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ABSTRACT

Scour at culvert outlets is a phenomenon encountered world-wide. Research into the problem has

mainly been of an experimental nature, with equations being derived for particular circumstances.

These traditional scour prediction equations, although offering the engineer some guidance on the

likely magnitude of maximum scour depth, are applicable only to a limited range of situations. A

model for the prediction of scouring that is generally applicable to all circumstances is not currently

available. However, there is a substantial amount of data available from research over many years in

this area. This paper compares current prediction equations with results obtained from two Artificial

Neural Network models (ANN). The development of a basic feed forward artificial neural network

trained by back-propagation to model scour downstream of culvert outlets is described. A

supervised training algorithm is used with data collected from published studies and the authors’

own experimental work. The results show that the ANN can successfully predict the depth of scour

with a greater accuracy than existing empirical formulae and over a wider range of conditions.
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INTRODUCTION

Accurate prediction of the dimensions of scouring

downstream of hydraulic structures is required to ensure

foundations are properly designed and prevent damage to

the structure as a result of undermining. Although work

has been conducted on scouring downstream of culverts

since the 1970s, a widely accepted generic equation

encapsulating a range of outlet sizes, flow rates, bed

materials and channel and outlet geometries is not

available.

The aim of this research is to compare the use of

traditional empirical equations for predicting scour depth

with artificial neural network models. Two neural

networks are compared, one using the raw variables as the

causal inputs and the second following a dimensionless

analysis of the variables used in the first model.

The majority of previous research in this area has

focused on developing models to predict the size and

extent of scour holes formed as a result of submerged jets

impinging on uniformly graded granular beds. Studies

such as those by Opie (1967), Rajaratnam & Berry (1977),

Rajaratnam (1981), Ruff et al. (1982), Rajaratnam &

MacDougall (1983), Blaisdell & Anderson (1988), Abida &

Townsend (1991), Lim (1995), Chiew & Lim (1996) and

others have resulted in a selection of empirical equations

for predicting scour depth, and in some cases length and

width for particular hydraulic conditions. Breusers &

Raudkivi (1991) and Hoffmans & Verheij (1997) presented

detailed literature reviews of research undertaken into

scour at culvert outlets and a further review can be found

in Liriano (1999). The work conducted by Opie at

Colorado State University (Opie 1967) remains significant

as experimental data up to the largest outlet size used was

914 mm. Rajaratnam & Berry (1977) report scour depth as

a function of densimetric Froude number, the first

example of scour depth being related to densimetric

Froude number known to the authors and the majority of

scour predictors now make use of this dimensionless

parameter. A 5 year study into scouring downstream of
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culverts was conducted by Ruff et al. (1982) and a signifi-

cant amount of data was collected with outlet shape, size,

tailwater depth, sediment grading and size all being vari-

ables. However, in spite of over 40 years of research into

scouring downstream of culvert outlets the effects of tail-

water depth, outlet shape and sediment grading are not

well understood, with conflicting conclusions from differ-

ent papers. Therefore the aim of this paper was to develop

a model that could be applied to all circumstances.

DATASET

The dataset used in this study consists of the authors’

original data (Liriano 1999) in addition to data kindly

made available by Dr S. Y. Lim (Associate Professor,

Nangyang Technical University, Singapore), Mr F. Ade

(formerly at the University of Alberta, Canada) and Dr

T. R. Opie (formerly at Colorado State University, USA).

Further data has been added from published datasets from

Bohan (1970), Rajaratnam & Berry (1977), Rajaratnam

(1981), Ruff et al. (1982), Rajaratnam & MacDougall (1983),

Ali & Lim (1986), Abida & Townsend (1991), Ade &

Rajaratnam (1998) and Aderibigbe & Rajaratnam (1998).

Table 1 shows the datasets used, the number of results

included and the hydraulic conditions and sediments used

in the respective experiments. In total 273 results were

available which were divided into a training set of 215

results and a testing set of 31 results. A further 27 results

were kept for validation purposes.

It can be noted from the table below that the distribu-

tion of the data is not uniform across all variables. In

particular there is less data on rectangular and square

outlets than on round outlets and very little data on graded

sediments.

