
The relevance of Open Source to hydroinformatics

Hamish Harvey and Dawei Han

Hamish Harvey (corresponding author)
Dawei Han
Water and Environmental Management Research

Centre,
Department of Civil Engineering,
University of Bristol,
Bristol BS8 1TR, UK
Tel: +44 117 9289768;
Fax: +44 117 9289770;
E-mail: david.harvey@bristol.ac.uk;
d.han@bristol.ac.uk

ABSTRACT

Open Source, in which the source code to software is freely shared and improved upon, has recently

risen to prominence as an alternative to the more usual closed approach to software development.

A number of high profile projects, such as the Linux operating system kernel and the Apache web

server, have demonstrated that Open Source can be technically effective, and companies such as

Cygnus Solutions (now owned by Red Hat) and Zope Corporation have demonstrated that it is

possible to build successful companies around open source software. Open Source could have

significant benefits for hydroinformatics, encouraging widespread interoperability and rapid

development. In this paper we present a brief history of Open Source, a summary of some reasons

for its effectiveness, and we explore how and why Open Source is of particular interest in the field of

hydroinformatics. We argue that for technical, scientific and business reasons, Open Source has a lot

to offer.

Key words | free software, open source, software framework, software development, scientific

method, hydroinformatics

INTRODUCTION

Computer software is the lifeblood of hydroinformatics.

Until now a great deal of it has been obtained by trans-

fusion from the fields of computational hydraulics

and hydrology, which existed long before the term

hydroinformatics was coined. It is clear from a review of

the hydroinformatics literature (in this journal and in

the conference series of the same name) that this—the

‘hydro’ part of the discipline—is, while naturally still

vital, increasingly playing second fiddle to the more

‘informatics’ area of, for example, large scale distributed

decision support systems. This is natural, as one of the

main aims of hydroinformatics is the enfranchisement

of stakeholders, allowing those who have until now

been merely objects in the decision making process

to take an active part in it (Abbott 1998). Existing

modelling software, being aimed at specialists in

hydrology and hydraulics, falls far short of this goal and

a much broader and more integrated use of computer

technology will be fundamental to the development of

this field.

While many of the component parts of these

integrated systems already exist, their use in this context is

experimental, and thus we can think of the software

systems we create (for example Yan et al. 1999) as

analogous in many ways to physical experimental

apparatus. Such apparatus must be dismantled and rebuilt

several times, with the design being refined progressively.

Abbott & Jonoski (1998) allude to this with a reference to

evolutionary prototyping. While the architecture and the

philosophy behind hydroinformatics systems are topics of

active research (the former in particular by the present

authors), little consideration has been given to how best to

undertake the associated software development.

The prevalent approach to software development

might be known as closed source, non-free or proprietary,

where software is written for sale or for in-house use. The

operating systems and applications that most people use

every day fall into this category, as does the huge volume

of software that is used only within the organisation that

developed it. Eric S. Raymond, a self-styled analyst of the

219 © IWA Publishing 2002 Journal of Hydroinformatics | 04.4 | 2002

Open Source movement, estimates that as much as 95% of

code is written in-house (Raymond 1999). Whether this

value is reliable or not, what the average personal com-

puter user generally thinks of as ‘computer software’ is just

the tip of the iceberg. Whether for in-house use or sale,

however, software is almost always treated by the author

or the author’s employer as being a primary asset.

In recent years an alternative treatment of software

development has risen in profile, first as a result of the

steady progress of the Free Software Foundation (FSF)

towards a complete, free Unix compatible operating

system called GNU (Stallman 1998), then through the

dramatic rise to prominence of the Linux kernel which,

when combined with the GNU software, finally repre-

sented a viable alternative to Windows and the myriad

proprietary flavours of Unix for an increasingly broad

range of applications. It should be noted that ‘free’ is used

here in the sense of ‘freedom’, referring to the freedom to

use and modify the software as desired without restriction.

Note also that commercial is not an opposite of Open

Source—the majority of Open Source advocates are in no

way anti-commercial, and the ongoing effort to find

business models which can effectively harness the tech-

nical power of Open Source development is discussed in

this paper.

It is increasingly the case that no one organisation can

provide all of the specialist knowledge required for hydro-

informatics software development projects. This is demon-

strated by the increase in the number of collaborative

projects being undertaken in the field, and of the forma-

tion of strategic links between otherwise competing insti-

tutions. The resulting complex network of non-disclosure

agreements (explicit or implicit), required on the current

business model in order to protect the commercial inter-

ests of the institutions involved, is a severe impediment to

development and, as a result, the overall expansion both of

knowledge and of the entire market for hydroinformatics

products suffers. By contrast, the freedom gained by

utilising the Open Source model, provided these

institutions can modify their revenue generation methods

appropriately, could accelerate development, supporting

a much more rapid expansion of the total market. It

is recognised that it is hard to encourage this sort of

cooperative approach in a competitive marketplace, but

the hydroinformatics world is perhaps small enough

and strongly enough knowledge-based that this can be

achieved.

It is the authors’ belief that this approach—the Open

Source development methodology—provides a potentially

very useful alternative to the closed source methods which

currently predominate. This paper explores the closely

related ideas of Open Source and Free Software. We first

provide an outline of their history and a summary of the

main concepts, and then discuss the technical, science and

business arguments for the Open Source development

model, and the benefits to the end user, with a particular

focus on hydroinformatics.

CLOSED AND OPEN SOURCE SOFTWARE

Closed source

It is a common belief that the closed source or non-free

model of software development is ‘traditional’, and while

this is not strictly true, this model has gained such a hold

that it makes little difference. In the interest of accuracy,

however, it should be pointed out that, in its early days,

computing was an academic pursuit, and software was

freely shared among the developer and user communities,

which were largely coincident (Stallman 1998). That aside,

it has long been the case that software is written within a

company, and where that software is provided for use

outside of the company, the providers go to great technical

and legal lengths to protect their profits from the sale of

the software. The use of copy protection schemes, network

license managers and dongles are among the technical

methods, while copyright is the primary legal device. In

the United States it is also possible to patent software, and

while this is a matter of great controversy and related to

the topic under discussion here, it is beyond the scope of

this paper (see Babovic (2000) for some web links relating

to software patents).

Free software

Open Source is an outgrowth of the Free Software move-

ment, started by Richard M. Stallman (usually referred to

220 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

as RMS). RMS was a system hacker at the MIT AI Lab

in the 1970s (‘hacker’ being correctly used to mean

essentially ‘one who loves programming’, as distinct from

‘cracker’, which has the meaning that the press have

incorrectly assigned to hacker) and grew disillusioned

with the growing trend for software suppliers to refuse to

allow access to the source code for software. Since, then

as now, this frequently left the users of software waiting

for a long time (often indefinitely) for a needed fix or

modification to a program, RMS developed a set of values

that essentially states that non-free software infringes

on the users’ rights, and set about writing a complete

operating system that provided users with those rights

(Stallman 1998). He formed the Free Software Foundation

(FSF) in 1985 to administer funds and resources for this

development.

