
Optimal sampling in a noisy genetic algorithm for

risk-based remediation design

Gayathri Gopalakrishnan, Barbara S. Minsker and David E. Goldberg

Gayathri Gopalakrishnan*
Barbara S. Minsker (corresponding author)
Civil and Environmental Engineering,
University of Illinois,
3230 NCEL, MC-250,
205 N Mathews Avenue,
Urbana,
IL 61801,
USA
*Now at Geomatrix Consultants Inc.,
Minneapolis,
MN,
USA

David E. Goldberg
General Engineering,
University of Illinois,
117 Transportation,
MC-238,
104 S Mathews Avenue,
Urbana,
IL 61801,
USA

ABSTRACT

A groundwater management model has been developed that predicts human health risks and uses a

noisy genetic algorithm to identify promising risk-based corrective action (RBCA) designs. Noisy

genetic algorithms are simple genetic algorithms that operate in noisy environments. The noisy

genetic algorithm uses a type of noisy fitness function (objective function) called the sampling fitness

function, which utilises Monte-Carlo-type sampling to find robust designs. Unlike Monte Carlo

simulation modelling, however, the noisy genetic algorithm is highly efficient and can identify robust

designs with only a few samples per design. For hydroinformatic problems with complex fitness

functions, however, it is important that the sampling be as efficient as possible. In this paper,

methods for identifying efficient sampling strategies are investigated and their performance

evaluated using a case study of a RBCA design problem. Guidelines for setting the parameter values

used in these methods are also developed. Applying these guidelines to the case study resulted in

highly efficient sampling strategies that found RBCA designs with 98% reliability using as few as 4

samples per design. Moreover, these designs were identified with fewer simulation runs than would

likely be required to identify designs using trial-and-error Monte Carlo simulation. These findings

show considerable promise for applying these methods to complex hydroinformatic problems where

substantial uncertainty exists but extensive sampling cannot feasibly be done.

Key words | design, genetic algorithms, groundwater, optimization, remediation, uncertainty

INTRODUCTION

Simple genetic algorithms (GAs) have been used in

numerous engineering design applications within water

resources (e.g. Wang 1991; Ritzel et al. 1994; Wang &

Zheng 1997; Smalley et al. 2000; Aksoy & Culver 2000) to

identify optimal solutions. One of the principal reasons for

using a GA as compared to more traditional optimisation

methods is that the decision space is searched from an

entire population of possible designs. This allows the GA

to solve discrete, non-convex, discontinuous problems

without differentiation (Goldberg 1989). However, apply-

ing GAs or any other optimisation method to real-world

problems that have numerous sources of uncertainty

(’noise’) in the system can be challenging. Here ‘noise’ is

defined as any factor that hinders accurate evaluation of

the fitness (objective function) of a given trial design.

These factors can include the use of approximate fitness

functions, the use of noisy data, knowledge uncertainty,

sampling and human error. Some examples of problems

where ‘noise’ exists include computer models where

computational speed is an issue, resulting in the use of a

fast but less accurate fitness function compared to a slow

but accurate and less ‘noisy’ one; problems in the ground-

water remediation field where there is uncertainty

(’noise’) in the data used to evaluate the problem due to

incomplete knowledge of parameters such as aquifer

hydraulic conductivity; and any problem where there is

a potential for human or other errors while collecting

field data.

A GA that operates in a noisy environment is referred

to as a ‘noisy GA’. Noisy GAs were used for the first time

11 © IWA Publishing 2003 Journal of Hydroinformatics | 05.1 | 2003

for image registration (Grefenstette & Fitzpatrick 1985;

Fitzpatrick & Grefenstette 1988). They can also be used in

problems where the optimal design must be effective for a

range of possible parameter values or models. The noisy

GA uses sampling from the noisy fitness function to evalu-

ate fitness of candidate solutions. Smalley et al. (2000)

demonstrated the efficiency of a noisy GA in identifying

reliable risk-based corrective action (RBCA) designs with

only a few samples. However, because computing time is

usually a constraint when solving real-world problems,

determining an optimal sample strategy is essential in

order to reduce the amount of computational effort

involved. The purpose of this paper is to present several

methods for determining the optimal sampling strategy

using existing theory from the genetic algorithm literature.

The methods are demonstrated within the framework of a

RBCA design case study. The effects of using different

sampling strategies on the GA’s performance and the

reliability of the designs produced by the algorithm are

analysed. Guidelines for selecting parameter values for a

noisy GA are also presented, extending the method of

Reed et al. (2000) to the noisy GA.

THE NOISY GENETIC ALGORITHM

The simple genetic algorithm

Genetic algorithms (GAs) search for the optimal solution

to a problem using techniques that are analogous to

Darwinian ‘natural selection’. The decision variables

defined for the optimisation model are coded as a string of

binary digits (alleles) or real numbers. These strings, each

representing a decision variable, are linked to form the

‘chromosome’. Each chromosome represents a single trial

design. The management model in this paper uses binary

coding to represent the solutions. Several chromosomes or

trial designs are grouped together to form a ‘population’,

which in turn forms a ‘generation’.

