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ABSTRACT

This paper examines the use of genetic algorithm (GA) optimization to identify water delivery

schedules for an open-channel irrigation system. Significant objectives and important constraints are

identified for this system, and suitable representations of these within the GA framework are

developed. Objectives include maximizing the number of orders that are scheduled to be delivered

at the requested time and minimizing variations in the channel flow rate. If, however, an order is to

be shifted, the irrigator preference for this to be by ±24 h rather than ±12 h is accounted for.

Constraints include avoiding exceedance of channel capacity. The GA approach is demonstrated for

an idealized system of five irrigators on a channel spur. In this case study, the GA technique

efficiently identified the optimal schedule that was independently verified using full enumeration of

the entire search space of possible order schedules. Results have shown great promise in the ability

of GA techniques to identify good irrigation order schedules.

Key words | genetic algorithms, irrigation networks, off-farm, open-channels, optimization,

scheduling

INTRODUCTION

Development of efficient scheduling systems for off-farm

irrigation water delivery via open-channel networks

is important to irrigation authorities and individual

irrigators. There are increasing demands on irrigation

authorities to be more efficient in their operations by

making the best use of existing infrastructure, providing a

high level of service to their customers, and minimizing

water losses. Water ordering for open-channel delivery

networks commonly uses an ‘advance notice ordering’

system. Many irrigation authorities use this system to

record orders and schedule deliveries. Irrigation delivery

schedules must be devised by water planners to deliver the

orders, taking into account water availability, network

capacity constraints, operating efficiency and customer

satisfaction. Little computerized assistance (in the way of

optimization algorithms), however, is currently available

to water planners to help them balance these objectives,

and many other requirements, in trying to identify efficient

schedules for irrigation water deliveries. Thus, there is

considerable scope for the development of decision sup-

port tools to aid planners in this complex scheduling

activity.

Two aspects of irrigation water management can be

distinguished. The first results from the fact that scheduled

deliveries may not match the water requirements of the

orders as requested. The second results from the fact that

actual deliveries may not match the scheduled deliveries

(Schuurmans and Maherani 1991). The present paper is

concerned with the first aspect only.

In the following, significant objectives and important

constraints are identified for an off-farm irrigation order

scheduling system, and suitable representations of these

within a genetic algorithm (GA) framework are devel-

oped. The relative importance of individual objectives

and/or constraints may be adjusted by the use of weighting

factors. This approach is then demonstrated for an

idealized system of five irrigators, each with a single order

request to be scheduled, on a channel spur. The GA
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technique efficiently identifies the optimal schedule that

has been independently determined by full enumeration.

Results in this study show great promise in the ability

of GA techniques to identify optimal irrigation order

schedules.

BACKGROUND

A vast body of literature exists on irrigation scheduling.

This is, however, chiefly concerned with aspects of

on-farm scheduling based on water moisture readings and

crop application rates (Budikusuma 1994). In contrast, the

present paper deals exclusively with off-farm irrigation

scheduling. This is mostly concerned with the constraints

associated with the irrigation channel network that

delivers irrigation water from rivers and dams to the

farm-gate, the scheduling objectives of the suppliers and

consumers involved, and the hydraulic model used to

approximate the channel network dynamics (Schuurmans

1991). In the case study presented in the present paper, a

simple irrigation channel flow model is used, as questions

of accuracy, reliability, stability, etc., associated with the

use of any particular realistic hydraulic model are not the

main thrust of this paper.

In the past, GAs have been applied to the scheduling

of exam timetables (Fang 1992) and to job shop scheduling

(Fang et al. 1993; Bierwirth and Mattfeld 1999; Norman

and Bean 1999). Resource allocation and levelling in

project planning and management (Hegazy 1999),

optimizing the design of water distribution systems

(Simpson et al. 1994), and optimal sequencing of water

resource projects (Dandy and Connarty 1995) are other

applications of GAs in engineering. The research

discussed in the present paper is, to the authors’

knowledge, the first published application of GAs to

optimizing off-farm irrigation scheduling.

