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ABSTRACT

A quasi-optimum irrigation season calendar based on economic profit maximization for sloping and

runoff-free furrows can be obtained by OPTIMEC (EConomic OPTIMization, in Spanish), a seasonal

furrow irrigation model based on the concept of comprehensive irrigation. The model features four

components: a soil moisture model, an irrigation hydraulic model, a crop yield model and an

economic optimization module. This module uses a Genetic Algorithm (GA), a heuristic technique

based on the laws of natural selection, to maximize farmer profit. The GA is a suitable technique to

solve the problem of profit maximization due to the difficulties inherent in traditional optimization

procedures, which require an explicit function relating flow rate, water depth and profit. For its

practical application the model has been implemented in a Visual Basic program. A real case is

analysed to compare the irrigation season scheduling using traditional criteria (event by event

scheduling) and optimization-based criteria.
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INTRODUCTION

Genetic algorithms (GA) are heuristic procedures used to

obtain the maximum or minimum of unconstrained func-

tions by utilizing random selection processes that simulate

natural reproduction operators: selection, crossover and

mutation. They are suitable techniques when traditional

optimization procedures (e.g. linear and nonlinear

programming) are difficult to apply or the very nature

of the objective function prevents their applicability

(Michalewicz 1994).

Economic competition amongst water users (farmers,

cities, industries and the natural environment) makes irri-

gation management and design of the utmost importance.

This importance is even greater in arid and semiarid

regions, especially for surface irrigation systems, as they

are one of the most water-demanding irrigation methods.

The maximum farmer profit for furrow irrigated crops

can be stated on the basis of furrow design variables or

management variables. Design variables are basically

related to the slope and length of furrows and the shape of

the cross section. Management variables include flow rate,

cut-off time and irrigation date. In cases where an en-

vironmentally efficient use of water resources is also

desired, the evaluation of water losses, deep percolation

and runoff volumes is required. In both cases, an explicit

relationship between the decision variables (design

and/or management variables) and crop yield is required

to estimate farmer profit. On the other hand, crop yield

depends on evapotranspiration, soil conditions and the

supplied quantity of water, making it increasingly more

difficult to find a function which simultaneously relates all

the variables involved. Different approaches to maximize

farmer profit can be found in the specialized literature

(Reddy & Clyma 1981; Holzapfel & Mariño 1987; Yitayew

et al. 1985; Ito et al. 1999, among others).

The proposed model is based on studies by Camacho

et al. (1999a) and Montesinos et al. (2001b) on sloping

and runoff-free furrow systems aimed at maximizing

farmer profit for the whole irrigation season according to

irrigation management. A soil moisture model, a hydraulic

irrigation model and a crop yield model are required to
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simulate each irrigation event. The events are defined by

irrigation date, inflow rate and cut-off time. By using a GA

and simulated results of irrigation events, the economic

optimization module obtains a quasi-optimal set of irri-

gation calendars that provides maximum farmer profit. GAs

have been previously applied to find the best combination of

management variables in furrow irrigation systems for sin-

gle events (Giménez 1996). Unlike traditional optimization

techniques, the nature of the GA allows for a separate esti-

mation of farmer profit and hydraulic variables. Thus, an

objective function simultaneously relating profit, water

depth and flow rate is not required. A field example is used

to illustrate model options and to compare the solution to

the scheduling obtained by traditional criteria.

METHODS

The proposed model can schedule the irrigation season

using standard criteria or an optimization based approach.

For both approaches, simulation of the irrigation event is

required. The main components of the model are briefly

described below (Figure 1).

Irrigation event simulation

Soil moisture model

The daily evolution of soil moisture is estimated using a

balance equation (Raghuwanshi 1994):

SMDj = SMDj − 1 + ETj + Pj − Ij − Rfj (1)

where SMD is the total moisture depletion in the root

zone, P represents the percolation, I is the irrigation, Rf is

the rainfall and ET is the actual evapotranspiration, which

is related to potential evapotranspiration values, ET0. ET0

is calculated by the Hargreaves equation (Hargreaves

et al. 1985) if no recorded data are available. All these

variables are in mm. Finally, j is a time index in days.