In order to determine the optimal solution, the GA

first randomly generates an initial population of trial

designs. The fitness of each member of this initial popu-

lation is determined using a user-defined objective

function and constraints for the problem of interest. Once

the fitness of the entire population of designs is deter-

mined, the GA uses three classic Darwinian operators to

evolve the population to the optimal or near-optimal

solution—selection, crossover and mutation. The process

of selection occurs first. In this procedure randomly

selected strings are compared and the ‘fittest’ of them are

allowed to enter the mating pool. A number of selection

techniques exist in the literature but binary tournament

selection is used in this paper because Goldberg & Deb

(1991) showed that tournament selection is the most

efficient and least prone to premature convergence of all

of the selection mechanisms. The next operator is cross-

over. In this process, members of the mating pool are

coupled together to mate with a specific probability Pc.

Mating involves selecting one or more ‘crossover’ points

where the strings exchange bits (genes) with each other.

Uniform crossover, where each bit of the offspring is

copied from the corresponding bit in one of the two

parents with equal probability, is used in this paper as the

crossover technique. The final operator used by the

genetic algorithm is mutation, where randomly selected

bits within the new population are changed with a given

probability of mutation Pm. The process of forming new

designs and evaluating existing ones continues until the

GA converges or a maximum number of generations is

reached.

The noisy genetic algorithm

As mentioned earlier, a noisy genetic algorithm (NGA) is

simply a genetic algorithm that operates in a ‘noisy’

environment. A noisy environment is commonly encoun-

tered while solving real-world problems, where knowl-

edge about the domain is scarce and uncertainty is

present. This type of ‘noise’ prevents accurate evaluation

of the fitness of individual members of the population. As

a result of this inaccurate evaluation of the individual’s

fitness, the user-defined objective function (also known as

the fitness function) that operates in a noisy environment

is termed a ‘noisy’ fitness function (see Miller (1997) for

details).

A type of noisy fitness function called a ‘sampling

fitness function’ is often used in noisy GAs (Miller &

12 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

Goldberg 1996). This function uses sampling in order to

evaluate the amount of noise from fitness evaluations in

noisy environments. Sampling is performed by taking the

mean of multiple noisy fitness evaluations for a given trial

design in accordance with the Central Limit Theorem. By

this theorem, if the fitness function follows any distri-

bution with mean m and variance s2, the sampling distri-

bution of the mean approaches a normal distribution with

mean m and variance s2/n as the sample size n increases

(for reference, see Ross 1985). Using this theorem, Miller &

Goldberg (1996) showed that a sampling fitness function

with a sample size of n can be described as follows:

(1)
n

j=1
∑f*i,n = f*i, jn

1

where f*i,j is the jth noisy fitness evaluation of individual

i and f*i,n represents an approximation to the actual

(unknown) noisy fitness value.

Unlike Monte Carlo simulation modelling, which

requires extensive sampling, the noisy GA with the

sampling fitness function performs best with few samples.

To understand why this is true, consider how a GA works.

Goldberg (1989) states that the optimal solutions in a GA

are obtained by combining highly fit building blocks in the

populations of strings. Because the population contains

many strings representing each building block, multiple

samples of a particular building block’s fitness will be

found in the population, even if only one sample is drawn

from the noisy fitness function for each string. As the

population evolves, any strings that fail to perform well

under a variety of sampled conditions will be out-

performed by more robust designs and eliminated from the

population using the evolutionary operators. Hence the

noisy GA gives robust designs even with little sampling.

However, using the noisy GA with the sampling fit-

ness function could result in an entire range of possible

fitness functions being generated by simply changing the

sample size of the sampling fitness function. Thus, differ-

ent sample sizes produce fitness functions that are Pareto-

optimal in terms of speed and accuracy (Miller &

Goldberg 1996). A major challenge in applying the noisy

GA to real-world applications is in identifying the best

sample size (n in Equation (2)) for the sampling fitness

function. When determining the optimal sample size for

the sampling fitness function, the tradeoffs between

increasing computational time and decreasing the noise

level must be considered. Using a larger sample size gives

the GA a more accurate fitness evaluation but results in

additional computational time. The optimal sample size is

where the performance penalty due to additional sampling

is balanced by the faster convergence of the GA due to

lower noise. The following sections describe how an

optimal sampling strategy for the noisy GA can be deter-

mined for real-world applications such as the risk-based

corrective design problem described below.

GROUNDWATER REMEDIATION DESIGN
APPLICATION

The application used to demonstrate the performance of

the NGA in this paper minimises the cost of a given

remediation design while simultaneously meeting a target

risk level. The case study used here was developed using

data from the Borden site as detailed in Smalley et al.

(2000). The aquifer configuration is shown in Figure 1. The

dimensions of the study are approximately 60 m by 20 m

and the aquifer was modelled using a coarse grid of 16 × 8

elements. A coarse grid was used because numerous runs

needed to be done to test the sampling strategies for this

study. The coarse grid was derived from a finer mesh of

128 × 64 elements that were used to generate multiple

hydraulic conductivity realisations. The hydraulic conduc-

tivity generation technique is detailed in Smalley et al.

(2000). Note that the techniques described in this paper

are independent of the sampling methods used to generate

realisations and can be applied to any other method of

generating hydraulic conductivity realisations (e.g. Feyen

et al. 2001). Multiple parameter sets were defined, with

each set consisting of a single sample drawn randomly

from the set of generated realisations and from each of

nine variable exposure model parameter realisations (see

Smalley et al. (2000) for a list of these parameters). The

contaminant benzene, with an initial peak concentration

of 133 mg/l, was assumed to be present on the site. ‘Pump

13 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

and treat’ with extraction wells was the assumed remedia-

tion technology. Because the contaminants are the semi-

volatile BTEX compounds, air stripping was the selected

ex situ technology. At most two extraction wells were

assumed to be installed at the locations shown in Figure 1.