Previous studies have shown that GAs are more

effective than traditional optimization methods for prob-

lems involving discrete decision variables. Simpson et al.

(1994) compared the performance of the optimization of

water distribution systems using various techniques,

including traditional optimization techniques and GAs.

The discrete nature of the decision variables favored the

use of GAs over nonlinear programming, which gave con-

tinuous values of pipe diameter size. For small problems

the ability of alternative optimization techniques to find a

known global optimum solution for the pipe network

optimization problem is similar. However, for larger prob-

lems this is not the case. Dandy et al. (1996) showed that,

for the New York City tunnels problem, the GA was able to

find lower cost solutions to the problem than any other

previously used traditional optimization technique. Dandy

and Connarty (1995) applied GAs to the problem of finding

the optimal size and sequence of new water resources

projects in south-east Queensland, Australia. They found

that the GA approach required much less computer time

than integer linear programming (ILP) and gave better

results. In addition, the GA approach allowed projects

to start in any year, whereas ILP only worked, within

a reasonable time, with discrete five-year blocks. In

summary, GAs are generally more effective than tra-

ditional optimization techniques while offering simplicity

in implementation. It is relatively easy to add GAs to an

existing simulation model rather than develop and imple-

ment the formulation of the optimization problem to fit the

more traditional optimization techniques.

The proposed application of GA optimization to water

order scheduling will involve Goulburn–Murray Water

(G–MW) — a major rural water authority in the south-

eastern area of Australia. G-MW serves 24,000 properties

via 6800 km of channels fed by 19 storages using 24,500

control structures with 7000 GL p.a. It is intended to

initially optimize a scheduling task equivalent to what is

achieved by a human planner in approximately four hours.

Typically one planner is required to schedule the orders

for one ‘area’ of a district within G–MW’s jurisdiction,

which are requested to start over a 48 h period. A

representative scheduling task may involve approximately

170 orders for an area controlled by approximately 350

structures. Approximately 10% of the structures might

have capacity limitations and 5% might be routinely

adjusted on a daily basis. This typically results in approxi-

mately 35 flow rate time-series which must be calculated.

Thus, with hourly order shifts possible, a search space

could consist of 48170 (or approximately 10280) possible

solutions.
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ADVANCE NOTICE ORDERING SYSTEMS

An advance notice irrigation ordering system involves the

following steps:

(1) Irrigators place an order (using, for example,

telephone keypad or internet browser).

(2) In placing an order, they are required to specify:

• their offtake point number;

• the date they request the delivery to commence;

• the time they request the delivery to commence;

• the requested duration of the delivery; and

• the requested flow rate of the delivery.

(3) The order is recorded in a computer database.

(4) Each day, irrigation planners schedule the irrigation

orders stored in the database that are requested to

start within the next 2 to 3 days. This may involve

moving some orders backwards or forwards in time.

In doing so, the irrigation planners try to ensure that

channel capacities are not exceeded, that flows in

the channels are relatively smooth throughout the

day, and that other constraints are satisfied and/or

objectives are met. The schedule is then fixed for the

next day.

(5) Irrigators can confirm when their request will be

delivered.

(6) Each day, irrigation operators adjust network

channel control structures and check offtake points

to ensure that the orders are delivered as planned.

Irrigators are usually required to place their orders a

specified number of days in advance. All requested orders

for a certain period of time, usually a single day, are then

considered together by an irrigation planner. The schedul-

ing of orders for a particular day is usually performed by a

planner one day in advance. An advance notice ordering

system is designed to schedule a set of orders for a given

irrigation day in such a way that maximizes the use of the

water available in the system. It is during periods of peak

demand that such a system is most beneficial. One such

peak demand period occurs after a heavy fall of rain,

followed by a prolonged dry period, when many irrigators

require water almost simultaneously. The scheduling of

orders in this manner allows for the greatest number of

orders to be satisfied.