Note that free is used in this context in the sense of free

speech and the French ‘libre’, and has nothing to do with

cost. We will discuss the economic implications later. The

Free Software Definition (FSF 2001a) states that, for soft-

ware to be free, a user must have four freedoms (the

numbering, betraying RMS’ programming background,

starting at zero). For the second and fourth criteria to be

fulfilled the source code of the software must be available.

1. The freedom to run the program, for any purpose.

2. The freedom to study how the program works, and

adapt it to your needs.

3. The freedom to redistribute copies so you can help

your neighbour.

4. The freedom to improve the program, and release

your improvements to the public, so that the whole

community benefits.

Open Source

RMS’ admirable dedication to the cause of Free Software

generated a large quantity of excellent software, most of it

modelled on existing tools from the various proprietary

Unix-based operating systems. However, the development

of a free operating system kernel took much longer than

expected (Stallman 1998). The users of the GNU tools, as

they are called, still had to run them on a proprietary core.

Linus Torvalds, a Finnish computer science student, wrote

a Unix compatible kernel for his Intel 80386 PC, and

released the source code for Linux, as he called it, under

the FSF General Public License, or GPL (FSF 1991). He

chose to do this, not for strong ethical reasons, but

practical—he did not intend to develop it into a com-

mercial product, and thought other computer scientists

and programmers might be interested in experimenting

with it. He was right, and quickly started receiving

‘patches’ (specially coded modifications) to the source

code. These he applied to the ‘official’ source code

repository, and released new versions of the kernel code

very rapidly, thus maintaining the interest of what could

now be regarded as co-developers by disseminating

improvements rapidly. Soon the Linux kernel was suf-

ficiently versatile and stable that, combined with the GNU

tools, it represented a complete, free operating system,

GNU/Linux. This is the point at which the IT industry

started to pay attention to the Free Software movement.

Torvalds had unwittingly stumbled on what proved to

be an astonishingly successful development paradigm,

enabled by the principles of Free Software, but which had

not been utilised by the Free Software Foundation itself.

By encouraging users to modify the software and submit

patches, then evaluating and possibly applying those

patches, and finally releasing the patched whole back to

the community, Torvalds harnessed a massive talent pool

prepared to work for mutual benefit rather than

immediate financial gain. In fact, he turned Pareto’s Law

(Dafermos 2001) to his advantage—he provided the initial

10% of effort in creating 90% of the required functionality,

then effectively ‘outsourced’ the remaining 90% of effort to

complete and debug the kernel.

The community which grew up around GNU/Linux,

and the rapidity of its growth, took everyone, including

Torvalds, by surprise. The demonstrable success of the

approach started to attract the interest of the establish-

ment, and the dogmatic attitudes of the Free Software

Foundation were felt by some to be an impediment to

adoption of Linux and related technologies by businesses.

Painfully aware of a rapid loss of web browser market

share to Microsoft’s Internet Explorer, and inspired by the

first considered study of the Linux approach to software

development (Raymond 1999), Netscape Communications

decided to release the Netscape browser source code in

221 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

the hope of attracting external programming talent, and

in the discussion surrounding that decision, the more

business friendly label ‘Open Source’ was coined. It is

often suggested that it was this period—from the publi-

cation of Raymond’s paper to the open-sourcing of the

Netscape browser—that transformed the Open Source

movement from an oft-derided subculture into a force to

be reckoned with.

The Free Software and Open Source movements have

very different, though not mutually exclusive, guiding

principles: Free Software came from a strong sense of

moral duty, whereas the Open Source view grew from

observations of highly successful software development

projects (in particular Linux). The rest of this paper

discusses the practical, scientific and economic benefits of

the Open Source model of development to the hydroinfor-

matics community, and thus at this point we leave the

discussion of Free Software principles. Yee (1999) pro-

vides an interesting survey of the implications of Free and

non-Free software in the context of ethical trade and

development.

Examples of Open Source projects

There are numerous examples of successful Open Source

projects that could be presented. Linux has already been

discussed. A look at http://www.freshmeat.net (an online

catalogue of Open Source software) and http://www.

sourceforge.org (a free hosting service for Open Source

projects) can provide some impression of the quantity

of software produced or under development, if not

its quality. While it is difficult to find information on

unsuccessful Open Source projects, this should not be

understood to mean that Open Source is a ‘magic bullet’.

It is, however, important to remember that one factor in

the success of the Open Source method as a whole is a

continuous Darwinian process of natural selection in the

Open Source ecosystem, ensuring rapid development and

innovation. Notable Open Source successes include the

Linux operating system kernel, BSD Unix and the Apache

web server, which powers 50–60% of the world’s web sites

(Netcraft 2001). Open Source science and engineering

software is less widely known but does exist, including

CFD and finite element software, simulation software and

a complete Geographical Information System. Links to

information about some specific projects are provided in

‘Web Clips’ in this issue.

THE TECHNICAL CASE FOR OPEN SOURCE

With Open Source placed in its historical context, we can

now examine why it represents a technically successful

software development method. In this section we look at

the main features of the Open Source development model,

which result in it producing—in at least some cases—high

quality software at a rapid pace. We also give some

consideration to the types of software that seem to be

particularly well suited to Open Source development.

Why Open Source works

That a large, geographically distributed group of develop-

ers and users could combine their efforts and produce a

high quality operating system kernel such as Linux took

most observers of the computing industry by surprise. In

fact, as explained in the preceding sections it should not

have done, since a substantial portion of the Internet

infrastructure, and even the TCP/IP networking code in

Microsoft Windows, was developed on this model. It is

not new, but it is effective, and one result of the

recent attention it has gained is that the reasons for this

effectiveness have been examined.

The fundamental principles of Open Source, as set out

in the Open Source definition (OSI 2001), dictate that,

when a piece of software is released as Open Source, it

includes full source code and permission for any user to

modify, and to distribute modified or unmodified versions

with or without charge. These are considerable freedoms

when compared with the typical End User License

Agreements accompanying proprietary software, but they

come with a responsibility, often also encapsulated in the

license; any changes made to the software must be given

back to the community. In this way, the work of many

developers can be utilised in the creation of the software.

222 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

This can result in a positive feedback cycle in which

increasing quality results in a growing user base and

therefore a growing developer pool (Figure 1).