Pumping rates were allowed to vary between 0 and

200 m3/d and it was assumed that the extracted water was

treated with the ex situ treatment system.

A risk-based remediation plan was developed for the

case study using the risk management model developed in

Smalley et al. (2000). The management model combines a

genetic algorithm with a fate and transport simulation

model and a risk assessment module to identify promising

remediation designs.

The fate and transport model, RT3D, is used to predict

contaminant concentrations that would be measured in

the contaminant source area for each possible design

solution, which consists of well locations and pumping

rates for extraction wells. An existing reaction package

(the no-reaction or tracer transport package) in RT3D was

used to model advection, dispersion and diffusion of the

contaminant (see Clement et al. (1998) for details). In

order to minimise the computational effort involved in this

case study so that numerous test runs could be made,

biodegradation was not considered.

The risk assessment module uses an analytical model

that predicts contaminant concentrations at off-site

exposure wells given concentrations in the source area

and estimates human health risks associated with the

predicted concentrations. For further information on this

module and the rationale for using an analytical model,

see Smalley et al. (2000).

The goal of this optimisation is to identify a least-cost

design that meets a specified risk level. Each design is

Figure 1 | Plan view of the case study aquifer.

14 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

represented by a binary string consisting of six decision

variables, which are the locations of the extraction wells,

their pumping rates, and the decision to install each well

or not. The cost of each design is represented by the

following objective function:

MinCTOT = CREM + CMON + CSYST (2)

where the total cost CTOT consists of three components:

CREM, which is the capital and operating costs for the

wells; CMON, which is the cost of on-site monitoring; and

CSYST, which includes additional capital and operating

costs for the ex situ treatment system (for details on the

first two terms, see Smalley et al. (2000)). The cost of the

in situ bioremediation system in Smalley et al. (2000) was

replaced here by the cost of an on-site ex situ treatment

system. The cost data for the treatment technology were

obtained from RACER (1999), a parametric cost modelling

system:

CSYST = ccap + [cop](P/A,i,n) (3)

where

ccap = capital cost of ex situ technology

cop = operating cost of the technology

(P/A,i,n) = financial factor for converting a series of

n O&M payments to present worth, given an

interest rate of i.

The genetic algorithm searches for solutions that best

meet this objective subject to the constraints described

below.

The first constraint ensures that the total individual

lifetime human health risk, RiskTOTAL
t,k , at a time t and

exposure location k, is less than the target risk level, TR:

RiskTOTAL
t,k = Riskw

t,k + Riskshw
t,k + Risknc

t,k≤ TR∀t,∀k (4)

where Riskw
t,k, Riskshw

t,k and Risknc
t,k are the cancer risks due

to ingestion of contaminated drinking water, inhalation

of volatiles from contaminated water due to showering,

and inhalation of volatiles from contaminated water

due to other non-consumptive uses respectively (see

Smalley et al. (2000) for details on how these terms are

calculated).

The remaining constraints are as follows:

umin,i≤zuiz≤umax,i ∀i (5)

hmin,l≤hi,l≤hmax,l ∀i at each l (6)

Equations (5) and (6) represent limits on pumping rates

and hydraulic heads, where umin,i and umax,i represent

the minimum and maximum pumping rates for a given

remediation well i (m3/d); hi,l, hmin,l and hmax,l are the

computed hydraulic head for remediation well i (m),

the minimum hydraulic head (m) and the maximum

hydraulic head (m) allowed at remediation well location l,

respectively.

The pumping constraints given in Equation (5) are

enforced by limiting the number of bits allowed for the

pumping rate decision variables (ui) in the GA chromo-

somes to 6 bits. Penalties for violations of the risk and

head constraints (Equations (4) and (6)) from Smalley

et al. (2000) were added to the objective function given in

Equation (2) to create the following fitness function:

Fitness = CTOT + v1 × Risk violation +

v2 × Head violation (7)

where CTOT is given in Equation (2) and v1 and v2 are the

penalty weights for the risk and head constraints, respect-

ively. For this case study, the values of v1 and v2 have been

set at 1000 and 1, respectively. Because the risk constraint

is more important than the head constraint, any violations

are more heavily penalised.

SAMPLE SIZE DETERMINATION: STEPS TO
ENSURE HIGH QUALITY SOLUTIONS

Three steps are developed below for identifying an optimal

sampling strategy for the noisy GA. First, the population

size and other standard GA parameters are determined.

Second, the noise variance and fitness variance are esti-

mated. Finally, the optimal sample size is identified.

Details on each of these steps are given below. The steps

are tested using the remediation design application

described earlier.

15 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

Step 1: determine the population size and other

standard GA parameters

The most important step in designing a competent noisy

GA is fixing the population size correctly. This is

especially true for computationally intensive applications

where the GA must find the optimal solution in a fixed

amount of time. When the population size is too large,

redundant individuals are processed, which reduces the

number of generations the GA can process in a fixed

computational time and hence reduces the solution qual-

ity. On the other hand, a small population size can cause

the GA to converge prematurely to a sub-optimal solution.

