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ABSTRACT

Despite almost five decades of activity on the computer modelling of input–output relationships,

little general agreement has emerged on appropriate indices for the goodness-of-fit of a model to a

set of observations of the pertinent variables. The coefficient of efficiency, which is closely allied in

form to the coefficient of determination, has been widely adopted in many data mining and

modelling exercises. Values of this coefficient close to unity are taken as evidence of good matching

between observed and computed flows. However, studies using synthetic data have demonstrated

that negative values of the coefficient of efficiency can occur both in the presence of bias in

computed outputs, and when the computed volume of flow greatly exceeds the observed volume of

flow. In contrast, the coefficient of efficiency lacks discrimination for cases close to perfect

reproduction. In the latter case, a coefficient based upon the first differences of the data proves to

be more helpful.

Key words | modelling, data mining, model calibration, model verification, goodness-of-fit indices

INTRODUCTION

Of the many input–output relationships that are encoun-

tered in hydrology, ecology and hydraulics, the modelling

of the land phase of the hydrological cycle in general, and

the relationship between rainfall and runoff in particular,

continues to attract widespread attention. The variety of

such models that have been developed is legion: lumped

and distributed, physically based and conceptual, linear

and non-linear, to list but a few. The scope of rainfall-

runoff modelling has recently been extended by the appli-

cation of models composed of Artificial Neural Networks

(e.g. Minns & Hall 1996; Shamseldin 1997; Dawson &

Wilby 1998), and has been subsumed into the wider

activity of data mining, i.e. the processes of knowledge

discovery and, ultimately, data reduction. Owing to the

wide availability of software, data mining techniques are

generally relatively easy to implement. However, the pro-

cess of knowledge discovery tends to break down at the

stage of interpreting results, since the analyst may not be

fully versed in the necessary domain knowledge. The latter

is particularly important in comparing model outputs to

the observations selected for training and validation. The

question arises as to which features of the computed and

observed outputs should be emphasised in determining

the efficacy of the model. This problem is unfortu-

nately not always accorded the attention that it deserves.

Dimensionless indices employed for the assessment of

goodness-of-fit are often standardised using a function

involving the variance of the observed data set. Indices

that apply to the comparison of different models on the

same set of observations therefore do not need to be as

sophisticated as those for evaluating the performance of

the same model on data sets of different length and vari-

ability. However, such indices tend to emphasise only a

limited set of features in the data, and for a model of (say)

daily streamflows, a series of measures might encompass

those outlined in Table 1. This compilation, adapted and

expanded from that presented by Gupta et al. (1998) for

the calibration of a specific model, serves to illustrate the

multifarious aspects of model behaviour which could, and

should, be addressed in any model application.

The overall objective of applying the above criteria is

the identification of a set of parameters that is capable of
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reproducing as closely as possible the recorded streamflow

outputs, given the rainfall and possibly other inputs, such

as evaporation. Ideally, the modeller would wish to

express the goodness-of-fit of the model to the data in

terms of a single index or objective function that could be

optimised objectively in fitting the model. However, as

amply demonstrated by Diskin & Simon (1977), there is no

such index that is of universal application. Indeed, the

objective function should be selected according to the

purpose for which the model is to be applied; a flood

Table 1 | Goodness-of-fit measures for a typical daily rainfall-runoff model.

Notation:
qi and q̂i represent the observed and computed flows for day i, 1 ≤ i ≤ n.
q is the mean of the observed flows.
nday (i) is the number of days in a month.
nmonth is the number of months in the time series.
ne is the number of storm events in the observed and computed series.
Tj and T̂j are the observed and estimated times-to-peak of the jth storm event.
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model should emphasise the peak flows, but a resources

model should be orientated towards the low flow

sequences. A multi-criteria calibration procedure based

upon a global optimisation algorithm has recently been

suggested by Gupta et al. (1998) in which several different

objective functions may be satisfied simultaneously (see

also Yapo et al. 1998). For example, the hydrograph might

be divided into periods with or without rainfall. The

rain-free periods might then be further divided into

periods dominated by either throughflow or baseflow

processes, and model performance assessed separately for

each (see, for example, Wagener et al. 2000). Nevertheless,

the separate objective functions tend to be based upon the

root mean square error or related forms of criteria.

The use of a single, all-embracing criterion, such as the

coefficient of efficiency (see Table 1), is very attractive

because the process of calibration or training is greatly

simplified. In addition, fellow modellers tend to have (or

believe they have) a general appreciation of the relative

performance of the model based upon such single

measures. For example, Shamseldin (1997) has written

that:

‘A value of [the coefficient of efficiency] of 90% indicates a
very satisfactory model performance while a value in the range
80–90% indicates a fairly good model. Values of [the
coefficient of efficiency] in the range 60–80% would indicate
unsatisfactory model fit.’

In contrast, Beran (1999) has criticised the null hypothesis

implicit in the structure of the coefficient of efficiency

(outlined below), and has concluded that this criterion

provides ‘. . . an exaggerated impression of the presumed

skill in prediction’. According to the same author, a

modeller should not be satisfied with a coefficient of

efficiency lower than the mid-to-high 90s in percentage

terms. These somewhat conflicting statements raise the

question as to the overall sensitivity of this criterion to

differences in the observed and modelled time series. This

paper summarises the results from a series of simulation

experiments designed to explore this problem.