The principal reason for surprise that this approach

succeeds in producing any software at all is that the

software industry has for a long time taken Brooks’ Law

(Brooks 1995) as a truism. Brooks’ Law states that the

advantage of splitting work among N programmers is

proportional to N, while the communication overhead is

proportional to N2 (Figure 2). Another reason for surprise

is the common, but false, assumption that Open Source

projects are anarchic in nature. In fact, along with the

legally protected rights and responsibilities set out in the

license are a set of widely accepted values and manage-

ment structures that can be observed in many successful

Open Source projects (Himanen 2001; Dafermos 2001).

Successful Open Source projects generally have a strong

leadership structure, often with a single individual in

control, but sometimes, as in the Apache case, a team. As

a project grows a team leader will accumulate a team of

trusted assistants, which allows the leader to focus on

overall management issues and not spend too much time

assessing new modifications. Not just anyone is allowed to

make direct modifications to the code. In theory, anyone

could take the code, modify it and place it on his or her

own web site, thus creating a competing version. In fact,

this rarely happens, partly because of social taboos and a

strong Open Source ethic (Raymond 1999) but also

because to do so is unlikely to benefit anyone. That these

structures and their working methods develop organically

with the project does not appear to make them less

effective.

Using a strongly modular structure can reduce the

effects of Brooks’ Law in development. The Linux kernel

is an example of this—the interfaces between the kernel

and device drivers to control hardware are well defined

and documented, so a new developer can write a device

driver without needing to alter code in the rest of the

kernel. In this way many developers can actually work

on the same project simultaneously without incurring

excessive communication overheads. Many Open Source

projects use the Concurrent Versioning System (CVS)

which streamlines the process of applying changes

from multiple developers to the master source code, and

allows separate development and stable branches to be

maintained simultaneously.

One area in which Brooks’ Law really does not apply

is that of debugging—the release of source code with

software and the resulting empowerment of the users

results in the remarkable debugging efficiency which is a

Figure 1 | A positive feedback cycle of growing use and increased rate of development.

Figure 2 | Brooks’ Law, generally applicable to development of complex software using

teams of people, results in the growth of communication overhead rapidly

overwhelming any benefit from increasing team size.

223 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

hallmark of Open Source development. This is also

encouraged by early and frequent releases of the source

code, usually with a clear indication that this is not the

recommended stable release. In this way, adventurous and

technically adept users can use the bleeding edge of devel-

opment and, since they have access to the source, can

characterise bugs for developers to fix, or can even supply

a fix themselves.

Another benefit of Open Source in terms of the quality

and innovation is the process of natural selection by which

changes are adopted (Asklund & Bendix 2001). In tra-

ditional software development, a change request will be

made: this request will then be assessed and either

accepted for implementation or rejected. If accepted, the

change will be implemented. In the Open Source model, a

developer who wishes to see a feature will implement it,

and submit the implementation for approval. If the project

leaders are unhappy with either the feature itself or its

implementation, it will be rejected. If a user requests a

feature and the leaders agree it will be useful, it will be

added to a wish list. More than one developer may imple-

ment the feature, and the best implementation will be

chosen. This encourages an evolutionary improvement of

software and increases the likelihood of an optimal imple-

mentation, at the expense of a certain amount of wasted

developer time. Dyson (1998) provides a good summary:

‘. . . open source is not just about bug-fixing, which can be done
in a massively parallel fashion. It’s about competing
innovations, which live or die in a market of other people
deciding to adopt/enhance them, or ignore them. Interestingly,
this is an information market . . . The Microsoft approach
keeps asking: Where is the leader? And the OS approach keeps
answering: The leader is whoever is ahead, by acclamation.’

Developer pool size

An issue which needs addressing in the context of the

Open Source development of hydroinformatics software is

that of developer pool size. The Linux operating system

kernel is of use to such a large number of people, many of

them excellent software developers, that finding sufficient

talent prepared to work for no income is possible. In

hydroinformatics this may not be the case and it might be

feared that Open Source would therefore not work.

Not all of the benefits of Open Source are dependent

on spreading the development. In the long run the devel-

opers of a widely adopted Open Source product might

need to find ways of funding the development, but the end

user benefits (discussed below) of protection from vendor

lock-in and access to source code, should the developers

be unable or unwilling to service the users’ needs, still

remain. Once a piece of software has become established,

it should become clear to technically knowledgeable users

that it is in their interests to contribute some time to

development. Indeed, this process (release of an adequate

project, followed by recruitment of project participants) is

the start of the cycle described in Figure 1, and reinforces

one of the central principles of successful Open Source

projects: ‘Show me the code’. In other words, starting an

Open Source project with an idea rather than working

(albeit imperfect) code is likely to fail.

An implicit assumption is that all Open Source

developers are not paid for their work, which is not

completely true. Some Linux kernel developers are paid

by GNU/Linux distribution companies such as Red Hat.

Apache web server developers are paid by major users of

the program and by companies, such as IBM, who build

enterprise web server software suites round the Open

Source core. If hydroinformatics software companies can

be persuaded of the benefits of Open Source collaboration

on certain types of software (in particular frameworks, as

discussed below) then funded developer time could be

applied to such work.

Academic researchers should find the opportunity to

have their work adopted more widely and more rapidly

enticing, with widespread use enhancing their status in the

academic world. The authors also feel that research

funding agencies should consider whether they could

obtain better value for money by encouraging researchers

to open-source software produced in the course of funded

work.

Software frameworks

A fourth-generation hydrological modelling tool is

one that is usable by a domain expert with little or no

knowledge of how the software is constructed or functions

224 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

internally (Abbott 1991). We believe that the fifth

generation, whatever its other attributes, will only arrive

with the ubiquitous acceptance of the component model

of software construction, and hence flexible integrated

modelling and decision making tools. These are the multi-

method, multi-model systems foreseen by Cunge & Erlich

(1999). It should be noted that the model integration

projects typical of attempts to create more integrated

modelling environments (for example ten Cate et al. (1998)

and Tomicic & Yde (1998)), while important in the short

term, do not fit in this category, since the integration is

specific to a given set of models. Khatibi et al. (2001)

envisage modular, ‘plug and play’ systems, based around

an open architecture, for use in flood forecasting and

warning. Schellnhuber & Hulme (2001) talk extensively of

model integration on a grand scale for the assessment of

climate change impact. For such systems to become a

reality, we need a universal modelling infrastructure,

which requires some level of agreement on that

infrastructure across the industry.