To determine the population size that will result in

optimal performance of the GA, the three-step method

developed by Reed et al. (2000) for the simple GA can be

used. However, the population sizing model (Equation (1)

in Reed et al. (2000)) must be replaced by a model that

considers noise. Harik et al. (1997) developed a population

sizing model called the ‘random walk’ based on the

gambler’s ruin problem. Miller & Goldberg (1996) modi-

fied this model to account for the presence of noise in the

system, resulting in the model shown in Equation (8):

(8)N‰—2K—1 ln(a)
d

p(s2
F + s2

N/n)∫& /
where N is the population size, K is the building block

order, d is the minimum signal difference between com-

peting individuals, a is the probability of failure, s2
F is the

variance of the true fitness function, s2
N is the variance due

to the noise and n is the sample size. The variance of the

true fitness function s2
F describes the variance in fitness

that would be present across the population of candidate

designs if there was no uncertainty in the system. The

variance of the noise s2
N describes the variance of the

fitness of each design when sampling is done, i.e. when

the design is exposed to a wide variety of conditions. The

primary difference between Equation (8) and the model

used by Reed et al. (2000) is the presence of the term s2
N/n

relating the effect of noise on population size. This

additional term increases the population size to ensure

that a good solution is found despite the presence of

noise.

As mentioned in Miller (1997), the sum of the popu-

lation fitness variance s2
F and the noise variance s2

N/n in

Equation (8) can be assumed to be equal to the initial

noisy fitness variance s2 of the population. Reed et al.

(2000) used a randomly generated trial population with

1000 members to determine the initial fitness variance and

showed that this resulted in a conservative estimate of the

population size. Similarly, a trial population with 1000

individuals and a sample size of 1 is used to determine the

initial noisy fitness variance s2 of the noisy fitness func-

tion. As can be seen from Equation (8), using a larger

sample size results in a smaller value of the variance and

hence a lower value of the population size. Hence, using

an initial sample size of unity in the trial population results

in conservative estimates for the population size.

The parameters and the population sizes resulting

from applying this method to the RBCA design application

are listed in Table 1 below. As noted by Reed et al. (2000),

the signal difference should be set to the smallest fitness

Table 1 | Population sizing parameters

Parameter Value

Standard deviation (s) 1.83

Signal difference (d) 0.13

Probability of failure (a) 0.05

ln(a) − 2.99

Pi(p) 3.14

Building block order Population size

K N

1 75

2 150

3 300

4 598

5 1,197

16 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

difference between competing individuals that the GA

should be able to resolve. In this case the signal difference

d was set to 0.13, which is the amount the penalty function

would have to change in order to measure a 0.01% viol-

ation of the target risk and a 0.03% violation of the

head constraint using the penalty function described in

Equation (7).

One important consideration while determining the

correct parameters for the population-sizing model is the

correct formulation of the problem, especially setting

the penalty weights for the constraints. As mentioned by

Reed et al. (2000), excessive penalisation of the constraint

violations results in infeasibly large population sizes.

However, if constraint violations are not penalised

enough, i.e. the penalty weights are set too low, then the

constraints may not be satisfied. Hence, before either

the population sizing model or the sampling strategy can

be used, the penalty function needs to be formulated

appropriately.

The other parameters in Equation (8), K (the building

block order) and a (the probability of failure), are set

according to the guidelines given by Reed et al. (2000). The

building block order, which is the number of bits in each

building block, is generally unknown in most real-world

applications. However, the order can be assumed to be

five or less because larger building blocks would be dis-

rupted by the crossover operation (Reed et al. 2000).

Finally, as recommended by Reed et al. (2000), the prob-

ability of crossover (Pc) for tournament selection was set

to 0.5 and the probability of mutation (Pm) was set to be

the inverse of the population size.

For the RBCA application, when the building block

order K is equal to 1 or 2, population sizes of 75 and 150,

respectively, must be used. The trial runs using these

population sizes resulted in almost identical solutions

being found for both cases. As suggested by Reed et al.

(2000), this indicates that a population size of 75 will

suffice for this problem and no additional runs for higher

values of K are required. This approach will still be valid

when sampling is needed because increasing the number

of samples from 1 results in a lower value of the term s2
N/n

in Equation (8) and hence a lower value for the population

size. Thus, the method described above results in

conservative estimates for the population size.

Step 2: estimate the noise variance and fitness

variance

Once the population size is set, several other parameters

for the noisy GA must be determined. To identify the

optimal sample size, the noise variance s2
N and the true

fitness variance s2
F must be estimated first. Once s2

N is

estimated, the value of the true fitness variance s2
F can

then be obtained by subtracting the variance due to the

noise from the variance of the noisy fitness function deter-

mined earlier. For cases where the noise component is not

dependent on the fitness of the individual, the noise vari-

ance can be obtained by determining the variance of y

samples of a randomly selected individual in the trial

population. When the noise component is dependent on

the fitness of the individual, the noise variance can be set

to the average mean noise variance of the trial population.

This can be obtained by selecting x individuals, using y

samples to obtain the noise variance of each individual

and then taking the mean of the x noise variances that

were obtained (Miller 1997). For this application, the noise

was highly dependent on the fitness of the individual

because the noise was present in the risk estimate, which

appears in the penalty term of the fitness function.

When the fitness function evaluation is computation-

ally intensive, it is desirable to minimise the amount of

sampling required to estimate s2
N. To examine the effects

of different amounts of sampling on the noise variance

estimate, one generation of an initial trial run for a sample

size of 5 and a randomly generated initial population of 75

was performed. Members with the maximum, minimum

and average noise variance in this generation were found,

representing the most conservative estimate, the least

conservative estimate and an average value for the noise

variance. For each of these three members, repetitive trial

runs with sample sizes between 5 and 1000 were per-

formed to obtain the noise variance estimates per sample

size (s2
N/n) shown in Figure 2. This figure shows that the

noise variance stabilised at a sample size of 300. However,

the value for the noise variance when stabilisation

occurred was less than the maximum value found with a

sample size of 5. Hence, the most conservative estimate of

the noise variance was that found with the smallest sample

size.