GENETIC ALGORITHMS

A GA is a search procedure, based on natural selection

and the mechanisms of population genetics (Goldberg

1989a; Michalewicz 1996). The GA technique has its roots

in the biological processes of ‘survival of the fittest’ and

adaptation. Overviews of the theoretical fundamentals

and successful applications, and research topics in the GA

field can be found, respectively, in Beasley et al. (1993a)

and Beasley et al. (1993b).

It has been proven that, under certain assumptions,

the GA is guaranteed to find a global optimum (Bäck 1991)

and, furthermore, to find it in finite time (Holland 1992).

These theoretical results, however, are of little practical

worth in most GA applications, which frequently intro-

duce additional domain-specific heuristics that violate the

required assumptions. Nevertheless the GA technique has

been successfully applied to many engineering problems

(Willis et al. 1997).

Irrigation delivery schedule genetic algorithm

representation

Each irrigator places an order for a requested starting

time with a desired duration (in hours) and a specified

flow rate in megalitres per day (ML d−1). In this

research, each order to be scheduled for a plan day has

been encoded in the GA as a string of numbers. Each

position in this string represents the order number, and

the integer value represents the number of hours the

requested order is scheduled to be shifted. A negative

order shift corresponds to ‘bringing forward’ an order

(i.e. starting it earlier), while a positive order shift

corresponds to ‘holding off’ an order (i.e. delaying its

start).

Suppose a set of five irrigation orders needs to be

scheduled. The string illustrated in Figure 1 represents one

particular solution. For this string, order 1 has been

delayed 2 hours from the requested time, order 2 will be

supplied as requested, order 3 has been scheduled to

start 3 hours earlier than requested, while the start times

for orders 4 and 5 have been delayed 24 and 6 hours,

respectively.
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SCHEDULING CONSTRAINTS

A count of the number of orders for which the start times

were requested within a planning period determines the

number of orders to be scheduled, O, and hence the length

of the GA strings. The orders are allowed to be shifted by

the GA process such that the scheduled start times always

remain within the planning period.

Genetic algorithm operators

The GA operates on a population of alternative schedules

for irrigation water delivery. Initially, the population of

solutions is generated randomly. An improved population

is then produced in the next generation by using the

three GA operators of selection, crossover and mutation.

Selection is a ‘survival of the fittest’ process and involves

the choice of which parent strings of ‘high’ fitness that will

form a ‘mating pool’ are used to provide the characteristics

of subsequent child strings. Crossover is a partial

exchange of order shift values between parent strings

that produces child strings that, in this instance, are

guaranteed to satisfy the imposed constraints discussed

above. Mutation occasionally alters the order shift value at

a randomly selected position of a randomly selected string

to a different value, that is allowable for that order. The

reproduction process is terminated after a maximum

number of generations, predetermined by the operator.

The individual steps in the evolutionary process of the GA

are discussed below.

Given two feasible schedules as parents, the problem

of guaranteeing that the offspring resulting from crossover

are also feasible may be approached using penalty

functions to relax troublesome constraints and penalize

the objective for violating them (Goldberg 1989a), or using

random keys (Bean et al. 1995). In the present paper, the

schedule representation used is a robust method of

encoding the problem that enables general crossover

operators to lead to feasible solutions, thus requiring

neither of these or other centralized control methods

(requiring global information) proposed in the GA theory

literature (Goldberg 1989b).

A poor choice of representation, whereby an optimal

or near-optimal solution cannot be formed by the simple

GA process, can also result in what is termed deception

(Deb 1991). Deception, however, is a property of a particu-

lar representation of a problem, rather than of the problem

itself (Forrest and Mitchell 1993). In principle, a deceptive

representation could be transformed into a non-deceptive

one, but in practice finding the appropriate transformation

can range from a trivial activity to a highly creative one, or

may even be intractable (De Jong 1985). The potential for

deception in the problem at hand using the representation

presented has, however, not been investigated in the

present study.