To design and implement a framework of sufficient

technical flexibility to allow us to move towards the fifth

generation of hydroinformatics tools is a formidable task

in itself for a single organisation. To achieve the adoption

of that framework as a de facto standard is a near

impossibility, particularly since all players other than the

originator of the framework will view the motives of the

originator with a healthy scepticism. While Microsoft can

overcome this by the abuse of its market share (Jackson

1999), no hydroinformatics software supplier is in such an

enviable position. One possible solution to this problem is

in the de jure approach to standardisation, in which all

of the (major) players conduct a design by committee

exercise to create a standard to which they are then

expected to adhere. In many of these cases, the result is a

standard with which all players are equally dissatisfied,

and as a result equally unlikely to make much use of. If

they do, then there will tend to be multiple competing

implementations, which interpret the standard slightly

differently (Spangler 2001).

In this area, we would be wise to look to the example

of the Internet Engineering Task Force (IETF), the stand-

ardisation body of the Internet. This organisation con-

ducts its work through mailing lists and meets only three

times a year. It is open to anyone to join the lists or attend

the meetings, and the only barrier to participation in the

full process is that you must demonstrate that you under-

stand what you are talking about, and must not have a

hidden agenda (O’Reilly 1998). Yet this seemingly

haphazard, almost organic entity, succeeds in maintaining

and advancing the interoperability standards (TCP/IP,

HTTP, the email transmission format RFC 822, and many,

many more) without which the Internet would never have

happened or would have splintered into commercially

controlled fragments years ago. The principal rule for

proposing a new standard to the IETF is that you must

have running code—a standard is useless without a refer-

ence implementation, and a reference implementation

must be open to be useful. The mailing list discussions can

then refine both the standard and the reference imple-

mentation until the consensus is that the former is correct,

and the latter is an accurate implementation of it. At

the end of this process there exists a fully working

implementation of the standard, which can be used by

anyone, at least in prototyping work (since, depending on

the license, it may not be possible to use the reference

standard in proprietary software).

The availability of full source code to the framework,

even if initiated by a company, can act as a reassurance

to competitors that the company, once it achieves wide-

spread adoption of the framework cannot begin to

abuse that adoption by exacting high fees or simply

by abandoning the development of the foundations of

another’s product.

THE SCIENCE CASE FOR OPEN SOURCE

The technical merits of Open Source discussed above are

increasingly well understood and accepted. Another

important issue, not peculiar to the field of hydroinfor-

matics, but certainly not common in the current range

of Open Source projects, is how the Open Source

development method integrates with the scientific

method. The processes involved in Open Source software

development and in the scientific process are closely

related—unsurprisingly, since the Open Source method

225 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

grew out of the early computer science community, which

valued the open exchange of information as highly as any

scientific field. In this section we look at this relationship

and consider how it can be used to advantage, consider

how this may be of advantage to the field, and examine

some problems which may arise at the interface between

software and science development.

Parallels between Open Source and science

The principles by which Open Source development works,

and the ethical viewpoint of the FSF, are often described

as being communist in nature. Himanen (2001), however,

points out that communism is a centralised (statist) model,

which the free software community dislikes—the level

of anti-censorship feeling on such hacker hangouts as

Slashdot (http://www.slashdot.org/) makes this clear. In

fact, free software is no more communist than academic

research. It is a model of sharing based on the belief that

this sharing is in everyone’s best interest, just as the

scientific publishing model developed precisely because it

maximises the efficiency of scientific development. It has

been observed (Raymond 1999) that most Open Source

projects start when a single developer decides to start

working on a problem that they regard as interesting, and

grow as more developers who share that interest begin to

collaborate. In choosing to work on Open Source at all,

these developers are seeking peer recognition—the vast

majority have day jobs and thus do not develop Open

Source software for survival reasons. Raymond draws a

parallel between the world of Open Source and the

anthropological idea of a gift culture, where the basics are

taken care of and social status is gained by giving things

away, rather than by accumulating. In a similar fashion,

most developers of scientific information (such as many of

the readers of this journal) work on problems they find

interesting and are driven to publish their research in

order to gain recognition for the quality of the information

they are producing. As with developers of Open Source

software, academics operate to a great extent within a gift

culture.

Open Source software development and academia

essentially share a common model, that of ‘an open and

self-correcting process’ or, in more detail (Himanen 2001,

p. 68):

‘The scientific ethic entails a model in which theories are
developed collectively and their flaws are perceived and
gradually removed by means of criticism provided by the entire
scientific community.’

In addition, along with rights come obligations, and in the

case of science, as in that of Open Source software, the

right to use, criticise and develop a solution (theory or

program) comes with two (Himanen 2001, p. 69):

‘. . . the sources must always be mentioned (plagiarism is
ethically abhorrent), and the new Solution must not be kept
secret but must be published again for the benefit of the
scientific community.’

When looked at in this light it is no longer so surprising

that the Open Source development model has proved to

be so successful at creating software of high quality—the

model on which this development works is a tried and

tested one. In addition, it can be argued that (in terms of

the quality of software produced and the rate of develop-

ment and integration of new ideas) closed source software

development must be expected to be less efficient,

since this self-correcting cycle of study, development and

publication is broken.

Quality control

It is not enough, however, to simply create some software,

or a scientific theory, and publicise it to gain the social

status that is being sought; some form of quality control is

required. Without it there would be no way to reason

about the validity of any theory or piece of software

without extensive testing. Both Open Source and

academia have an effective quality control mechanism and

here the similarities between the two become even more

striking.

The process of publishing the results of academic

work in peer-reviewed journals is a primary element of the

academic quality control mechanism. The reviewers will

decide if a given paper is relevant to the journal’s reader-

ship, and if its quality is sufficient for publication. If the

latter is not true they may decide to reject it or to require

modifications to be made before further consideration is

226 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

given. The readers of the journal can then expect a

minimum quality level in all the papers published in that

journal. The status of a particular journal is largely a

function of how well the community at large thinks that

the reviewers do their job. If a journal loses status, then

the reviewers may be replaced or competitors to the

journal may emerge—either way, the community ensures

the continued relevance and quality of published work.

Likewise with Open Source, there is an ongoing

process of review. The originators of a project are the

reviewers at the outset, and in most cases retain that

position for as long as they maintain an interest in the

project. In the interests of the community it is expected

that if a project leadership loses interest they should pass it

on—if a project seems to have been abandoned, a new

leadership may emerge, though they should first try to

obtain the support of the old as a matter of etiquette. The

project leaders have control over what changes are made

to the main source code repository. In general, newcomers

to the project will send patches for changes they make

to the project leaders. The leaders may then decide to

incorporate those changes or not. As the leaders gain

confidence in the quality of the contributions made by a

particular developer they may allow them to commit

changes directly to the repository, which makes the

process smoother.

In the case that a significant number of potential

contributors find that the leaders of a project are not

interested in the work they are doing, they may decide to

abandon the attempt to get it included in the official

project. This is the situation in which forking occurs.