17 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

In order to demonstrate the effect of the noise vari-

ance on the sampling strategy, the highest value, the

lowest value and a randomly chosen ‘typical’ value of

the noise variance (see Table 2) were used to estimate the

optimal sample size as shown in the following subsections.

The highest value of the noise variance was estimated as

the maximum value found for the most conservative mem-

ber in Figure 2; the lowest value of the noise variance was

approximated by the minimum value found for the least

conservative member in Figure 2; and the ‘typical’ value of

the noise variance was estimated as an average value for

the ‘average’ member in Figure 2. These estimates span

the range of values for the noise variance shown in

Figure 2.

Identify the optimal sample size

Once the population size and the noise variance are

estimated, a range of sample sizes can be determined using

theoretical relationships from Miller (1997). In developing

a predictive model for the optimal sample size, Miller

(1997) assumed that the computational time would be

fixed and the optimal sample size would be that which

achieved the best performance (measured in terms of

percent convergence) within that timeframe. However,

each sample size has a different convergence rate and

hence a different convergence model. Also, each sample

size produces a fitness function that is Pareto-optimal

in terms of speed and accuracy (Miller & Goldberg

1996). Hence, any of the sample sizes could result in the

GA performing optimally within a given timeframe.

Identifying the optimal sample size would then require an

exact convergence model as a function of sample size,

which does not exist for most problems.

One of the methods investigated by Miller (1997) to

determine the optimal sample size was simple enumer-

ation of all of the sample sizes from 1 onwards until the

optimal sample size was identified. In order to avoid the

costly trial and error experimentation involved in this

method, Miller (1997) presented methods for identifying

lower and upper bounds on the sample size. By bounding

the range of sample sizes considered for the sampling

fitness function, the computational effort involved in iden-

tifying appropriate sample sizes to achieve a desired level

of reliability can be significantly reduced.

Lower bound sample size determination

To develop an estimate for the lower bound sample size,

Miller & Goldberg (1996) assumed that any improvement

in convergence rate due to increased sampling and the

resulting lower noise variance can be ignored. Under this

assumption, the same convergence rate can be assumed

for GA runs with all sample sizes, which means that the

lower bound for the sample size can be estimated as that

sample size which maximises the ending generation.

Miller & Goldberg (1996) justified the use of this estimated

lower bound because faster convergence and decreased

population sizes when higher sample sizes are used will

result in improved performance of the GA and hence the

optimal sample size must be at least as large as the lower

bound.

To derive the lower bound, an equation must be

developed for the ending generation. Fitzpatrick &

Genfenstette (1988) developed a model for the total time T

required by the GA as

T = (a′ + bn)GN (9)

where G is the total number of generations, N is the

population size and n is the sample size of the sampling

Figure 2 | Effect of sampling on the standard deviation.

18 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

fitness function. The variable a′ represents the fixed

amount of GA overhead time per individual per gener-

ation, which includes the time required for selection,

crossover and mutation but not for the fitness function

evaluation. The variable b represents the time required for

a single fitness function evaluation. The costs of generat-

ing the initial population have been ignored because they

are negligible when compared to the costs of running the

GA.

The above equation can be used to determine the

ending generation G as a function of T, a′, b, n and N.

From Equation (8), it can be seen that the population size

N is also a function of the sample size n. Assuming a fixed

amount of available computational time T, the value of the

ending generation reduces to a function of the sample size

n because all of the other values are assumed constant.

Combining Equations (8) and (9) and rearranging,

Equation (10) can be obtained:

(10).

a

T

(a′ + bn)(—2k—1) ln s2
F +

n

s2
N& & / /∫

G(n) =

p

Miller & Goldberg (1996) use the assumptions mentioned

earlier to show that the ending generation, given in

Equation (10), can be maximised by setting dG/dn = 0 and

solving for n, which is the lower bound for the optimal

sample size (nlb) shown in Equation (11):

(11)
s2

F

s2
N∫ ∫nlb =

b

a′

where s2
F is the true fitness variance and s2

N is the noise

variance. The values for the variances were determined

earlier and the other variables a′ and b can be obtained

from the trial runs of the noisy GA for the population

sizing. Using these values, the lower bound of the sample

size can be determined.

To estimate the lower bound for this application,

Equation (11) was applied for the most conservative, least

conservative and typical estimates of the noise variance

from Step 2. The parameters and results are shown in

Table 2. For a computationally intensive problem, such as

the one studied in this paper, the value of b is typically

much greater than a′. In such a case, unless the noise

variance is substantially greater than the fitness variance

(implying that the actual value of the fitness cannot be

estimated to any degree of accuracy), the lower bound as

estimated from Equation (11) will be less than 1. When

this occurs, the lower bound of the sample size can be set

equal to 1.

In this particular case study, the noise variance is

much less than the true variance of the fitness and hence

the lower bound found from Equation (11) is less than 1

for all of the cases. This indicates that the noise variance

does not have an effect on the lower bound and the lower

bound of the sample size can be set to 1.