For single-event analysis, the irrigation dates are esti-

mated according to the management-allowed deficit,

MAD, which is defined as the total amount of water that

a crop can extract from the soil without lowering the

evapotranspiration rate. Thus, crop growing requires

additional water when the soil moisture deficit is equal to

or greater than MAD. MAD depends on the total available

soil moisture, the storage capacity of the root zone and the

wilting point, which is also related to the crop develop-

ment stage, the soil and the evaporation demand (Allen

et al. 1998).

Hydraulic furrow irrigation model

The sequence of distance–time pairs that define flow

advance along a furrow is calculated using the iterative

procedure proposed by Valiantzas (1997a,b), which is

based on the volume balance equation and the kinematic

wave model. The balance equation for a single furrow is

expressed as

Q0t = syA0x + szZ0x (2)

where Q0 is the inflow rate in m3/s, t is the time in s

measured from the onset of irrigation, A0 is the furrow

section at inlet in m2 calculated by the Manning equation,

Z0 is the area infiltrated at the inlet in m3/s estimated

by the Kostiakov equation, x is the advance distance in m

and sy and sz are the shape profile factor for surface

and subsurface flows, respectively. These dimension-

less factors are assumed constants in the traditional

models although they can vary in time. Their variation is

estimated by using the kinematic-wave model.

Finally, the cut-off time is estimated assuming

that recess (time required to reach every point along the

Figure 1 | Model chart.
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furrow and to infiltrate the required depth) does not occur

simultaneously along the furrow (Camacho et al. 1999b).

Performance parameters

The parameters considered to evaluate water use are as

follows (e.g. Burt et al. 1997): application efficiency, Ra,

defined as the fraction between net depth and total depth;

the percolation loss coefficient Cp, is the fraction between

the total applied volume and the percolated volume; the

runoff loss coefficient Cr is the fraction between the runoff

volume and the total applied volume. Finally, the distribu-

tion uniformity DU is the fraction between the minimum

infiltrated water depth and the mean infiltrated depth.

Crop production model

The following function has been used as a crop yield

estimator (Smith 1993):

ETMjj

ETjj
Y = YMAX 1 — kYjj 1 — (3)& /fi ^

4

jj =1
∏

where Y is the expected yield in kg/ha, YMAX is the

historical maximum yield in kg/ha, kyjj is the coefficient of

crop response at growing stage jj and ETjj/ETMjj is the

relation between the accumulated actual and maximum

evapotranspiration during growing stage jj.

Economic optimization

The aim of economic optimization is to maximize net

profit, NP, obtained after harvest once the irrigation sea-

son is over. Therefore:

(4)
ke

i=1
∑NP = YPC — (VwiPw +VriPr +VpiPp +MOi)

Maximize

where Y is the expected crop yield (Equation (3)), PC is the

crop sale price in /kg, Vw, Vr and Vp are the volumes in

m3/ha of applied water, runoff and percolation, respect-

ively, Pw, Pr and Pp are the costs in /m3 of water, runoff

collection and percolated water penalties, respectively,

MO is the labour cost associated with irrigation in /(ha

event), i is the irrigation number and ke is the total number

of irrigation events in the season.

To account for the effect of surplus soil water content

at the end of the irrigation season (the soil must be dry

enough to facilitate crop harvesting), Equation (4) has

been enlarged with an additional penalty term (Equation

(5)). This term is the product of K in /mm times ESMD

in mm, where ESMD is the excess of soil moisture deficit

over the minimum allowed value for soil moisture deficit

(a result obtained of the soil moisture model) and K, the

penalty cost:

(5)

ke

i=1
∑NP = YPC — (VwiPw +VriPr +VdiPd +MOi)

+ESMD ·K

Genetic algorithms

A GA is a search technique for optimal solutions

of unconstrained optimization problems by simulating

natural selection laws (Goldberg 1989). The search starts

from among an initial set of solutions which are randomly

generated (initial population). The fittest solutions are

then selected and modified. Any selected solution can

undergo two kinds of transformations: crossover and

mutation. Crossover creates new solutions by combining

parts from old solutions, while mutation alters a small part

of a solution. With efficient evolutionary procedures, the

best partial solutions easily pass from one generation to

the next. Just as in natural populations, the fittest indi-

viduals produce more offspring, spreading their genes over

the next generation.