Forking means that, from the point at which the decision

to form a fork is made, two separate sets of source are

kept, one by the original team and one by the new. There is

then a level of competition between the two branches of

the project. Tradition will tend to favour the original,

unless the forked variant offers something significant that

the original does not, in which case developers and users

may switch. Before they do, however the new team will

generally have to display competence and commitment to

the project, and show that their blocked contributions

are indeed valuable. Note that the Open Source licenses

generally allow forking, but that it happens very rarely

since the project leaders are unlikely to persistently reject

high quality contributions, and most contributors would

rather spend their time making useful contributions to the

original project than trying to wrest control of the project

from the incumbent leadership.

Benefits of Open Source in a scientific field

Schmidt & Porter (2001) suggest that Open Source can be

effective within communities with unmet software needs,

citing science as one such area. Their argument is that the

market represented by scientists is not large enough for

the software industry to be interested in, which is clearly

true in general, so scientists have a very good reason to

produce Open Source software if they do not want to leave

research and start a specialist software company. We

would add to this the observation that the vast majority of

all the scientific development work undertaken in hydro-

informatics takes a long time to filter through into general

practice, if it ever does so at all. This suggests that, even

having, as we do, our own software industry, we are

inefficient at utilising the results of scientific research.

Two reasons for this are that the software produced

by research groups is, in general, closed source and

standalone, and that it is unable to integrate with the

systems in general use in the industry. The barriers to entry

in the software market are high, so much of this software

never gets past the stage of being experimental, even if

binaries are distributed at no cost.

In addition to this issue of the transfer of science from

research into practice, releasing the software produced in

the process of scientific research as binaries only interferes

with the open scientific method and stifles development.

Much work in the fields of hydrology and hydraulics, and

thus work that is fundamental to the success of hydro-

informatics, is in the development of new and (it is hoped)

improved models of the processes of interest. These

models are generally implemented as computer software.

If, as is often the case, models are the result and subject of

ongoing scientific investigation, then in theory it would be

possible for multiple developers to implement that model

from the scientific literature alone. Indeed, for such

models to be properly peer reviewed (for the science to be

validated by independent verification of the results) then

227 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

independent researchers must either have access to the

code used in the original research, or they must

re-implement it. The latter option is a waste of resources.

The former can be partially achieved by giving a closed

source version of the implementation freely to researchers

while charging for commercial use—this free access is ‘free

as in beer’ and as such might include the source code

under a non-disclosure agreement. It must be understood

that releasing source under a non-disclosure agreement is

not Open Source, since it is fundamental to Open Source

that anyone is allowed to make and distribute modifi-

cations. This limits the effectiveness of the scientific

method, as modifications cannot be made, released and

further tested without generating increasingly complex

web of agreements and cross-licenses.

One possible solution to this problem is to release

such implementations as Open Source. It is recognised

that researchers who hope to capitalise on any potential

future success of their model may be reluctant to do this,

since the assumption would be that commercial users are

unlikely to pay for software they can obtain at no cost. We

hope the arguments presented below and in the references

about business aspects of Open Source may convince

some model developers otherwise. Although in an ideal

world it would be possible to persuade some companies to

spend the money they would otherwise have spent on

buying software licenses on research without placing

restrictions on the results of that research, realistically this

is unlikely to happen. A lot of research culminates in

negative rather than positive results, and industrial

sponsorship of research tends to focus on areas with a low

risk of failure and a direct industrial application, rather

than blue-sky investigations, so its application is

restricted. On the other hand, if companies and agencies

could be persuaded to fund and participate in academic

projects producing Open Source software, the openness of

the process may generate significant improvements in the

closeness of interaction between funder and fundee.

Open Source knowledge encapsulation

So, Open Source has the potential to accelerate the

pace of scientific development by opening the related

implementations of the science (the software source

code). There is a problem to be overcome, however. The

unmodified Open Source approach to model implemen-

tation development tends to enhance the peer review of

the software engineering in the implementation, but

could bypass the scientific peer review. Acceptance of

uncontrolled code (by which we mean code implementing

changes to the encapsulated science, without associated

publication and scientific acceptance) into the imple-

mentation will render the implementation scientifically

dubious and limit the effectiveness of the scientific process

as much as a closed source model release. Note that,

depending on the vigilance of the project leaders and the

scientific understanding of the contributors, this may not

be an actual problem. However, the software so produced

will not be used if it is even a potential or perceived

problem.

There is perhaps a deeper problem here in the use of

software implementations of models described in peer-

reviewed academic journals. Without access to the source

code of such implementations, that they are faithful to the

model must be taken on trust. We do not wish to challenge

the integrity of purveyors of closed source model imple-

mentations; rather merely to point out that while the bugs

that tend to surface in software which is not a model

implementation may affect the reliability or adherence to a

particular standard of that software, those in implemen-

tations of models may affect the very validity of that

implementation. Both of these types of bugs can be more

effectively found and eliminated in Open Source software,

but in the latter case weakly controlled changes are

problematic.

This is a matter of quality control. It is an important

issue—an obstacle even—in the adoption of Open Source in

this area, but it is not insurmountable. The community

must develop a means to certify modifications and cross-

reference them to the appropriate literature. Open Source

projects already limit contributors on the basis of the

perceived quality of the software modifications they

supply. Here we could limit it to those whose science is

trusted or, better, to have a core team of scientifically

trusted individuals vet modifications to the code before it

is moved into the production version. The technology to

achieve this is at least nearly available in source code

228 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

versioning systems such as the Concurrent Versions

System (CVS), but an effective implementation may

require the creation of an open source science portal

to facilitate this quality control process, along the lines

of SourceForge (http://www.sourceforge.org/) but more

targeted.

THE BUSINESS CASE FOR OPEN SOURCE

The current model

It has long been the case that the most profitable part of a

computing business may not be its most visible. O’Reilly

(1998) notes that Digital Equipment Corporation earned

more of their $15 billion per year revenue from support

and services than from selling computers. With the rise to

power of Microsoft, we have perhaps lost sight of this, and

got used to the idea that the only way to make money from

software is by selling it. Indeed, we also forget that by far

the majority of software actually written is for use

in-house and never sold to anyone, for example in the

form of custom business support systems or in embedded

controllers for products. When we buy a washing

machine, we do not consider it as an IT purchasing

decision! Before the rise of the desktop computer, even

software that was neither supplied with hardware nor

written in-house was generally not bought outright, but

came as part of a service agreement with the supplying

company in much the same way as hardware.