THE COEFFICIENT OF EFFICIENCY

One of the most widely used forms of fitting criterion

has indeed been the coefficient of efficiency introduced

by Nash & Sutcliffe (1970). Those authors drew an

analogy with the coefficient of determination familiar

from the analysis of variance. This coefficient may be

developed as follows. Given a sequence of observed

flows, qi, i = 1, 2, . . ., n, with a mean q, and a sequence of

computed flows, q̂i, i = 1, 2, . . ., n, with the same mean, the

sums of the squares of the deviations of the observations

from their overall mean may be partitioned approximately

into two parts: the sums of the squares of the differences

between the observed and the computed values, and the

sums of the squares of the deviations of the computed

values from their overall mean, i.e.

where all summations are taken over the n terms of the

sequence. As proposed by Nash & Sutcliffe (1970), the

term on the left-hand side of Equation (1) may be regarded

as a no-model or a no-skill variance, i.e. the sum of the

squares of the difference between the computed and

observed values when the model was simply taken as the

average of the recorded flows. (This is the null hypothesis

that has been criticised by Beran (1999), as noted above.)

The second term on the right-hand side of Equation (1) is

the sum of the squares attributable to an actual model, so

Figure 1 | Segments of the synthetic flow series used in the numerical experiments: (a)

the ‘observed’ series; (b) the ‘computed’ series with a 50% underestimation

of runoff volume; and (c) the ‘computed’ series with a constant bias of 25% of

the observed peak flow.
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that the fraction of the total sum of the squares of the

observations (or the no-model case) explained by that

model is given by the ratio:

In the case of perfect agreement, obviously E = 1. How-

ever, inexperienced users, no doubt with the analogy of

the coefficient of determination in mind, often assume

that E has a lower limit of zero. However, if the mean

square error exceeds the variance of the observed flows,

Equation (2) may assume negative numbers. The lower

limit of zero only applies if the q̂i are derived from a simple

linear regression of the qi on an independent variable, in

which case Equation (1) may easily be shown to become

an identity. The occurrence of negative E values, usually at

an early stage in a modelling exercise, is not always

interpreted correctly. The question as to the most common

circumstances in which such negative values might be

encountered gave rise to a more detailed study using a

series of numerical experiments.

SYNTHETIC DATA GENERATION

The numerical experiments performed in exploring the

behaviour of the coefficient of efficiency were based on a

generated time series of streamflows. These data were

derived from a sequence of synthetic storm events of

varying duration, total depth and profile, occurring at

irregular intervals, which were routed through a simple

conceptual hydrological model. The storm events were

produced using Monte Carlo methods based upon the

following assumptions:

1. storm durations were normally distributed, with a

mean of 20 time units and a standard deviation of

6 units;

2. storm depths were lognormally distributed, with a

mean of 25 mm and a standard deviation of 2 mm

(implying a distribution of depths with a coefficient

of variation of 0.785 and a skewness coefficient of

2.84);

3. the time variations of depths within each event were

defined by one of six storm profiles, each of which

was described by a simple polynomial function,

broadly based upon those of the UK Flood Studies

Report (Natural Environment Research Council,

1975), and including early-peaked and late-peaked as

well as symmetrical events with a constant intensity

profile as an extreme case; and

4. the inter-event times were taken as double the

previous storm duration minus one time unit.

Durations averaged 19.2 time units with a standard devi-

ation of 6.95 units, and mean storm depth was 31.6 mm

with a standard deviation of 1.9 mm. These data were then

routed through a single non-linear reservoir using the

RORB model (Mein et al. 1974) with a storage constant of

20 and an exponent of 0.8, the latter value being typical for

a wide range of catchments (Laurenson & Mein 1988).

For convenience, the generated flows were standardised

using the largest peak ordinate. A sample sequence of

storm hydrographs, being roughly a quarter of the total

time series but including the event with the largest flow

ordinate, is shown in Figure 1(a).

NUMERICAL EXPERIMENTS

For the purposes of the numerical experiments, the

generated time series of flows was assumed to be the

sequence of observed flows upon which a hydrological

model was to be calibrated. The sequence of model

outputs was assumed to be similar in basic form, but

subject to the following different types of error:

1. volume error: all observed ordinates were multiplied

by a constant factor k, 0.5≤k≤1.5, to give the
computed flows (see Figure 1(b));

2. bias: a constant displacement, b, 0≤b≤0.25
standardised flow units, was applied to all observed

ordinates in order to form the computed model

output (see Figure 1(c)); and

3. timing error: the computed flows were displaced by

a constant number of time units, t, − 6≤t≤6, relative
to the observed flows.
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Results are presented below for the separate cases of

timing errors combined with either bias or volume error,

although the former can also be considered a special

case of the latter. A displacement b = 0.15 units almost

doubles the computed runoff volume, and at b = 0.25, the

computed volume is 2.64 times the observed volume.