Table 2 | The lower bound values, nlb

Parameter

Most
conservative
estimate

Least
conservative
estimate

Typical
estimate

Fixed GA overhead time (a′) (s) 1.07 1.07 1.07

Single fitness evaluation time (b) (s) 7.46 7.46 7.46

Standard deviation for noise (sN) 0.188 1.97E-03 0.023

Standard deviation for fitness (sF) 1.83 1.83 1.83

Lower bound 0.04 0.0004 0.005

19 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

Upper bound sample size determination

To derive an upper bound sample size, Miller (1997) sug-

gests developing an approximate convergence model that

converges faster than the actual GA at the same noise level

(sample size). The approximate convergence model is used

to identify a sample size that maximises the performance

of the GA within the given computational time. Given that

the convergence model overestimates performance, the

sample size determined with that model is an upper bound

on the optimal sample size. Miller (1997) suggests the

following approximate convergence model, which is

representative of GA convergence in most domains:

(12)

exp t + c

1+exp

sN

x& /
t + c

sN

x& /
f(t) =

where the fitting parameter x is a function of the conver-

gence rate, parameter c is determined by the starting

population fitness, t is the time in consistent units and f(t)

represents the percent convergence, which is defined to be

the percentage of alleles in the string that have converged

to the optimal solution at time t. Convergence is obtained

when most of the members of the final generation have the

same set of decision variables, i.e. the same RBCA design

for this study.

This model can be calibrated by determining the initial

value of the percent convergence, f(0), and the final value

of the percent convergence, f(T), at the end of one sample

GA’s run in order to compute x and c respectively. The

sample runs used for population sizing can be used for this

purpose so that no additional runs are required. For this

application, the model was calibrated using an initial run

with a population size of 75 and an ending generation of

50, which was used earlier to establish the correct value of

the population size. Convergence was assumed when at

least 90% of the alleles had converged to the same value in

the final generation. The values of the model parameters x

and c in Equation (12) determined for this application are

shown in Table 3 for the three noise variance estimates

used previously.

As expected, there is wide variation in the model

parameters for the estimate with the most noise (most

conservative), the estimate with the least noise (least

conservative) and the estimate with the typical value of

the noise. However, when the convergence model was

developed and plotted as shown in Figure 3, the model

was the same for all of the cases. This is reasonable

because the model parameters x and c are scaled using the

noise variance. This result indicates that the approximate

convergence model in Equation (12) is a robust model and

does not depend on the amount of noise present in the

system. The main factors influencing the model are the

Table 3 | Convergence model parameters for selected members

Parameter
Most conservative
estimate

Least conservative
estimate

Typical
estimate

Standard deviation for noise

(sN) 0.188 1.97E-03 0.023

f(t = 0) 0.0133 0.0133 0.0133

f(t = 8 h) 9.33E-01 0.933 0.933

x 0.163 0.0017 0.019

c − 4.30 − 4.30 − 4.30

20 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

convergence criteria and the time the GA takes to con-

verge to a solution. Hence, any noise variance estimate

can be used without affecting the convergence model

estimate.

As can be seen from Figure 3, the model converges at

a slightly faster rate than the GA does. This result is

appropriate because, as stated earlier, the upper bound

model is valid only when this condition holds.

Using this convergence model, the upper bound of the

optimal sample size can be calculated by finding the

sample size that maximises convergence in the ending

generation G, f(G). As with the lower bound derivation,

the ending generation G can be determined as shown in

Equation (10). The final convergence, f(G), is calculated

by combining Equation (10) with Equation (12). The

upper bound is then determined by maximising the per-

formance of the GA (df(G)/dn = 0) and solving for the

value of the upper bound (nub). The differentiation was

performed using Mathematica and the resulting equation

for the upper bound was found to be

An3
ub + Bn2

ub + Cnub + D = 0 (13)

where

A = s2
Fb2

B = 2a′bs2
F + s2

Nb2

(—2k—1 ln(a)∫p)2s2
Nc2

x2T 2
C = a′2 s2

F + 2a′ bs2
N —

D = a′2s2
N.

The polynomial function ‘roots’ in MATLAB was used

to solve the cubic equation for the upper bound. The upper

bounds calculated using this approach are given in the

following tables for various parameter values.

Table 4 shows that the noise variance had minimal

effect on the upper bound, as expected given that the

convergence model is the same for all three cases. This

result and the similar lower bound result found previously

indicate that it is not necessary to determine the

noise variance accurately in order to find the bounds on

the sample size. This finding means that the noise vari-

ance can be estimated with small sample sizes, resulting

in significant computational savings. Because the vari-

ance does not have much effect, the maximum noise

variance of 0.188 will be used for subsequent sensitivity

analyses.

Figure 3 | Convergence model.

Table 4 | Effect of changes in noise variance on upper bound sample size

Parameter

Most
conservative
member

Least
conservative
member

Typical
member

Standard deviation for noise (sN) 0.188 1.97E-03 0.023

Total run time (T) (d) 1 1 1

Single fitness evaluation time (b) (s) 7.5 7.5 7.5

Upper bound (nub) 31 31 31

21 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

One additional factor that should be considered in

developing the upper bound is the effect of the allowed

runtime (T in Equation (10)). Table 5 shows that the al-

lowed runtime of the GA has a substantial effect on the

upper bound. The upper bound increases almost linearly

with an increase in the total time the GA is allowed to run.

The upper and lower bound analyses assume that this

parameter is set by the user to reflect computational limits.