The problem stated herein is to find the set of irri-

gation events during the season that provides maximum

farmer profit. A profit maximization approach based on

traditional optimization techniques (e.g. linear and non-

linear programming or methods based on gradient calcu-

lations) is not easy due to the difficulties in establishing a

continuous function which relates profit, water depth and

flow rate. This can be overcome using GAs, since they

work with discrete variable values that can be estimated

through independent simulation procedures. In this case
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the hydraulic variables are estimated by simulation and

then used to calculate the crop production which is the

variable required to estimate the net profit or objective

function. Although GAs are designed to solve discrete

problems, they can easily be applied to continuous

problems if the variable intervals are transformed into sets

of discrete values. Other disadvantages of traditional opti-

mization procedures include solution dependency on the

initial solution and difficulties with multiple optima occur-

rence. These problems are avoided by using a parallel

search process from a set of initial solutions which are

randomly distributed throughout the solution space. Al-

though the global optimum cannot be guaranteed, it will be

hopefully in the neighbourhood of the quasi-optimum ob-

tained. Finally, derivative calculation difficulties are also

avoided by using simple transition rules through iterations.

Each irrigation event is characterized by the values of

a discrete variable R and two continuous variables: Hr and

Q0, which are the required depth and the flow rate

involved in the hydraulic model calculations. R is a

random variable to control irrigation occurrence (R = 0 or

1). Commonly, the interval between irrigation events may

last from 7–20 days, depending on water supply or other

irrigation management circumstances. A weekly irrigation

interval has been considered to simplify the problem

(Montesinos et al. 2001a). Thus, combinations of feasible

variable values for each week constitute an artificial indi-

vidual or possible solution for Equation (5). For a w-week

irrigation season, every solution is defined by 3w variables.

Using binary coding to represent these variables, any

possible solution is a string of 1s and 0s with a length of

wkRkHkQ, where kR, kH and kQ are the number of bits that

identify R,Hr and Q0. The continuous variables are trans-

formed into discrete ones within the intervals defined by

their lower and upper bounds, [Hrmin, Hrmax] and [Q0min,

Q0max]. Hence, 2kH and 2kQ are the numbers of values that

represent continuous intervals and are related to the

desired accuracy (Wang 1991). Thus the solution searching

space has 2 wkRkHkQ points.

As an example, Figure 2 shows a trial irrigation

season. It represents a possible solution of a w-week

season, with w = 20 and kR = 1, kH = 4 and kQ = 3.

From a random initial population of N potential irri-

gation season (e.g using a uniform distribution U(0,1)

generator), the GA generates a set of N modified solutions

in each iteration. In general, N can vary between 20–1000,

according to the number of variables involved and their

accuracy (Montesinos et al. 1999).

For each solution, Ri = 1 indicates irrigation occur-

rence on the first day of week i. Irrigation event simulation

and soil moisture evolution for week i are required to

evaluate the objective function. When Ri = 0, no irri-

gation event simulation is required but the soil moisture

evolution is still needed to know soil conditions at the

beginning of the following week and keep the calculations

continuous throughout the season. Profit for each irri-

gation season is calculated by Equation (5) and is a

measure of the solution fitness.

In Equation (5), the values of K affect the algorithm

efficiency. According to Michalewicz (1994), when there is

a high probability of solutions being produced which

violate the constraints and inadequate penalty coefficients

are used, there is a risk of creating a GA that spends more

time evaluating illegal strings. When a legal solution is

found in such a case, it drives the others out, the popu-

lation is flooded with its offspring and better solutions are

not found. Hence a sensitivity analysis is required to

determine the appropriate value of penalty coefficients for

each particular problem (Montesinos et al. 1999).

Once solution fitness is calculated, the fittest solutions

are selected to make up a new population of solutions. The

selection operator used (Montesinos et al. 1999) ranks the

solution strings in increasing order according to their

fitness (Figure 3(a)). The least fit strings are then elimi-

nated and subsequently replaced by the duplicates of

the fittest solutions in order to maintain the population

size. The replacement order is shown in Figure 3(b). The

solutions of intermediate fitness remain in their initial

positions. Thus, the highest fitness solutions, their

duplicates and the intermediate ones make up the mating

Figure 2 | Trial w-week irrigation season.
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pool. They all exceed a certain fitness threshold

(Figure 3(b)). In accordance with their positions, every

solution but the first and the second is mated and

crossed with the next, with a crossover probability of 1

(Figure 3(c)). A one-point crossover scheme is used. As

is shown in the previous figure, the crossing point is

randomly chosen from among the parent strings and the

bits after this point are exchanged between them. In this

way, the features of the two best irrigation seasons are

saved in the next generation.