RESULTS

Figure 2 summarises the values of the coefficient of

efficiency, as defined in Equation (2), for cases of com-

bined bias and timing error. For any given timing error,

the coefficient is seen to decrease non-linearly with the

increment in b. More significantly, at a bias of 0.15, time

displacements above ± 4 time units result in negative

coefficients. With b = 0.2, all E values are negative. A

further point to note is the relatively small changes in

coefficients that arise from small timing errors of ± 2 time

units at all levels of b.

Figure 3 shows the combined effects of timing errors

and underestimated runoff volumes, i.e. 0≤k≤0.5. Even
when the volumetric error is one-half the observed

volume, all coefficients are positive for − 6≤t≤6 time units.
However, when the computed runoff volume exceeds the

observed, the changes are more marked, with negative

coefficients appearing at time displacements of ± 6 units

for a 50% increase in volume (see Figure 4). A comparison

between Figures 3 and 4 shows that, for any given timing

error, volume overestimation has more effect than under-

estimation, with E values falling more rapidly as t

increases in either direction.

An initial reaction to the occurrence of negative coef-

ficients of efficiency might be to resort to the use of the

formal statistical coefficients of correlation and determi-

nation, if only because of their ease of use in widely

available spreadsheet software. The correlation coefficient

is defined as the ratio between the covariance of the

dependent and independent variables (in this case, the

modelled and observed flows) divided by the square root

of the product of the variances of these variables. How-

ever, if the modelled output contains a bias, b, both its

Figure 2 | The effect of bias and timing error on the coefficient of efficiency; the amount

of bias ranges from 0–25% of the observed peak flow.

Figure 3 | The effect of volumetric and timing errors on the coefficient of efficiency;

volumetric errors range from 0–50% underestimation of the observed runoff

volume.

Figure 4 | The effect of volumetric and timing errors on the coefficient of efficiency;

volumetric errors range from 0–50% overestimation of the observed runoff

volume.
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variance and its covariance with the observed series are

unchanged. Similarly, if the model outputs are a constant

multiplier, k, times the observed values, then both its

variance and its covariance with the observed series are

multiplied by k, and the correlation coefficient again

remains unchanged. The coefficients of correlation and

determination are therefore incapable of reflecting either

bias or volumetric error in model results, although they

are sensitive to the magnitude, but not the direction, of a

timing error. For errors in timing up to ± 4 units but no

bias or volumetric error, the coefficients of determination

and efficiency are virtually identical.

A notable feature of Figures 2–4 is the comparative

insensitivity of the coefficient of efficiency to timing errors

for − 2≤t≤2 time units for all cases of bias and volumetric
error. This performance could be improved if the first

differences:

∆qi = qi − qi − 1; ∆q̂i = q̂i − q̂i − 1; i = 2, 3, . . ., n

of the observed and modelled outputs were used instead of

the observed and computed ordinates in Equation (2). The

results are shown in Figures 5 and 6 for the cases of

underestimated and overestimated runoff volumes,

respectively. (Obviously, the use of first differences makes

the E value insensitive to the amount of bias.) Once again,

the effect of overestimation is more pronounced than that

of underestimation for any given timing error. A 50%

increase in the computed runoff volume at timing errors of

t = ± 6 units drives the coefficient of efficiency below − 1.

However, for small timing errors at all levels of volumetric

error, the E value decreases more rapidly with the first

differences than with the actual observations.

CONCLUDING REMARKS

The results presented in Figures 2–6 tend to support the

conclusion of Beran (1999) that a coefficient of efficiency

of 0.95 or more is required to ensure a good model

performance. The figures show that the coefficient of

efficiency is liable to fall below zero when a strong bias is

introduced into the computed output by a hydrological

model. A similar effect is possible when the model pro-

duces relatively large timing errors along with major over-

estimation of runoff volumes. The coefficient of efficiency

appears less sensitive to the underestimation of runoff

volumes, and is relatively insensitive to small timing

errors. Nevertheless, the E value does reflect such discrep-

ancies, which cannot be detected by the use of the formal

statistical coefficients of correlation and determination.

For the case in which the performance of different models

is being assessed on the basis of the same set of observed

data, identical conclusions should be reached by using

either the coefficient of efficiency or the mean square

Figure 5 | The effect of volumetric and timing errors on the coefficient of efficiency

based upon the first differences of the computed and observed flows;

volumetric errors range from 0–50% underestimation of the observed runoff

volume.

Figure 6 | The effect of volumetric and timing errors on the coefficient of efficiency

based upon the first differences of the computed and observed flows;

volumetric errors range from 0–50% overestimation of the observed runoff

volume.
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error. Reference to Equation (2) shows that the two

criteria differ only in the standardisation by the (constant)

observed variance in the E value. If timing errors are

particularly important to the modelling, then the use of the

first differences of the observed and computed ordinates

appears more effective than the actual ordinates.

However, the preferred solution would be to develop a

series of criteria, such as those presented in Table 1,

that focuses upon the more important aspects of model

behaviour rather than to rely on a single index.
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