Finally, it is interesting to note the effect of time taken

for each function evaluation, b, on the upper bound. As

shown in Table 6, when the time taken for each function

evaluation is increased, a linear decrease in sample size is

noted.

For this paper, a total run time of 1 day was chosen

and the value of b is 7.5 s. Using these values, it can be

seen from Table 4 that the upper bound on the sample size

is 31.

Pareto-pruning

In order to find the optimal sample size, each of the

sample sizes between the lower and upper bound would

theoretically have to be tested. However, this is not

necessary because multiple sample sizes can result in

the same ending generation. Table 7 shows the ending

generation for each sample size in the RBCA design

example; these figures were calculated using Equation (8).

However, a fraction of a generation cannot be completed,

so the ending generation is truncated to the next lower

whole number. Miller (1997) showed that, when sample

sizes have the same truncated ending generation, only the

largest value of the sample size needs to be sampled

because it maximises the performance of the algorithm.

This technique is commonly referred to in the genetic

algorithm literature as ‘Pareto-pruning’. The pruned val-

ues of the sample sizes are given in Table 7. As seen from

Table 7, the sample sizes that need to be considered are

1–13, 15, 17, 19, 21, 25 and 31.

Sample size results

To evaluate the effects of sample size on performance,

the genetic algorithm was run for a single day (T = 1 in

Equation (9)) with the sample sizes shown in the previous

Table 5 | Effect of run time on the upper bound sample size

Parameter

Total allowed run time (T) (d) 1 2 3 4

Standard deviation for noise (sN) 0.188 0.188 0.188 0.188

Single fitness evaluation time (b) (s) 7.5 7.5 7.5 7.5

Upper bound (nub) 31 62 93 124

Table 6 | Effect of function evaluation time on the upper bound sample size

Parameter

Single fitness evaluation time (b) (s) 7.5 15 23

Standard deviation for noise (sN) 0.188 0.188 0.188

Total allowed run time (T) (d) 1 1 1

Upper bound (nub) 31 15 10

22 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

section. The results indicated clear tradeoffs between con-

vergence and reliability of the RBCA designs identified.

Figure 4 shows how the performance (measured in terms

of percentage of the population converged) varies for

different sample sizes. Note that the sample sizes 1 and 2

converged before the total run time of 1 day and were

stopped after 50 generations. The higher sample sizes ran

for fewer generations and hence did not converge within

the allowed run time of 1 day.

To evaluate reliability, the designs identified in the GA

runs were tested using 5000 Monte Carlo simulations.

Figure 5 shows the highest reliability designs that were

identified for each sample size. The best design achieved a

reliability of 98% (i.e. it satisfied the constraints for 98% of

the 5000 simulations). This design consisted of a single

extraction well with a pumping rate of 200 m3/d at Node

22 in Figure 1. However, the algorithm did not identify the

Table 7 | Sample sizes from Pareto Pruning

T (days) 1

a′ (s) 1.07

b (s) 7.5

N 75

Sample size
Ending
generation

Truncated ending
generation

1 134.9 134

2 71.9 71

3 49.1 49

4 37.2 37

5 30.0 30

6 25.1 25

7 21.6 21

8 18.9 18

9 16.9 16

10 15.2 15

11 13.8 13

12 12.7 12

13 11.7 11

14 10.9 10

15 10.1 10

16 9.6 9

17 9.0 9

18 8.5 8

19 8.0 8

20 7.7 7

21 7.3 7

22 6.9 6

23 6.7 6

24 6.4 6

25 6.1 6

26 5.9 5

27 5.7 5

28 5.5 5

29 5.2 5

30 5.1 5

31 4.9 5

Figure 4 | Performance of the algorithm as a function of sample size.

Figure 5 | Design with the maximum reliability as a function of sample size.

23 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

‘best’ design at sample sizes of 1 and 2 because designs

with lower reliability but lower cost took over the popu-

lation. Note that the GA required 11,100 fitness function

evaluations to identify the ‘best’ design for a sample size

of 4.

Figure 6 shows the costs and reliabilities of the four

primary designs identified by the algorithm for a sample

size of 7. Primary designs were those designs where at least

1% of the members in the final population had the same

design. Designs with a range of reliabilities between 68%

and 98% were identified within a fairly narrow range of

costs. These designs provide a useful range of alternative

reliabilities from a single GA run.

Finally, as can be seen in Figure 7, the best design took

over the population only for the sample size of 7. For

smaller sample sizes, although it was identified, designs

with lower reliability and cost took over the population.

For sample sizes greater than 7, convergence was never

achieved. These results are, of course, dependent upon the

run duration specified. For longer durations, greater

convergence would be achieved.

These results indicate that, although the lower and

upper bound analysis may identify a large number of

possible sample sizes, many will probably not need to be

tested. The runs can be started with the lower bound

sample size and then progressively increased until either

the optimal designs stabilise (i.e. remain unchanged from

one sample size to the next) or convergence is no longer

achieved. At that point, the reliability of the designs ident-

ified should be tested with full Monte Carlo simulations. If

the reliability is too low and convergence is no longer

achieved, then the allowed run time may need to be

increased if possible. Even if the run time cannot be

increased, the designs identified may be sufficiently

reliable for screening purposes, identifying candidate

types of designs for further analysis.

To test the optimality of the most reliable design

identified in the preceding analysis, an additional run with

a 2-day duration was completed with a sample size of

15. This run showed convergence to the same solution

found previously, suggesting that optimal solutions can be

identified even when full convergence cannot be achieved.

