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Traditional error measures (e.g. mean squared error, mean relative error) are often used in the

field of water resources to evaluate the performance of models developed for modeling various

hydrological processes. However, these measures may not always provide a comprehensive

assessment of the performance of the model intended for a specific application. A new error

measure is proposed and developed in this paper to fill the gap left by existing traditional error

measures for performance evaluation. The measure quantifies the error that corresponds to the

hydrologic condition and model application under consideration and also facilitates selection of

the best model whenever multiple models are available for that application. Fuzzy set theory is

used to model the modeler’s perceptions of predictive accuracy in specific applications. The

development of the error measure is primarily intended for use with models that provide

hydrologic time series predictions. Hypothetical and real-life examples are used to illustrate and

evaluate this measure. Results indicate that use of this measure is rational and meaningful in the

selection process of an appropriate model from a set of competing models.

Key words | error measures, fuzzy sets, hydrologic modeling

INTRODUCTION

Design of water resource management systems primarily

depends on the accurate prediction and assessment of

hydrologic inputs (e.g. streamflows and rainfall). Temporal

variations of streamflow and rainfall values define a

spectrum of hydrologic conditions (e.g. drought, normal

and flood). Drought and flood conditions form two

extreme ends of this spectrum and normal or average

conditions reflect all the flows in between. Forecasting of

hydrologic extremes over time is essential for a number of

reasons. For example, low flows are important from a

water quality management or drought assessment per-

spective whereas high flows assume importance from a

flood protection point of view. Watershed models (Singh

1995) of varying complexity and time series prediction

models (Salas et al. 1980) are generally used for hydro-

logic forecasting applications such as flow forecasting,

synthetic flow generation and design-flood estimation.

The severity of flood depends on the magnitude of flows

and the watershed region in which it occurs. Similarly,

critical flow values designated for water quality improve-

ment are debatable and subjective. Hydrologists, water

resource management practitioners and planners are often

faced with the difficulty of defining these extreme

conditions, their importance for a particular application

and the reliability of the outputs obtained from models

(Melching et al. 1991; Watts 1997; Grayson & Bloschl

2000). Selection of the best model from a set of

competing models available for a particular application

and hydrologic process is often a difficult task. Grayson &

Bloschl (2000) indicate the need to establish a link

between the purpose of the model and the measures

used to quantify the performance of the model. Their

comments provide strong motivating factors for under-

taking the current study.
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In general, traditional error measures (e.g. mean

squared error and mean relative error) based on the

predicted and actual observations are used to evaluate

the performance of “conceptual” hydrologic and time series

forecasting models. Information gathered from error

measures has been used in the past to refine and re-

calibrate conceptual models in watershed hydrology

(Sorooshian & Gupta 1995). As additional data-driven

forecasting techniques (e.g. neural network based methods)

(Govindaraju & Rao 2000) and conceptual models become

available for hydrologic predictions, researchers are being

forced to evaluate the performance of these new techniques

in light of the existing techniques in a number of ways. The

development of conceptually refined error measures is also

important from this perspective.

Conventional error measures used to evaluate the

performance of models developed for a number of hydro-

logic processes (e.g. Nash & Sutcliffe 1970; Maidment 1993;

Karunanithi et al. 1994; Bastarache et al. 1997) have limited

use and may not always provide a comprehensive assess-

ment of the performance of the model developed for a

specific application. Some of the existing error measures

provide an objective assessment of the models and are

absolute measures. For example, the use of a single error

measure (e.g. MSE or MRE) of model performance fails to

provide a clear assessment of some of the weaknesses and

strengths of models developed for flood forecasting (Watts

1997; Elshorbagy et al. 2000). Also, the significance attached

to the prediction accuracy of a model depends on the type

of the application (e.g. flood, drought) for which the model

is intended. Both the areas of error significance

and hydrologic conditions (e.g. flood, drought or normal

flows) are imprecise and are not clearly defined for a

particular application. The use of fuzzy set theory

(Zadeh 1965) to address these issues is explored in this

study.

TRADITIONAL ERROR MEASURES

Different error measures carry different information and

may provide contradictory preferences for models from a

set of competing models used for a particular application.