OPTIMIZATION OBJECTIVES

Many scheduling objectives may be considered to be

important in delivering irrigation water to irrigators in

an appropriate manner. The following optimization

objectives were considered to apply to ‘desirable’

schedules:

(1) Minimize the number of orders shifted (f1, f2, and

f3).

(2) Encourage particular sizes of order shifts and

discourage others (f4).

(3) Avoid channel capacity exceedance (f5).

(4) Minimize channel flow rate variations (f6).

In a particular case, some of these are of relatively greater

importance and some may be relatively unimportant. The

relative importance can be taken into account by weight-

ing the optimization objectives (using wf, f = 1, 2, . . ., 6

values) appropriately.

THE EVOLUTIONARY PROCESS

The steps of a GA for irrigation order schedule optimiz-

ation have been developed as follows:

Figure 1 | A typical GA string for a scheduling problem with five orders.
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(1) Randomly generate an initial population of P0 order

shift strings.

(2) Decode each string and compute a number of

performance measures ff, f = 1, 2, . . ., 6.

(3) For each string, multiply each of the measures by an

appropriate weight wf, f = 1, 2, . . ., 6 and sum these

to obtain an overall fitness measure f.

(4) Randomly divide the population of strings into pairs

of strings and allow the better of each pair (in terms

of fitness) to become a parent for the next

generation (tournament selection).

(5) Repeat Step 4 to complete the creation of the mating

pool.

(6) Randomly divide the mating pool into pairs of

strings. Perform a crossover operation, with

specified probability pc, on each pair of strings. For

one-point crossover, this operation involves cutting

each parent string at the same point along their

length (determined randomly) and switching the

right-hand tails with each other to produce two

offspring. If crossover is not to occur, the two

offspring are identical to their parents.

(7) Perform a mutation operation, with specified

probability pm, of the value at each position of the

offspring strings produced in Step 6. This mutation

operation involves changing the existing order shift

value to another feasible choice (chosen randomly).

(8) Repeat Steps 2–7 for a specified number of

generations G.

Flow rate time-series

As part of the performance measure computation of Step 2

above, a number of flow rate time-series are calculated,

based on water mass balance in the open-channel net-

work, to determine the flow regime for the irrigation order

schedule corresponding to an order shift string. Each

time-series represents the flow past a specific control

structure in the irrigation network as a series of values for

flow rate (in ML d−1) versus time (in hours). At each

control structure, a channel capacity (in ML d−1) specifies

a maximum flow rate that should not be exceeded. Each

flow rate time-series takes into account the requested

order times and the scheduled order shifts. Conceptually,

at the end of an irrigation water delivery order at a

‘finishing’ offtake point, water is made available for the

beginning of a ‘following’ order at a ‘starting’ offtake point.

These lags for water in the system, known as travel times,

are taken into account in the calculation of the time-

series. An example of a time-series calculation is given in

the case study below.

FITNESS CONSTITUENTS

For each of the optimization objectives A–D, correspond-

ing fitness constituents were developed. In the following

sections the implementation of these fitness constituents —

f1–f6 — is discussed in detail. Typical functional forms are

given below.

Order shift sign fitness constituents: f1, f2, and f3

The GA has been developed such that it ‘rewards’ irriga-

tion water delivery schedules for which the majority of

orders are scheduled to be delivered at the requested

times. Similarly, it ‘penalizes’ schedules for which orders

are brought forward or held back in time. Three fitness

constituents—f1, f2 and f3—have been based on these

concepts.

A count, o1, is made of the number of order shifts that

are negative, i.e. those for which irrigators’ orders are

scheduled earlier than they were requested, to give a

fitness measure of

referred to as the negative order shift fitness constituent

value. The function defined by Equation (1) is illustrated

in Figure 2.