Figure 3 | Genetic operators. Boldface points out bits changed by crossover and mutation. Long- and short-dashed lines indicate worst solutions, dotted lines indicate intermediate

solutions and full lines indicate best solutions.
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These deterministic selection procedures encourage

solution pairs of similar fitness to be obtained. Thus, selec-

tion of the worst irrigation calendar and the excessive rep-

etition of the fittest is avoided while intermediate

schedulings that may be ameliorated in subsequent gener-

ations are maintained. The ranking of the survival strings

and their subsequent pairings helps to yield better offspring

by combining solutions according to their positions.

To fix the number of solution to be eliminated and

duplicated, a new variable, nl, associated with each string

is defined as follows:

nl = [Nsil] l = 1, . . ., N (6)

where [a] represents the rounded integer of a, N is the

population size and sil is a selection index per string. It is

only computed at the beginning of the process. This term is

based on the selection probability defined by Wang (1991).

We have decided to use the term selection index rather

than selection probability as this process operates in a

deterministic way.

The selection index of the lowest fitness solution, si1,

and that of the highest, sin, are

N

2 —c

N

c
sil = ; sin = (7)

where c is a parameter that ranges in (1.5,2). The selection

index for the remaining solutions, sil, are linearly interpo-

lated between si1 and sin. For any values of c, nl takes the

values 0, 1 and 2. When nl is equal to 0 (worst solutions),

the solution is eliminated. When it is equal to 1 the

solution remains (intermediate solutions), and when nl is

equal to 2 (best solutions), the string is duplicated.

The parameter c controls the percentage of individuals

eliminated or duplicated. A sensitivity analysis has

been performed to determine the optimal values of c

(Montesinos 1995). c values from 1.6–2 have been tested,

yielding percentages of eliminated strings from 8.3–25%.

The present GA does not show a considerable sensitivity

to c. It has been fixed at 1.8 as the highest profit irrigation

seasons obtained in the sensitivity analysis were for

values around 1.8. c = 1.8 means that the new population

to be crossed is made up of 18.8% duplicated solutions,

18.8% eliminated solutions and 62.45% intermediate

solutions.

The final stage of the GA is the mutation process,

which occurs with some specified mutation probability,

pm, for each bit of the solutions obtained by crossing. The

mutation operator changes the value of the selected bit to

the opposite value (i.e. 0 to 1 or 1 to 0). To avoid destroy-

ing too many ameliorated solutions, it normally takes

small values, between 0.001–0.01 (Goldberg 1989; Wang

1991; Liong et al. 1995). For a given value of pm, the mean

number of mutated bits in a population of N solutions is

wkRkHkQNpm. This average can be obtained using differ-

ent procedures (Montesinos et al. 1999). This number is

obtained by generating random numbers in the intervals [2

and N] and [1, wkRkHkQ] to choose the string and the

bit to be modified, respectively. This mutation scheme

maintains the best solution unaltered and also allows

at least one mutation to occur per selected solution

(Figure 3(d)).

The number of generations, G, to achieve populations

which are principally made up of good solutions is also

related to the solution string length and generally varies

between 50–500 generations. The best irrigation season is

stored in every iteration. Therefore, the final solution is

the highest profit irrigation season scheduling found

through successive iterations. While the nature of GAs

does not guarantee this solution to be the global optimum,

our experience has demonstrated that it will be in the

neighbourhood.

RESULTS

The theoretical concepts described above are imple-

mented in a Visual Basic 5.0 application, whose structure

is shown in Figure 4. The data are introduced through

different program screens or by the database file Irri-

gation.mdb, which is also the output file and can be read

by or exported to commercial database software.

Program description

OPTIMEC allows either the analysis of single irrigation

events or the scheduling of the whole irrigation season
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if the economic optimization module is applied. The

scheduling alternatives are:

– Standard scheduling or event by event scheduling.