Finally, it was noted that the fitness of the optimal design

was sampled 2,130 times during this run, which explains

how such a reliable solution can be identified with so little

sampling. In order for the optimal design to survive to the

ending generation, it must be able to perform well under

most sampled conditions.

Figure 6 | Cost versus reliability for the primary designs identified.

Figure 7 | Percentage of the ‘best’ design found in the final generation as a function of

sample size.

24 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

CONCLUSIONS

This paper develops a three-step method for designing a

noisy GA that is capable of identifying highly reliable

designs. The three steps use theoretical relationships from

the genetic algorithm literature to identify appropriate GA

parameters and to develop optimal sampling strategies.

Step 1 of the methodology provides valuable insights into

developing population sizes and other standard GA

parameters. Step 2 identifies noise variance estimates that

are needed for the optimal sample size determination.

Step 3 develops the optimal sampling strategy based

on theoretical upper and lower bounds for the sample

size. The three-step process was demonstrated using a

RBCA design test case. Using this approach, the sampling

strategy used for the test problem identified four candidate

designs with 68–98% reliability for the optimal sample size

of 7. The candidate designs were tested with full Monte

Carlo simulations to identify the best design based on

tradeoffs between cost and reliability. Relative to trial and

error simulations, this GA-based approach may result in

significant savings of computational effort because fewer

designs may need to be evaluated using expensive Monte

Carlo simulations. For example, for a sample size of 4,

only 11,100 fitness function evaluations (simulations)

were required to identify the optimal design with 98%

reliability. Given that each design could take thousands of

evaluations for full Monte Carlo simulations, it seems

unlikely that equally optimal solutions could be identified

by trial and error simulation with so few evaluations.

These results indicate considerable promise for this

method to identify highly reliable solutions to complex

hydroinformatic problems without substantial compu-

tational effort beyond that required for a simple genetic

algorithm without noise.

ACKNOWLEDGEMENTS

This material is based on work supported by the National

Science Foundation under Grant Number 99-03889. Any

opinions, findings and conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science

Foundation (NSF). The National Computational Science

Alliance (NCSA) provided computational time on the

NCSA SGI Origin2000.

REFERENCES

Aksoy, A. & Culver, T. B. 2000 Effect of sorption assumptions on
aquifer remediation designs. Groundwater 38(2), 200–208.

Clement T. P., Sun, Y., Hooker, B. S. & Petersen, J. N. 1998

Modeling multispecies reactive transport in ground water.
Groundwater Monit. Remed. 18(2), 79–92.

Feyen, L., Bevan, K. J., De Smedt, F. & Freer, J. 2001 Stochastic
capture zone delineation within the generalized likelihood
uncertainty estimation methodology: conditioning on head
observations. Wat. Res. Res. 37(3), 625–638.

Fitzpatrick, J. M. & Grefenstette, J. J. 1988 Genetic algorithms in
noisy environments. Machine Learning 3, 101–120.

Goldberg, D. E. 1989 Genetic Algorithms in Search, Optimizations
and Machine Learning. Addison-Wesley, New York.

Grefenstette, J. J. & Fitzpatrick, J. M. 1985 Genetic search with
approximate function evaluations. In: Proceedings of an
International Conference on Genetic Algorithms and their
Applications (ed. Grefenstette, J. J.), pp. 112–120, Hillsdale, NJ.

Harik, G. R., Cantu-Paz, E., Goldberg D. E. & Miller, B. L. 1997 The
gambler’s ruin problem, genetic algorithms and the sizing of
populations. In: Proc. 1997 IEEE Conference on Evolutionary
Computation, pp. 7–12, IEEE Press, New York.

Miller B. L. 1997 Noise, sampling and efficient genetic algorithms,
IlliGAL Report No. 97001, May.

Miller, B. L. & Goldberg, D. E. 1996 Optimal sampling for genetic
algorithms. In: Intelligent Engineering Systems Through
Artificial Neural Networks (ANNIE ‘96) (eds Dagli, C. H.,
Akay, M., Chan, C. L. P., Fernandez, B. R. & Ghosh J.), vol. 6,
pp. 291–298, ASME Press, New York.

Patrick, R., Minsker, B. & Goldberg, D. 2000 Designing a competent
simple genetic algorithm for search and optimization. Wat.
Res. Res. 36(12), 3757–3761.

RACER 99 1999 Remedial Action Cost Engineering and
Requirements Users Guide. Talisman Partners Ltd.

Ritzel, B. J., Eeheart, J. W. & Ranjithan, S. 1994 Using genetic
algorithms to solve a multiple objective groundwater pollution
containment problem. Wat. Res. Res. 30(5), 1589–1603.

Ross, M. S. 1985 Introduction to Probability Models, 3rd edn.
Academic Press, London.

Smalley, J. B., Minsker, B. S. & Goldberg, D. E. 2000 Risk-based in
situ bioremediation design using a noisy genetic algorithm.
Wat. Res. Res. 36(20), 3043–3052.

Wang, Q. J. 1991 The genetic algorithm and its application to
calibrating conceptual rainfall-runoff models. Wat. Res. Res.
27(9), 2467–2471.

Wang, M. & Zheng, C. 1997 Optimal remediation policy selection
under general conditions. Groundwater 35(5), 757–764.

25 Gayathri Gopalakrishnan et al. | Optimal sampling in a noisy genetic algorithm Journal of Hydroinformatics | 05.1 | 2003