A count, o2, is also made of the number of order shifts

that are positive, i.e. those for which irrigators’ orders are

scheduled later than they were requested. The positive

order shift fitness constituent value, f2, is then defined

analogously to the negative order shift fitness constituent

value f1. This function is also illustrated in Figure 2.

15 J. B. Nixon et al. | Irrigation scheduling by genetic algorithm Journal of Hydroinformatics | 03.1 | 2001



The number of irrigators’ orders that are scheduled

exactly when they were requested is given by o3 = O −

(o1 + o2). The zero order shift fitness constituent

illustrated in Figure 3 is defined by

Order shift magnitude fitness constituent: f4

For a single order, o, the fitness function for the order shift

magnitude fitness values, f4,o, illustrated in Figure 4 is

designed to lead the GA to schedules that satisfy optimi-

zation objective B: schedules that involve order shifts

approaching 0 hours are rewarded as are, to a lesser

degree, those involving shifts approaching ± 24 h. Shifts

of around ± 12 h are penalized.

This functional form assumes that, from an irrigator’s

perspective, it is preferable to be shifted by approximately

24 h than by approximately 12 h, since the latter would

involve a major timetable disruption on any given day,

while the former would only involve interchanging the

timetables for the two days.

An assumption has been made that the GA is con-

strained such that no orders can be rescheduled for a start

time greater than 24 h from that which was requested. This

constraint was imposed to enable full enumeration of all

possible solutions to the problem. It is possible to relax

this constraint if desired.

The orders shift magnitude fitness constituent value is

then defined by

Channel capacity exceedances fitness constituent: f5

The exceedance of channel capacity at each control struc-

ture c is penalized. The manner in which this occurs is

determined by the function for the channel capacity

exceedance fitness values, f5,c, illustrated in Figure 5.

A weight w5,c is determined, for each control structure

that applies, so as to represent the relative importance of

the amount of channel capacity exceedance as defined by

f5,c. Although other weightings may be used, in this

instance the weight is simply set to 1.0 for the M control

structures at which a capacity (ML d−1) is set, and to 0.0

Figure 2 | The nonzero order shift fitness constituents: f1 and f2.

Figure 3 | The zero order shift fitness constituent: f3.

Figure 4 | The order shift magnitude fitness constituent: f4,o.
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otherwise. The channel capacity exceedances fitness con-

stituent value for the channel network is then defined by

Flow rate standard deviations fitness constituent: f6

For each of the S control structures in the network that are

chosen to be included in the analysis, the standard devi-

ation of the flow rate time-series (ML d−1) is calculated.

Time-series points between the first non-zero flow rate

value and the last non-zero value, inclusively, are used to

calculate the deviation. The flow rate standard deviation

fitness value, f6,c, for a particular structure is then given by

the function illustrated in Figure 6. Thus schedules

that correspond to a time-series at a particular control

structure that has standard deviation approaching zero

are deemed increasingly more fit while a large standard

deviation is assigned a low fitness value.

A weight w6,c is determined, for each control structure

c, to apply to the flow rate standard deviation fitness so as

to represent the relative importance of time-series flow

rate variations at individual control structures. For the

entire channel network, the flow rate standard deviations

fitness constituent value is defined by

The function illustrated in Figure 6 assigns negative fitness

constituent values to time-series of standard deviation

greater than 1 ML d−1. Although this function is used in

the case study below, it could be argued that a more

suitable function—bounded by 0 and 1—would avert the

possibility of large negative values of this constituent

dominating the weighted constituent sum and thus result-

ing in a negative total fitness value for any schedule under

evaluation.

COMBINING SCHEDULING OBJECTIVES

The individual fitness constituents f1–f5 are bounded by 0

and 1. The use of such a scaling retains a string’s relative

performance and also attempts to bias the selective press-

ure towards better strings, although still allowing rela-

tively unfit strings the potential to reproduce (Chipperfield

1998). The corresponding optimization objectives can thus

be given various operator-specified weightings w1–w6,

depending on their importance. Wall (1996) suggested that

the fitness constituent weights be scaled so that their total

is unity.