(1) Irrigate at a certain flow rate and water depth, if

the soil moisture deficit equals or surpasses the

MAD. (2) Irrigate at a certain flow rate and water

depth if the soil water deficit equals or surpasses a

limit fixed by the model user. (3) Irrigate at a certain

flow rate and water depth during a fixed time

interval.

– Optimized scheduling. Irrigate randomly in weekly

intervals. Water depth and flow rate are transformed

into discrete random values chosen between certain

minimum and maximum bounds. A GA based

optimization procedure determines the optimum

weekly irrigation sequence.

Irrigation database file

Three types of data structures make up the Irrigation.mbd

file: tables (three input data tables for Crop, Soil and

Climate information and four result tables for Crop

Coefficients, Moisture Balance and Optimization

information); inquiries (the user enquires from one or

more tables according to set criteria about Irrigation

Scheduling, Advance and ET) and reports (to show data-

sets and permit the introduction or modification of values

for Advance/Infiltration, ETa/Etmax, Crop Coefficient

and Scheduling).

Real case

A real irrigation case is studied next in order to demon-

strate the applicability of OPTIMEC. The irrigated field is

located in Córdoba, southern Spain (38°N, 5°W, elevation:

110 m) in the middle of the Guadalquivir River Valley. It is

a typical Mediterranean location with erratic annual rain-

fall distribution and long dry summers. The input data are

the same as those involved in the models described above

(e.g. crop, ETo, furrow geometry and economic data). In

the present version, ETo values (recorded at the study

location or calculated separately) are entered in a simple

table (day-value in mm).

To schedule the irrigation season for the maize

field the following assumptions are considered: the soil

moisture deficit at sowing time was zero; the infiltration

rate and the geometry of furrow sections are constant in

time and space; furrows are uniform in slope and runoff

free; MO are 0.185 /ha per event and Pc is 0.15 /kg,

common values in the area. Two approaches can be

compared: a standard approach and a genetic algorithm

optimization based approach.

Standard scheduling

This option depends greatly upon the irrigation criterion

selected. The field will be irrigated when the soil moisture

deficit, SMD, is greater than the MAD. It is also assumed

that the expected deficit at the end of the irrigation season

is equal to or greater than half of the field capacity

moisture content to avoid harvesting problems (90 mm

according to the soil characteristics (Camacho et al.

1999b)). Following the second standard irrigation

criterion, it has been assumed that the required infiltrated

depth, Hr, is 0.9SMD and that the flow rate ranges from

1.5–2.5 l/s. Soil moisture is evaluated every day. The mean

values of the performance indexes Ra, Cr, Cp and DU are

displayed in Figure 5 simultaneously for the whole season

versus irrigation cost per hectare. Water cost has been

fixed at 0.006 /m3 (common price in the area) and no

runoff or percolation costs have been considered for the

present study.

Lower costs and higher values for the irrigation

performance indexes are achieved for an incoming flow

Figure 4 | OPTIMEC operation chart.
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rate of 2 l/s. The model allows schedules to be analysed for

a wide range of flow rate values and selects the flow rate

according to the highest application efficiency criterion.

The scheduling report for the inflow rate, Q0 = 2 l/s, is

shown in Table 1, where irrigation date, event number,

cutoff time, tco and soil moisture deficit the day prior to

irrigation SMDb are also given. At the end of the season

the crop yield was 10 215 kg/ha at 90 /ha with a profit of

1449 /ha.

Economic optimization of the irrigation season

GA optimization determines the quasi-optimal weekly

scheduling for the maize field described above while main-

taining the initial assumptions. The maize cycle lasts ap-

proximately 150 days and it has been grouped into 21

irrigation weeks. The variables involved are: R, Hr and Q0.

The last two variables are transformed into discrete vari-

ables. The intervals for Hr are [10 mm, 115 mm] and [0.5 l/

s, 2.6 l/s] for Q0. The bounds are established based on

practical values and the upper bound for Q0 is fixed ac-

cording to erosion limits (Koluveck et al. 1993). The vari-

ables are binary coded, Hr has 4 digits and Q0 has 3. Hence,

the string length is 168 bits (8 × 21) and 2168≈3.74 × 1050

points make up the solution space. The GA evolves from a

random initial population of string solutions and modifies

them through several generations to derive a new set of

solutions. Finally, the maximum profit irrigation schedule

is selected from among this set.