VisiCorp with its VisiCalc spreadsheet for the Apple

II, then Lotus with 123 for the IBM PC, then Microsoft

with MSDOS, Windows and a host of ‘applications’

created the shrinkwrapped software business from

nothing. That it is now a multi-billion dollar industry does

nothing to alter the fact that selling software is not the

same as selling, for example, a wardrobe or a car. The costs

of software production are almost entirely in its ongoing

development, not its reproduction. While boxed software

incurs some cost in the manufacture of packaging, hard-

copy documentation and the delivery medium containing

the software itself (such as a CD-ROM), these costs are

marginal in comparison with maintenance costs, and with

distribution methods based on the global Internet the real

cost of obtaining a copy of a piece of software tends to

zero. At the same time, a company selling packaged soft-

ware usually generates its entire income from the sale

price of the software package. It is difficult to imagine a

business model based on a purchase time charge for soft-

ware (formerly known as ‘shrinkwrapped’ software, a term

that has lost its currency with Internet distribution) that

can be sustained without relying on either a constantly

expanding user base, or regular sales of upgrades to nearly

all current users. The former is clearly limited—the number

of new users buying a piece of software will become fewer

over time. The latter can be achieved either by persuading

the users to upgrade, or forcing them to. This lack of

sustainability is almost certainly why Microsoft are push-

ing towards the ‘software as service’ model (Microsoft

2000, 2001) in which the user pays an annual or per-use

fee, rather than a one-off charge.

In hydroinformatics, this problem is not yet biting. In

the case of software not written for sale—and a large

portion of hydroinformatics software, as experimental

installations testing developing ideas, falls into this

category—the development is funded by a particular

project grant or sponsor, and since the software is the

‘apparatus’ for the experiment it is dismantled after use

and incurs no ongoing support costs. With software

written for sale, such as catchment modelling systems, the

pace of development—to some extent in the encapsulated

science, but mostly in usability and integration—has been

such to date that the users are quite willing to pay the

upgrade costs to obtain the features in the newest versions.

We might assume, however, that the cracks now showing

in the business model of software funded by sale value

(one-off charges for boxed products) in the general com-

puting world will show too in hydroinformatics in time, if

we do not take evasive action.

Another problem with the closed source model of

software production is that, although competition (where

it exists) encourages development, it really only encour-

ages gradual change. Revolutionary ideas tend not to

emerge from the established players, since their

market value is hard to perceive. Price (2000) states that

‘commercial software developers will only develop what

their customers want.’ This statement, apparently made

229 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

in support of the closed source approach to software

production, has at least two hidden assumptions, and in

our economic analyses as much as in our modelling we

should be careful to make such assumptions explicit.

These are that

• what the customer wants is what the customer

needs,

and in the longer term that

• the customer has the vision to drive the

development of the next generation of software.

In other words, that providing what our customers ask for

will lead us along the fastest, or at least a sufficiently fast,

development path. These assumptions are then refuted in

the same paragraph with the statement, ‘Interestingly, as

yet, the (commercial) [parenthesis in original] demand for

properly integrated modelling of collection-treatment-

river impact is still muted.’ This is despite the fact that the

belief that such integrated modelling will be essential to

the effective management of water resources is almost

universal in the academic community and among the

research-led software houses and consultancies. This

statement, then, encapsulates a fundamental problem with

the commercial closed source model of development:

competition on this model (if there is sufficient compe-

tition in the first place) will lead to relatively slow

improvement in the available tools, since this improve-

ment is driven by those who see the present tools and

project improvements, rather than seeing the leading edge

of technology and imagining what is possible. While

competition in the software field encourages innovation,

it does so only as a side effect of the fight to remain

profitable.

Alternative economic structures

The relevance of this to Open Source is that, once we have

abandoned our preconceptions about how money is made

from software, the fact that the source code is freely

distributable (and hence it is nearly impossible to make

money by selling software as such) is rendered less of an

obstacle to the commercial exploitation of the model. The

recent collapse of a number of companies attempting to

commercialise Open Source has led some commentators

to assert that the model is failing. This is a rather naive

argument, since the pain felt in the entire IT sector

recently has been considerable and Open Source

companies are far from unique in their suffering—witness

the number of commercial ‘dot-bombs’ over the last two

years, which were also largely the victims of a flawed

business model.

Raymond (1999) includes a study of the economics of

Open Source software entitled ‘The Magic Cauldron’.

Raymond is a free marketeer, and presents his arguments

purely from the point of view of economic benefits. It has

been explained above that the current economic model of

software sale value is unsustainable, and with Open

Source the social contract that enables distributed devel-

opment and generates the key Open Source benefits

essentially makes it impossible to make money from direct

sales of software. Raymond argues that we can look at two

basic models for a solution: use value funding, and indirect

sale value funding. Both of these can work with Open

Source, and perceived problems of funding become less

serious in this light.

These two approaches are suited to different types of

software. The first, use value funding, is demonstrated by

the Apache project, discussed above, and partially by

GNU/Linux itself. A lot of funding for development on

these projects comes from companies who use them, and

essentially share the cost of development such that, for a

small investment, each company receives a large return. In

addition, the investment by these companies in, for

example, Apache is protected: Apache cannot be made

closed-source, and its continued availability is not con-

ditional on the commercial success of a single company or

the continued involvement of the current primary devel-

opers (or, indeed, the commercial success of the software

itself—a company is unlikely to continue development on a

loss-making piece of software). These two aspects are

referred to by Raymond (1999) as cost-sharing and risk-

spreading. In the case of Apache, one of the organisations

committing resources (programmer hours) to the project

is IBM, which suggests that the financial case for col-

laborating rather than developing yet another competing

web server, was very good indeed. Of course, IBM has

230 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

already been bitten once (losing out to Microsoft at the

start of the PC revolution) in failing to move with the

times, and is perhaps more keen than before to keep

abreast of the changing nature of the computing business.

For hydroinformatics, this approach may well be

effective for certain classes of software. In particular, the

frameworks or middleware discussed above that will be

critical to the development of truly integrated and flexible

hydroinformatics tools are candidates for this kind of cost

sharing, risk spreading funding model. As our understand-

ing of distributed decision support systems improves and

they get to the stage where they can be constructed from

ready-made components, the integration framework for

these components might be another. Indeed, any company

whose primary business is in consultancy rather than

software engineering would be well advised to consider

this option.

The indirect sale value model of funding is that used

by many Open Source companies. Among the most visible

of these are the Linux distribution companies such as Red

Hat and SuSe. Both take freely available source code,

build complete bootable installation CD-ROMs of GNU/

Linux and sell them. In many cases, the complete contents

of the CDs are also available for free download, but this

business model still works, for a number of reasons. In

part, it is because many home computer users do not have

the network bandwidth to download a complete GNU/

Linux distribution, but a major reason is that what

these people are buying is the brand, with the implied

warranties, time-limited installation support and further

support deals available at extra cost. Thus while the same

software is available for free, people will choose to pay for

it for the sake of ease of use and peace of mind. There are

a number of other variations on this model, many of which

are catalogued in Raymond (1999).