The total fitness of any order schedule is hence

given by

Figure 5 | The channel capacity exceedance fitness constituent: f5,c.

Figure 6 | The flow rate standard deviation fitness constituent: f6,c.
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The total is multiplied by a factor of 100 so that

F = 100f (7)

represents the ‘pseudo-percentage’ of the theoretical

maximum achievable value.

CASE STUDY

A problem involving scheduling irrigation water deliveries

in a single channel spur was constructed for which the set

of all possible solutions in the search space could be fully

enumerated, and hence the optimal schedule determined

by an exhaustive search. This case study consists of five

irrigators with one order each, constrained by a maximum

order shift magnitude of 24 h, wherein only shifts in exact

multiples of 1 h were allowed. Details of the channel

network topology are illustrated in Figure 7. The irriga-

tors’ order requests and the fitness function weightings

used are listed in Tables 1 and 2, respectively. The travel

times, order rates and order times have been chosen such

that some orders require shifting to satisfy flow variation

or other objectives and/or constraints.

In this case study there is only one control struc-

ture, at the head of the only channel, and its flow rate

time-series is used in determining both fitness constituents

f5 and f6. Thus M = 1, S = 1, and w5,1 in Equation (4) and

w6,1 = 1 in Equation (5). Other parameters defining this

problem are the number of orders O = 5 and the weights

wf, f = 1, 2, . . ., 6, listed in Table 2.

The irrigators’ requested orders are illustrated in

Figure 8. In this figure, no account has been taken of the

time lag between the offtakes, i.e. the horizontal axis

represents the times at which the irrigators would prefer to

start and finish their orders. The irrigators’ requested

orders are again illustrated in Figure 9. In this figure the

time lag between the offtakes has been accounted for, i.e.

the horizontal axis represents the times at which the water

authority must supply the irrigators’ orders past the supply

control structure at the upstream end of the channel

spur.

Figure 10(a) illustrates the flow rate time-series, cal-

culated at the supply control structure at the ‘upstream’

end of the channel spur, for the orders as requested, taking

travel times into account. This time-series is calculated

by summing the orders illustrated in Figure 9. The hori-

zontal line in Figure 10 indicates the channel capacity of

27 ML d−1.

Exhaustive search enumeration

Figure 10(b) illustrates the scheduled time-series,

calculated at the same point on the channel spur, for the

optimal order schedule as determined by exhaustive

search. Since there are 49 possible order shift values for

each of the 5 orders, there is a total of 495 = 282,475,249

possible scheduling solutions. The enumeration to

determine the fitness of all of these solutions took

approximately 6 h 5 min of central processor unit

(CPU) time on a Hewlett–Packard B160L Unix work-

Figure 7 | Irrigation channel for the case study.

Table 1 | Irrigator order requests for the case study

Order
request
(#)
(1)

Offtake
point
(#)
(2)

Order
start
(h)
(3)

Order
duration
(h)
(4)

Order
rate
(ML d−1)
(5)

1 1 6.0 24.0 5.0

2 2 8.0 6.0 12.0

3 3 10.0 8.0 5.0

4 4 18.0 18.0 10.0

5 5 20.0 18.0 4.0
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station. All programming was in Fortran 90 (Metcalf and

Reid 1996).

Genetic algorithm optimization of irrigation schedules

The optimal solution illustrated in Figure 10(b) was also

identified by GA scheduling. Parameters used in the GA

were: P0 = 1000, pc = 0.8, pm = 0.0 and G = 53. Also imple-

mented was a procedure by which, at each generation, the

members of the population were forced to be unique. This

was achieved by replacing each duplicated string with one

generated randomly. This process was repeated until the

proposed replacement was, in fact, different to all other

population members.