OPTIMEC users must fit the GA parameters to each

particular problem. For the problem stated in this paper,

Camacho et al. (1999a) considered the following GA

parameter values to be adequate after performing

several sensitivity analyses: 500 solutions per population,

70 generations and 0.005 as mutation probability.

Solutions are selected according to Equation (5). The

sensitivity of the procedure to the cost of exceeding a

threshold of maximum allowable soil moisture content, K

Figure 5 | Sensitivity to flow rate variability in a standard irrigation scheduling.

Table 1 | Standard irrigation scheduling report

Date Event Hr (mm) Q0 (L/s) Tco (min) SMDb (mm) Ra Cr Cp DU

13-Jun-98 1 97.18 2 185.92 108.0 0.65 0.24 0.11 0.77

27-Jun-98 2 90.21 2 173.43 100.2 0.65 0.22 0.13 0.75

10-Jul-98 3 89.35 2 171.97 99.3 0.65 0.22 0.14 0.74

22-Jul-98 4 86.92 2 167.88 96.6 0.64 0.21 0.15 0.74

04-Aug-98 5 89.00 2 171.37 98.9 0.65 0.21 0.14 0.74

19-Aug-98 6 95.39 2 182.62 106.0 0.65 0.23 0.12 0.77
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/mm of exceeding moisture, is displayed in Figure 6.

While there are no remarkable profit differences among

the K values studied, the differences would probably be

larger if the scheduling were extended to include the

whole crop field instead of a single hectare. Maximum

profit is obtained for the lowest K value, showing that

higher penalties may overload good solutions with penalty

costs and avoid their selection.

Several optimization runs with K = 6 /mm, water

costs from 0.006–0.12 /m3, runoff and percolation costs

from 0–0.06 /m3 are displayed in Figures 7(a, b). The

costs are similar to those proposed in the literature (Ito

et al. 1999). Ra maximum values are obtained for the

highest penalty costs for the whole range of water prices,

giving lower applied depths per year.

Table 2 shows the scheduling report when the price of

water is 0.006 /m3 and no penalty terms are considered

for comparison with the standard option results (runoff

and percolation losses are linked to the selected inflow

rate). It is clear from Table 2 that Hr, Q0 and the number of

irrigation events are random values. Although the new

irrigation sequence is more costly (160 /ha), crop yield is

higher (11 857 kg/ha) and the profit (1626 /ha) is also

greater than in the standard scheduling case.

Several OPTIMEC runs have been carried out to

study the influence of percolation and runoff economic

penalties in the optimization process. Profits achieved are

Figure 6 | GA sensitivity to K variation for a 500 solution population.

Figure 7 | (a) Ra sensitivity to water, runoff and percolation costs; (b) annual supplied depth sensitivity to water, runoff and percolation costs.
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higher than for the standard option (e.g. Pw = 0.0006

/m3, Pr = 0.006 /m3, Pp = 0.006 /m3, profit = 1578

/ha).

DISCUSSION

The results obtained by the GA (with and without

percolation and runoff costs and penalizing water excess

at the end of the irrigation season) provide higher profits

than standard scheduling. Water surplus at the end of the

season, percolation and runoff costs can also be com-

puted after each irrigation event for standard scheduling.

However, in this case, the model user cannot control

these profit penalizations. Instead, the optimization

option provides a maximum profit irrigation calendar,

which simultaneously considers all problem constraints.

Thus, without runoff and percolation penalties the GA

based option represents a 12% increase in profit com-

pared to the standard option. A 9% profit increase

is reached even when the penalized GA results are

considered. For a 10 ha irrigation field (common size in

the study area), the farmer obtains an additional profit of

1770 or 1290 per harvest (without and with runoff and

percolation costs, respectively). Thus, the optimization

option may aid in planning water use within the frame-

work of sustainable development and implies a long-term

benefit for farmers while preventing both aquifer and

stream contamination by nitrates and sediments, respect-

ively, and then maintaining their waters within the water

quality standards.