The various indirect sale value approaches to the

funding of software mostly work by using Open Source

software to generate a market for something else, and

there is clearly potential for this to work in the hydroinfor-

matics field. The most obvious case is to make money from

consultancy—while the so-called ‘fourth generation’ of

catchment modelling tools do not demand software

engineering skill from their users, their effective use cer-

tainly still demands an understanding of the encapsulated

science, and that understanding is a valuable commodity

in its own right. Further possibilities are to sell commercial

extensions to the software (a careful choice of licenses is

required to enable this, and it should be noted that most

Open Source licenses do not allow modified versions to be

closed), hard copy documentation or support services for

the software (similar to the consultancy option).

A slight variant of the Red Hat model described

above is a potentially valuable one in the case of science-

encapsulating software. Earlier the issue of how to

guarantee that a piece of Open Source software is an

accurate implementation of the science was discussed as

a problem to be overcome in the application of Open

Source to scientific fields. This could be turned to a

business advantage. An Open Source project is, by

default, lead by its originators. In the world of hydro-

informatics this means projects would generally be led by

the same people who at present author and publish

software. Thus, using the quality control procedures

outlined above, these same people could maintain a

reliable (scientifically peer reviewed) version of a model.

Ongoing, unreviewed investigations can take place away

from the production code, and only be wrapped in as the

science is accepted. The management of this reviewed

code base is a value adding operation, and where

purchasers of software currently buy the software itself,

in this Open Source friendly model, they could buy the a

guarantee of reputability of the software. Digital signa-

tures and certificates technology (Shaw 1999), now quite

advanced and recently made legally binding in the UK

(HMSO 2000), may prove useful here.

These two models are not mutually exclusive, and the

two can be used both within one company and even with

the same software. An example of this would be a

company that participates in a cost sharing exercise in the

development of a framework, while simultaneously pro-

viding a custom modifications service to companies with-

out the internal expertise to do so, and selling closed

source plug-ins to work with the framework. They might

in addition provide CD-ROMs of the framework and

standard modules with a simplified installation procedure,

and hard copy manuals (although FSF (2001b) argues that

Open Source software should be accompanied by open

documentation), also at extra cost.

231 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

In summary, although the social contract form of the

licenses under which Open Source software is released

inhibit the potential for generating revenue through direct

sale value, this model is flawed in any case. Other models,

which the software industry is exploring generally, can

and have been successfully applied to Open Source

projects, and seem to have potential as funding models for

Open Source development of hydroinformatics software.

Even established software companies in the hydroinfor-

matics field should examine these ideas closely since, as

demonstrated by the explosive growth of the Web, the

Open Source development of substantial quantities of

software can have the result of encouraging growth in a

field and need not be a financially damaging proposal.

THE END USER CASE FOR OPEN SOURCE

The discussion so far has centred on the benefits of Open

Source to the producers of hydroinformatics software.

Although the potential for producing technically better

software is of direct relevance to the end user, there are

additional benefits too. The black-and-white distinction

between producer and end user in closed source is trans-

formed by Open Source into a fuzzy one, through user

access to full source code and a direct channel to the

producers, allowing users to improve the software, fix bugs

and roll the changes back into the official source code

repository. It is safe to assume, however, that as hydro-

informatics matures a larger proportion of users will not

be equipped to modify the source code themselves. For

this group, the benefits of open source are mostly second-

ary, but still significant. The principal specific benefits to

several end user groups are itemised in Table 1. In

addition to these, there are several more general benefits

which apply equally to most end users.

• When software development is no longer funded by

the sale value of new versions of a program, product

developments are driven more directly by demand,

not marketing.

• Lower barriers to entry in the software market allow

new, innovative products to compete on more equal

terms with those better established.

• New modelling developments from research could

be more rapidly added to the toolkit of the

hydroinformatics software user.

• Users are better protected from orphaning, where a

software supplier ceases development of a package

which a user is dependent on.

CONCLUSIONS

In the preceding sections of this paper we have outlined

the principles and practice of Open Source and Free

Software. We have observed that, while the ethical code

behind the Free Software movement may suit many,

particularly those for whom writing code is a secondary

employment or hobby, rather than a primary source of

income, not everyone will agree with it. On the other

hand, the practical benefits of the Open Source approach,

using the same licensing controls as Free Software, have

been clearly demonstrated in a number of projects, and it

is our belief that the Open Source development model has

a lot to offer to hydroinformatics. While it is recognised

that not all hydroinformatics software can be open

sourced, as current business models would not provide

financially for the development of that software, certain

aspects of our work, notably the creation of software

frameworks, seem to be prime candidates for experimental

‘open sourcing’.

We therefore call on the hydroinformatics community

to experiment with Open Source models of software pro-

duction where possible. The economic models presented

will not be applicable in all cases but there are many areas

of hydroinformatics where these models could prove

beneficial to the originators of the software and of

enormous benefit to the community, the field and the users

of our products. Software suppliers should consider

whether releasing some of their code as Open Source

and encouraging competitors to share in the costs, risks

and rewards of its development would not in the long

run be financially beneficial. Software purchasers could

push suppliers in this direction in order to reap the

benefits of openness discussed above. We believe that

Open Source, judiciously applied, could help us fulfil

232 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

our future human responsibilities (Abbott 1998), as

well as generating previously untapped business

opportunities.

At the same time, we must be careful to remember that

Open Source development does not guarantee good soft-

ware engineering. In general, successful Open Source

projects start life as a well designed prototype written by

one programmer. The architecture of such project seeds is

critical to the success of the project—note that Open

Source development requires good modularity in order to

evade the problems predicted by Brooks’ Law. We must

also consider which aspects of hydroinformatics software

are best suited to Open Source, and choose carefully those

where the process adds value for, as the dot com failures of

recent times indicate, it is hard to build a sustainable

business model on its removal.

Since we hope this paper will trigger some debate, and

we are sure there will be those who disagree strongly with

our point of view, we feel that there would be great benefit

in using some of the Open Source Internet infrastructure

to facilitate a discussion. At http://www.cen.bris.ac.uk/

civil/research/wemrc/opensource/ we have set up a web

forum. You are all encouraged to join in.

ACKNOWLEDGEMENTS

The work leading to this paper was funded by EPSRC

studentship number 98314947. We would also like to

thank Jim Hall of the University of Bristol for taking the

time to read and comment on a draft of the paper.

Table 1 | Benefits of software produced on the open source model to specific end user groups in hydroinformatics

End user type Benefits

Students v Availability of source code allows accelerated learning and experimentation.

v Ability to work with same software used in production work.