ANN

An artificial neural network is a computational tool that is

able to acquire, represent and compute a mapping from

one multivariate space of information to another, given a

set of data representing that mapping (Garrett 1994). The

advantage of ANN over traditional equations is that the

exact function between a set of variables need not be

known, this being a particular advantage to engineers

where the underlying science of problems is not as yet

determined and where data may be incomplete or noisy. A

neural network ‘learns’, from a set of training data, a

method of manipulating the input data in order to achieve

the given result. Once a neural network has been trained

in this way an additional set of data previously unseen can

be presented to the network and the performance of the

trained network assessed. Examples of the use of neural

networks in civil engineering can be found in the ASCE

Journal of Computing in Civil Engineering vol. 8 no. 2,

which was devoted solely to this topic, and Rao (2000),

which considers the use of artificial neural networks in

hydrology.

Some use of artificial neural networks has been made

in sediment transport. Trent et al. (1993) applied ANN to

scouring at bridge piers and it was found that using 515

field measurements of scouring split into 387 training

observations and 128 testing observations that ANN’s

improved upon the predictions of the empirical equations.

ANN design

A feed-forward artificial neural network trained by back-

propagation was used in this study. The model consists of

one hidden layer and one output node in each case. Using

back propagation the network learns through an iterative

procedure involving two steps performed many times.

First the network is shown examples of the training data

which pass forward to the output layer with the error in

the output being computed. The second step works back-

ward through the network. The errors at the output layer

are propagated backwards through the network and the

weights allocated to each nodal connection are adjusted to

minimise the error in the output data. Using this technique

it is possible for the network to become trapped in a local

minima and for this reason a supervised training method

was used. After the training data has been presented to the

network a pre-determined number of times a test data set

is presented. The result from the previous presentation of
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the test dataset is compared and if there is an improve-

ment training continues. When no improvement is

observed the cycle of presenting training and testing data

continues until no improvement has been noted with the

test dataset for 30 consecutive attempts. At this point the

training is terminated and the weights set to those from

which the best result was obtained with the test data. This

prevents the network over-learning the training data by

checking the performance with the test data and reduces

the likelihood of the network reaching a local minimum as

opposed to the global minimum by continuing training for

30 cycles after a minimum error has been achieved.

Once the network has been trained a further validat-

ing set of data not used during training is presented to the

ANN and the output compared with the known output in

order to assess the predictive capabilities of the network.

Model I

Scour hole dimensions are dependant on many variables

that can be grouped in general to describe the physical

properties of the outlet and receiving channel, the bed

materials and the flow characteristics. These can listed as

dse =

f(�, m0, u0, d0, H, W, W0, g, �s, d50, sg, culvert shape) (1)

where dse is the maximum depth of scour, � is the density

of water, m0 is the dynamic viscosity of water, u0 is the

mean velocity at the outlet, d0 is the pipe diameter for

circular outlets and the outlet height for non-circular

outlets, H is the depth of water in the downstream receiv-

ing channel (tailwater depth), W is the width of the

receiving channel, W0 is the width of the outlet, g is the

acceleration due to gravity, �s is the density of the sedi-

ment bed material, d50 is the median sediment size, and sg

is the geometric standard deviation of the sediment bed

material and describes how graded the material is and

shape is the shape of the outlet.

This resulted in 12 variables being entered as inputs to

the neural network. The optimal number of nodes in the

hidden layer has been determined by trial and error, in this

case using 8 nodes in the hidden layer was found to give

the best result. The neural network architecture is shown

in Figure 1(a).

Model II

Given that the flow is turbulent in each case and assuming

that the viscous effect is not important a dimensional

analysis of (1) gives

dseW0

W

d0

ρ

µ0

H

u0

d50

σg

shape

g

ρs

Model I

Hidden layer

Model II

dse/d0

shape

W0/d0

W/d0

H/d0

F0

σg

d50/d0

Hidden layer

Figure 1 | Network architecture for models I and II.
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where F0 = u0/[(S − 1)gd50]
0.5 is the densimetric Froude

number and S = �s/� is the specific gravity of the sediment.

