) is

used instead of Sfl (l = x,y) in Equations (2) and (3). For

method 2, the bottom friction terms (Sfl) are computed

using Equation (25) but ux and yy are replaced by vx

and vy.

MODEL APPLICATIONS TO FLEXIBLE VEGETATION

Unfortunately, no suitable experimental data were avail-

able to test COMSIM for cases with flexible vegetation.

Therefore, we have applied the model to artificial data

used by Kutija & Hong (1996) in order to illustrate that the

model can deal with flexible vegetation. Overall data are

illustrated in Table 2.

Figure 6 shows that the deflection at the tip of the

vegetation is 0.20 m when the stiffness value is taken to be

0.05 N m2, which corresponds to a grass–legume mixture

in fall and spring in nature (Kouwen et al. 1981) and the

vegetation height is reduced to 0.018 m. The use of stiff-

ness values higher than 0.05 N m2 results in little or no

Table 2 | Data used in model simulations

Time step, Dt 0.1 sec Drag coefficient, Cd 1.1

Bottom slope 0.0001 Numerical parameter, pr 0.75

Manning’s n 0.01 Numerical parameter, a 0.01

Water depth 3 m Vegetation diameter at the bottom, db 0.002 m

Vegetation length, hr 1.25 m Vegetation diameter at the top, dt 0.002 m

Vegetation density, m, per m2 100 Range of stiffness values, (EI), tested 0.006–3 N m2

Roughness height, Z0 0.01 m

Channel length 60 m Channel width 1 m

Number of cells 60 Cell size 1 m 2 1 m

Horizontal boundary conditions

Upstream: Water depth 3 m Downstream: Open

Remaining boundaries on left and right sides of the channel are a closed boundary

Simulations are completed when the steady state condition is achieved, i.e. 6000 sec
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deflection. However, lower values of stiffness cause con-

siderable deflections. For example, stiffness values of 0.01

and 0.006 N m2 result in total deflections of 0.67 and

0.79 m, respectively. These deflections are extensive in

relation to the 1.25 m vegetation height and that might

be in breach of the assumption of small deflection used

in Equations (17) and (18). Due to this limitation, the

model’s application to an experimental example involving

highly flexible vegetation is still under investigation.

MODEL CALIBRATION AND VERIFICATION

The calibration and verification of our model are accom-

plished through the experimental data given by Tsujimoto

& Kitamura (1990) for rigid vegetation only. Tsujimoto &

Kitamura (1990) conducted an experiment in a 12 m long,

0.4 m wide flume with an adjustable bottom slope.

Cylinders made of bamboo represented the vegetation.

The diameter of each cylinder is 0.15 cm and the height

4.59 cm. They set up the cylinders 2 cm apart in both the x

and y directions. Therefore, the distance between each

cylinder is 2 cm. The other data used in their experiments

are presented in Table 3.

In the application of the model, the computational

domain is divided into 12 × 1 horizontal cells. Each cell

has a size of 0.4 m × 1 m. The number of vertical grid

points used is 20 for submerged cases and 7 for a non-

submerged case. It is noted that, in order to capture more

accurately the variations in the vertical velocity profile,

the vertical grid size (Dz) should be small. The same

applies to computation of deflection of submerged-flexible

vegetation. The boundary conditions are set up as follows.

The upstream boundary is chosen to be a water depth (for

each run the water depth at the upstream boundary is

equal to the water depth given in Table 3). The down-

stream boundary is given as an open boundary for all runs.

The time step of 0.2 s is used for all simulations. The

simulations are completed when the steady state condition

is achieved in a channel.

The calibration of COMSIM was achieved by compar-

ing the model results with the results given by Tsujimoto &

Kitamura (1990) for run A11. Once agreement between

the model and the experimental results was obtained, the

calibration was completed. In the use of method 1, the

roughness height (Z0) and the drag coefficient (Cd) were

calibrated, as they are the only parameters that require

calibration. For method 2, the following parameters

were calibrated: the coefficients pr, a, Cd and Manning’s n.

The calibrated parameters are given in Table 4. Individual

effects of these parameters on the flow behaviour and their

significance can be found in Kutija & Hong (1996) and

Erduran (2001). Briefly, in the above references it is shown

that the most significant parameters are the properties of

the vegetation such as the vegetation height, diameter,

stiffness and density. While the coefficient pr is also found

to play a significant role, the coefficient a is found to be

insignificant.

Figure 6 | Deflection of vegetation.

Table 3 | Data used by Tsujimoto & Kitamura (1990)

Run*
Water depth
(cm) Bottom slope

Condition of
cylinders

A11 9.50 0.001 Submerged

A31 9.36 0.003 Submerged

A14 3.00 0.001 Non-submerged

A71 8.95 0.007 Submerged

*Named by Tsujimoto & Kitamura (1990).
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The results of COMSIM, using methods 1 and 2

versus the result of A11 used for calibration, are plotted in

Figure 7.

The calibrated parameters given in Table 4 are used

for the other runs, A31, A71 and A14, for verification of

the model. The results are illustrated in Figure 8(a), (b)

and (c), respectively.