Academics v Software can be better integrated into the scientific method, in particular the process of academic peer
review.

v Dissemination of research results enhanced.

v Easier to build on the work of others without need to reinvent the wheel.

v Easier to have research products adopted operationally by consultants, agencies and utilities.

Consultants v Easier to adopt new academic developments.

v Changes required for specific projects more readily achieved.

v Sharing the costs and risks of software development allows consultants to concentrate on core buisness.

v No need to rely on software (and related services) supplied by a direct competitor.

Agencies and utilities v Operational systems can better evolve to meet changing requirements.

v Academic developments can be more readily absorbed, leading to better performance.

Software suppliers v Open sourcing certain types of software could lead to more dynamic, competitive, and altogether larger
market for hydroinformatics products (especially services, including custom integration of open and closed
source parts).

233 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

REFERENCES

Abbott, M. B. 1991 Hydroinformatics: Information Technology in the
aquatic environment. Avebury Technical, Aldershot, UK.

Abbott, M. B. 1998 Future business opportunities: future human
responsibilities. In: Hydroinformatics ’98 (ed. Babovic, V. and
Larsen, L. C.), pp. 1171–1175. Balkema, Rotterdam.

Abbott, M. B. & Jonoski, A. 1998 Promoting collaborative
decision-making through electronic networking. In:
Hydroinformatics ’98 (ed. Babovic, V. and Larsen, L. C.),
pp. 911–918. Balkema, Rotterdam.

Asklund, A. & Bendix, L. 2001 Configuration management for open
source software. In: 1st Workshop on Open Source Software,
ICSE 2001. http://opensource.ucc.ie/icse2001/
asklundbendix.pdf (accessed July 2001).

Babovic, V. 2000 Web clips for hydroinformatics.
J. Hydroinformatics 2(4).

Brooks, F. 1995 The Mythical Man-month: Essays on Software
Engineering, Anniversary Edition. Addison-Wesley, Reading,
MA.

Cunge, J. A. and Erlich, M. 1999 Hydroinformatics in 1999: what is
to be done? J. Hydroinformatics 1(1), 21–31.

Dafermos, G. N. 2001 Management and virtual decentralised
networks: the Linux project. First Monday 6(11).
http://www.firstmonday.dk/issues/issue6–11/dafermos/
(accessed November 2001).

Dyson, E. 1998 Open mind, open source. In: Release 1.0 (ed. Dyson,
E.), pp. EDventure Holdings Inc., New York pp 1–2.

FSF 1991 GNU General Public License. Free Software Foundation,
Boston, MA. http://www.fsf.org/licenses/gpl.html (accessed
July 2001).

FSF 2001a The Free Software Definition. Free Software Foundation,
Boston, MA. http://www.fsf.org/philosophy/free-sw.html
(accessed July 2001).

FSF 2001b Free Software and Free Manuals. Free Software
Foundation, Boston, MA.
http://www.fsf.org/philosophy/free-doc.html (accessed
November 2001).

Himanen, P. 2001 The Hacker Ethic and the Spirit of the
Information Age. Secker & Warburg, London.

HMSO 2000 Electronic Communications Act 2000.
http://www.legislation.hmso.gov.uk/acts/acts2000/
20000007.htm (accessed August 2001).

Jackson, T. P. 1999 Findings of Fact, United States of America v.
Microsoft Corporation, Civil Action Nos. 98-1232 and
98-1233, December. http://usvms.gpo.gov/findings–index.html
(accessed November 2001).

Khatibi, R., Haywood, J., Akhondi-Asl, A., Whitlow, C., Wade, P. &
Harrison, T. 2001 Open architecture in flood forecasting
systems. In: River Basin Management (ed. Falconer, R. A. &
Blain, W. R.), pp. 149–160. WIT Press, Southampton.

Microsoft 2000 Microsoft announces new subscription offering for
‘Office 10’. http://www.microsoft.com/PressPass (accessed
August 2001).

Microsoft 2001 Microsoft simplifies, enhances volume licensing
programs. http://www.microsoft.com/PressPass (accessed
August 2001).

Netcraft 2001 Netcraft web server survey, July.
http://www.netcraft.com/survey/ (accessed July 2001).

OSI 2001 The Open Source definition, version 1.9.
http://www.opensource.org/docs/definition.html (accessed
November 2001).

O’Reilly, T. 1998 The open-source revolution. In: Release 1.0 (ed.
Dyson, E.), p. 24. EDventure Holdings Inc., New York.

Price, R. K. 2000 Hydroinformatics and urban drainage.
J. Hydroinformatics 2(2), April.

Raymond, E. S. 1999 The Cathedral and the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary.
O’Reilly & Associates, Sebastopol, CA.
http://www.oreilly.com/catalog/cathbazpaper/ (accessed July
2001).

Schellnhuber, J. & Hulme, M. 2001 The Tyndall Centre Research
Strategy. The Tyndall Centre for Climate Change Research.
October. http://www.tyndall.ac.uk/research/strategy.shtml
(accessed November 2001).

Schmidt, D. C. & Porter, A. 2001 Leveraging open-source
communities to improve the quality & performance of
open-source software. In: 1st Workshop on Open Source
Software, ICSE 2001. http://opensource.ucc.ie/icse2001/
schmidt.pdf (accessed July 2001).

Shaw, S. 1999 Overview of watermarks, fingerprints, and digital
signatures. JTAP.
http://www.jtap.ac.uk/reports/htm/jtap-034.html (accessed
August 2001).

Spangler, A. 2001 Open source development: a suitable method to
introduce a standardized communication protocol? In:
1st Workshop on Open Source Software, ICSE 2001.
http://opensource.ucc.ie/icse2001/spangler.pdf (accessed July
2001).

Stallman, R. 1998 The GNU project. http://www.fsf.org/gnu/
the-gnu-project.html (accessed July 2001).

ten Cate, H. H., Salden, R., Lin, H. X. & Mynett, A. E. 1998 A case
study on integrating software packages. In: Hydroinformatics
’98 (ed. Babovic, V. and Larsen, L. C.), pp. 457–464. Balkema,
Rotterdam.

Tomicic, B. & Yde, L. 1998 Integrated software for an integrated
management and planning of urban drainage and wastewater
systems. In: Hydroinformatics ’98 (ed. Babovic, V. & Larsen,
L. C.), pp. 465–471. Balkema, Rotterdam.

Yan, H., Solomatine, D. P., Velickov, S. & Abbott, M. B. 1999

Distributed environmental impact assessment using Internet.
J. Hydroinformatics 1(1), July.

Yee, D. 1999 Development, ethical trading, and free software.
http://danny.oz.au/freedom/ip/aidfs.html (accessed August
2001).

234 Hamish Harvey and Dawai Han | The relevance of Open Source to hydroinformatics Journal of Hydroinformatics | 04.4 | 2002