The parameters on the right hand side of Equation (2) are

the inputs to model II with dse/d0 as the output value.

Physically, F0 represents the ratio of the tractive force

acting on the individual sediment grain to the submerged

weight retaining the grain in place. Empirical equations

are typically a function of densimetric Froude number only

and are applicable over a limited range of parameters only.

For model II there are 7 input variables and a network

with 4 nodes in the hidden layer was found to give the

optimal result.

RESULTS OF TRAINING

In order to examine the performance of the neural

network models a validation data set was presented to the

neural networks and the results obtained are compared

with the known results. The validation data set has not

been used by the neural network models during training

and includes data from a range of experimental conditions

as shown in Table 2.

The results obtained from the neural networks using

the validation data are compared with the experimental

values in Figure 2. The solid black line shown on the graph

in Figure 2 is the line of perfect agreement with the dashed

lines showing ± 15% variation. The results show that

Model II is a slight improvement on Model I but with both

networks closely predicting the experimental results. The

largest errors in the predicted data are seen for the box

outlets with Model I, the data from the box outlets indi-

cated with a dashed rectangle in Figure 2. Both models

give a better fit to the data with the pipe outlets than from

the box outlets, which is likely to be a result of insufficient

data for the box outlets since only 15% of the data is from

box outlets.

Figure 2 | Comparison of neural network models for predicting scour depth.
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DISCUSSION OF RESULTS

The results show that a neural network with 1 hidden

layer, trained with either the raw data or following a

grouping of the raw data into dimensionless terms, can

predict scour depth downstream of the outlets. Model II,

trained with the dimensionless groups, gives a slightly

better prediction of the experimental results. Additionally

once this pre-processing of data has been conducted the

training of the network is also quicker since there are less

input variables and fewer nodes in the hidden layer.

With both neural network models it was found that

the results for the pipe outlets could be predicted with

greater accuracy than those with the box outlet and it is

likely that this is due to the lack of data available on the

box outlets.

Figure 3 shows a comparison of the results obtained

with the neural networks and those obtained using the

empirical equations available from published studies. The

models used are from Abt et al. (1984), Lim (1995), Chiew

& Lim (1996), and Liriano (1999). In each case the model

is only applied to the range of the validation data which

it is stated as applicable, as indicated in Table 3. The

ANN models are applied to all the validation data as the

training set covers the complete range of data used. This

immediately demonstrates the benefit of the neural

Table 2 | Range of validation data

Variable Range of data

Outlet shape Circular and box

Outlet diameter, d0 (m) 0.0254–0.146

Sediment size, d50/d0 0.016–0.28

Tailwater depth, H/d0 0.5–25

Exit velocity, u0 (m/s) 0.747–11.176

Figure 3 | Comparison of neural network models and traditional scour predictors.
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network models where no changes need to be made for the

different conditions encountered.

The graph in Figure 3 shows that the neural network

models give a prediction of scour depth that is as good,

and in most cases better, than the empirical models for all

conditions. The neural network models are the only pre-

dictors that can be used for the whole range of conditions

represented by the validation data and therefore offer a

greater flexibility than the traditional scour prediction

models. This would be of significant benefit to engineers

where only one method for calculating scour depth is

required for the complete range of potential operating

conditions.

CONCLUSIONS

The aim of this research was to determine whether a

neural network could accurately predict scour depth

downstream of culvert outlets for a range of hydraulic and

physical conditions. It has been demonstrated that it is

possible with a network using 1 hidden layer and two

models have been compared. Pre-processing the data into

non-dimensionless groups enables the training time to be

reduced due to a smaller number of nodes in the input

layer and a smaller umber of nodes in the hidden layer was

found to give the optimum result. Both neural network

models predicted scour downstream of pipe outlets more

accurately than box outlets and further work is being

undertaken to explore this. The application of artificial

neural networks to scour prediction shows the potential to

lead to a flexible tool for engineers. Artificial neural net-

works have the advantage of being applicable to a wider

range of hydraulic conditions than traditional empirical

models removing the requirement of the designer to

choose the appropriate equation for the anticipated

hydraulic conditions. Further work is required to provide

a complete data set to train the network and validate its

usefulness.
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