It can be said that, apart from run A31, in which the

model produced slightly larger velocities than those

obtained from the experiment, overall results are quite

satisfactory. In Figures 7 and 8(a), (b) one can observe that

the results of method 2 show a velocity bulge around the

tip of the effective vegetation height. This is expected due

to the different way of shear stress computation below and

above that point used in that method. The results for run

A14 show that, in the non-submerged vegetation case, the

velocity profile is almost a straight line (constant) over the

Figure 7 | Vertical distribution of the horizontal velocities obtained from COMSIM

and A11.

Table 4 | Calibrated parameters

Method Z0 (m) pr α Cd n

1 0.0009 — — 1.1 —

2 — 0.75 0.005 1.1 0.024

Figure 8 | Vertical distribution of the horizontal velocities obtained from COMSIM and

A31 (a), A71 (b) and A14 (c).
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water depth. From this point, it may be concluded that, in

such cases, use of just a two-dimensional horizontal

numerical model would give satisfactory results. In sub-

merged vegetation conditions, it is essential to use a model

capable of giving a vertical velocity distribution.

In Figures 7 and 8(a, b), representing submerged veg-

etation cases, three regions can be distinguished. The first

region is near bed, where the shape of the profile is domi-

nantly affected by the bed friction. The second region, in

which the velocity profile has a more or less convex shape,

is a vegetated region. In this region drag forces play an

important role. The third region, in which the profile is

concave, is the surface flow region. The more obvious

change in the velocity profile occurs at the boundary be-

tween the surface flow and vegetated flow layers (the shape

of the velocity profile changes from convex to concave).

This occurs due to the transition from slower flow, caused

by vegetation, to the faster flow in the surface flow layer.Figure 9 | Drag forces obtained using (a) method 1 and (b) method 2.

Figure 10 | Shear stress distribution obtained from method 2.
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In method 1, a non-slip boundary condition is used at

the bottom and it is assumed that the velocity profile

between the first two grid points is logarithmic. These two

assumptions are widely recognized (Jansen et al. 1979).

Also, the bottom shear stress should be related to the

velocity near the bottom (Tan 1992) and not to the

averaged velocity, as it is in method 2.

As expected, the velocities increase when the bottom

slope increases. Similarly, drag forces increase (Figure 9).

The drag forces obtained from both methods are simi-

lar. The trend of the drag force profile obtained from

method 2 shows a sudden change at a point (height = prhr)

as expected. The shear stress profiles obtained for sub-

merged and non-submerged vegetation cases are similar to

the turbulence intensity profiles reported by Tsujimoto &

Kitamura (1990) and are given in Figure 10.

CONCLUSIONS

From this study, the following conclusions can be drawn:

1. A Q3D model with two alternative turbulence

closure approaches was introduced for flow through

flexible and rigid, submerged and non-submerged

vegetation.

2. The model was calibrated and verified using the

experimental data provided by Tsujimoto &

Kitamura (1990) for the rigid vegetation case. The

results are found to be satisfactory.

3. Although the model could not be verified with the

flexible vegetation experimental data due to

incompatibilities in parameters and assumptions we

demonstrated how it can deal with flexible

vegetation.

4. It is hoped that the Q3D solution algorithm

introduced here will be useful for studies involving

ecology, hydrology and hydraulics.

FUTURE WORK

Turbulence closure is achieved by using rather simple

approaches. Although the results are quite satisfactory and

the algorithm for flexible vegetation has already brought

enough complexity, it may be still worth trying a more

up-to-date turbulence closure method (i.e. the k − e
model) together with a fully 3D solution that deals

with non-hydrostatic pressure distribution. This would be

particularly useful for simulation of flow at the tip of

submerged vegetation because of the highly turbulent

characteristics of the flow and the occurrence of the

non-hydrostatic pressure distribution at this point.
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NOTATION

h: water depth

vx and vy: depth-averaged velocity components in the x

and y directions, respectively

g: acceleration due to gravity

Sox and Soy: bed slope in the x and y direction,

respectively

Sfx and Sfy: friction terms in the x and y direction,

respectively

ux, uy and uz: velocity components in the x, y and z

directions, respectively

r: density of water

tx and ty: vertical shear stresses in the x and y directions,

respectively

Fx and Fy: drag forces in the x and y directions,

respectively

ex and ey: eddy viscosities along the x and y directions,

respectively

m: density of vegetation

Cd: drag coefficient

d: diameter of a reed

hr: effective reed height

k: von Karman coefficient, k = 0.41

Z: vertical elevation from the bottom

u*
bx and u*

by: bed friction velocities in the x and y

directions, respectively

Z0: equivalent roughness height

201 K. S. Erduran and V. Kutija | Q3D numerical model for flow through vegetation Journal of Hydroinformatics | 05.3 | 2003



uo
x and uo

y: reference friction velocity related to the bottom

shear stress

tbx and tby: bottom shear stresses in the x and y directions,

respectively

lm: mixing length

a: empirical coefficient

sx and sy: distances between the reeds in the x and y

directions, respectively

pr: coefficient, less than unity

qlx and qly: Partial loads in the x and y directions,

respectively

EI: stiffness of the beam (reed)

d9 and d99: deflections

dT
m: total deflection

dN
k : net deflection

lk: reed length for kth element

Dz: space step

ux and uy: computed depth averaged velocities in the x and

y directions respectively

n: Manning’s roughness coefficient

Fx and Fy: average drag forces in the x and y directions,

respectively.
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