Table 2 | Optimised scheduling report

Date Event Hr (mm) Q0 (L/s) Tco (min) SMDb (mm) Ra Cr Cp DU

07-May-98 1 24 2.3 78.09 15.7 0.20 0.11 0.70 0.34

28-May-98 2 45 2.6 82.77 34.8 0.36 0.17 0.46 0.57

04-Jun-98 3 38 2.3 86.02 24.3 0.28 0.12 0.61 0.49

11-Jun-98 4 38 2.6 77.40 30.6 0.34 0.16 0.50 0.50

18-Jun-98 5 45 2.3 91.39 38.9 0.42 0.13 0.46 0.55

25-Jun-98 6 52 2.3 97.70 42.9 0.43 0.14 0.43 0.61

02-Jul-98 7 59 2.3 104.97 43.8 0.41 0.16 0.43 0.66

09-Jul-98 8 52 2.3 97.70 44.0 0.44 0.14 0.42 0.61

16-Jul-98 9 66 2.3 113.19 45.9 0.40 0.18 0.42 0.70

23-Jul-98 10 66 2.6 104.57 46.7 0.39 0.23 0.38 0.71

30-Jul-98 11 66 2.3 113.19 44.7 0.39 0.18 0.43 0.70

06-Aug-98 12 52 2.3 97.70 43.1 0.43 0.14 0.42 0.61

13-Aug-98 13 59 2.3 104.97 42.1 0.39 0.16 0.45 0.66

20-Aug-98 14 31 2.6 72.96 39.1 0.46 0.15 0.39 0.43
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CONCLUSIONS

The proposed model obtains either an irrigation season

scheduling that maximizes farmer profit or a traditional

scheduling for different irrigation criteria. Economic profit

maximization for the irrigation season as a whole has been

stated on the basis of a GA. For this option, runoff and

percolation losses and an excess of soil deficit moisture at

the end of the irrigation season are economically penal-

ized. These penalties have been considered in order to find

a solution, which not only provides the highest profit

(greater than the standard option), but also maintains

optimal harvesting and environmental conditions (ef-

ficient water use, low sediment production and low aqui-

fer contamination rate). Economic evaluation of the

environmental impact of irrigation runoff and percolation

excess is needed to determine the exact point at which

both economic and environmental interests can be consid-

ered simultaneously. The GA described above efficiently

solves the complex maximization problem posed, making

OPTIMEC an important tool in planning water use within

the framework of sustainable development.

NOTATION
GA genetic algorithm
SMD total moisture depletion in the root zone
P percolation
I irrigation
Rf rainfall
ET actual evapotranspiration values,
ETo potential evapotranspiration
j time index in days
MAD total amount of water that a crop can

extract from the soil without lowering the

evapotranspiration rate
Q0 inflow rate
t time measured from the onset of irrigation
A0 furrow section at inlet
Z0 area infiltrated at the inlet
x advance distance
sy shape profile factor for surface flow
sz shape profile factor for subsurface flow
Ra application efficiency

C
p

percolation loss coefficient
C2r runoff loss coefficient
DU distribution uniformity
Y expected yield
Y

MAX
historical maximum yield

kyjj coefficient of crop response at growing stage jj
ETjj/

ETMjj

relation between the accumulated actual and

maximum evapotranspiration during growing

stage jj
jj growing stage index
NP net profit
PC crop sale price
V

w
volume of applied water

Vr volume of runoff
Vp volume of percolation
Pw cost of water
Pr runoff collection penalty
Pp percolated water penalty
MO labour cost associated with irrigation
i irrigation index
ke total number of irrigation events in the season.
ESMD excess of soil moisture deficit over the minimum

allowed value for soil moisture deficit at that

time of the irrigation season
K penalty cost when ESMD is not equal to 0
Hr required depth
R random variable which controls irrigation

occurrence
w irrigation season duration in weeks
kR number of bits that identifies R
kH number of bits that identifies Hr

kQ number of bits that identifies Q0

N number of potential irrigation season analysed

in each iteration
U(0,1) uniform distribution
nl variable which fixes the number of solution to be

eliminated and duplicated
l string index
sil string selection index
si1 selection index of the lowest fitness string
sin selection index of the highest fitness string
c parameter required to calculate the string selec-

tion index
pm mutation probability
G number of generations
tco cutoff time
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