The GA took approximately 26.2 s to execute 53

generations, and the total number of solutions simulated

was thus 53,000. From this it can be seen that the GA is

efficient with respect to finding the optimal solution, in

terms of both the number of solutions evaluated (0.019%

of the total search space) and CPU time executed (0.12%

of the time required for full enumeration). The optimal

solution was first found after only 46 generations (equiva-

lent to 46,000 evaluations). Also, the GA was able to

find five of the top six ‘fittest’ solutions (determined by

enumeration).

Table 2 | Fitness constituent weights for the case study

Fitness
constituent
(name)
(1)

Constituent
symbol
(ff)
(2)

Constituent
weight
(wf)
(3)

Optimization
objective
(4)

Equation
reference
(equation)
(5)

Figure
reference
(figure)
(6)

Negative order shift f1 1/12 A (1) 2

Positive order shift f2 1/12 A (1) 2

Zero order shift f3 1/12 A (2) 3

Order shift magnitude f4 1/4 B (3) 4

Channel capacity exceedances f5 1/4 C (4) 5

Flow rate standard deviations f6 1/4 D (5) 6

Figure 8 | Irrigator order requests for the case study, without travel times. Figure 9 | Irrigator order requests for the case study, with travel times.
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Clearly, in this case study, exceedance of channel

capacity is not an issue for a planner, but must neverthe-

less be taken account of by the GA when evaluating

possible solutions. Using the chosen set of objectives and

corresponding weights, it seems desirable to shift some

orders so that a smoother flow is obtained at the control

structure.

Alteration of the relative weightings for the fitness

constituents, from those of Table 2, results in changes to

the set of schedules that are determined to be the fittest.

Experiments using the unequal weightings to the six con-

stituents of fitness listed in Table 2 and an equal weighting

resulted in the same strings ([2,-5,0,17,0], [3,-5,0,18,0],

[3,-22,0,-24,0], [2,-5,0,18,0]), in the same order, as mem-

bers of the top four fittest schedules. The fitness values

changed, but the strings representing the schedules found

did not. The top three strings correspond to the top three

schedules determined by enumeration, using both unequal

and equal weightings. Experiments have indicated that,

even with idealized small size example problems, such as

those discussed in this paper, some of the fittest solutions

can also be some of the hardest for the GA technique to

find.

CONCLUSIONS

This paper has examined the use of genetic algorithm

optimization to identify off-farm irrigation water delivery

schedules that achieve the best possible outcomes for

a set of objectives, while satisfying a set of constraints.

Significant objectives and important constraints have

been identified and suitable representations of these

within the GA framework have been developed. The most

significant research outcome is the development of a

methodology for applying GA techniques to the optimal

scheduling of irrigation orders in off-farm open-channel

systems.

For a relatively simple irrigation order optimization

problem of an idealized system of five irrigators on a

channel spur, the GA efficiently identified the known

globally optimal schedule. The results have shown great

promise in the ability of GA techniques to identify optimal

irrigation order schedules. The results of this evaluation of

the applicability of GA technology to flow management of

open-channel gravity systems have thus shown that the

technology can efficiently schedule irrigation order

requests.
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Figure 10 | Case study flow rate time-series, for schedules: (a) requested by the

irrigators; and (b) determined optimal by both exhaustive search and the

GA. (a) string=[0,0,0,0,0], F= −6.95, (b) string=[2,-5,0,17,0], F= +52.7.
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ACRONYMS AND ABBREVIATIONS
CPU central processor unit
GA genetic algorithm
ILP integer linear programming

NOTATION

The following symbols are used in this paper:

c control structure number;
f fitness constituent;
G number of generations;
M number of structures considering channel ca-

pacity exceedance;
O number of irrigation orders;
o irrigation order number;
P0 (initial) population size;
pc crossover probability;
pm mutation probability;
S number of structures considering time-series

flow rate standard deviations;
w fitness constituent weight;
F overall fitness ‘percentage’;
f fitness value.
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