Two widely recognized and commonly used error measures

for hydrologic applications are the MSE and the MRE,

given by equations (1) and (2), respectively:

MSE ¼
1

n

Xn

i¼1

ðf̂i 2 fiÞ
2 ð1Þ

MRE ¼
1

n

Xn

i¼1

ðf̂i 2 fiÞ

fi

�����

����� ð2Þ

where n is the total number of observations, f̂i is the

predicted value and fi is the actual value of the observation.

In general, MSE, or its root RMSE, provides information

about the performance of a model in high flow situations

whereas MRE is a good indicator of a model’s performance

at low or moderate streamflows (Carpenter & Barthelemy

1994; Karunanithi et al. 1994). One disadvantage of MSE

and MRE is that they attach equal importance to residuals

or error values of equal magnitude, irrespective of their

relevance to specific aspects of particular model appli-

cation. MSE is one of the most commonly used error

measures in hydrologic modeling. Many researchers (e.g.

Kite 1978; Karunanithi et al. 1994; Bastarache et al. 1997;

Shamseldin 1997) in the past have used the MSE for

performance evaluation of models developed for hydrologic

applications. Additional measures such as percent error in

volume, percent error in matching the maximum flow and

the correlation between observed and simulated flows were

used by Hsu et al. (1995) and Degagne & Simonovic (1994).

Sugawara (1995) used an error criterion that combines MSE

and its logarithmic form, MSEL, to evaluate the perform-

ance of a watershed model.

Carpenter & Barthelemy (1994) have used function

approximation examples to assess error measures based on

the quality of fit at specific points and overall fit in a

particular region of interest. Model efficiency criterion, R 2

(Nash & Sutcliffe 1970), was used by Shamseldin (1997) to

assess the performance of different rainfall–runoff models.

The criterion combines two MSE measures that are based

on the mean value of actual and individual observations.

Simonovic & Todini (1994) used 7 statistical measures

(water balance error, relative absolute error, explained

variance, coefficient of determination, correlation coeffi-

cient, mean value and standard deviation) for automatic

calibration of a rainfall–runoff model. Elshorbagy et al.

(2000) developed pooled mean squared error (PMSE) to
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evaluate flood forecasting models based on artificial neural

networks (ANN) and regression techniques. This measure

combines two standard error measures, MSE and MRE, by

ranking the pool of all relative errors obtained from the

predictions of all available models. The squared error (SE)

is then multiplied by the rank and normalized to provide

one single error measure. A review by ASCE (1993)

recommends three measures – deviation of run-off

volumes, Nash–Sutcliffe coefficient and coefficient of gain

from daily mean – to evaluate model predictions and also

cautions that many published papers provide inadequate

information about the quality of model predictions.

In many scientific disciplines where time series fore-

casting is considered valuable (e.g. finance, business), MSE

has been a preferred error measure to draw conclusions

about different forecasting methods (Armstrong & Collopy

1992a). Other measures that are commonly used in the

business and finance industry include: (i) mean absolute

percentage error (MAPE), (ii) geometric mean of relative

absolute error (GMRAE) and median of absolute percen-

tage error (MdAPE). These measures have been used in

different forms in hydrology in the past (e.g. Hsu et al. 1995).

Armstrong & Collopy (1992b) provide a detailed study of

these measures for making comparisons of 11 forecasting

methods for a time series. They indicate that MSE is less

reliable for evaluating forecasting methods when compared

to unit-free MRE measure. Several studies (Armstrong &

Collopy 1992a, b; ASCE 1993; Armstrong & Fildes 1995;

Watts 1997) indicate the limitations of traditional error

measures and their biases in evaluating forecasting

methods. Watts (1997) indicates that none of the traditional

error measures is perfect. In light of the earlier discussion

regarding MSE and MRE and their inability to clearly

identify the significance of the calculated error values or

their relevance to a specific model application, it is apparent

that an error measure capable of overcoming the previously

discussed difficulties is required.

The main objective of this study is to develop an error

measure that will help evaluate and assess the relative

performance of competing models for a specific application.

An error measure combining two error measures (mean

squared error and mean relative error) derived from actual

and predicted values is developed using concepts from fuzzy

set theory. This error measure facilitates the involvement of

the modeler in the assessment of the model performance

and its suitability to a particular situation.

DEVELOPMENT OF FUZZY SET-BASED ERROR

MEASURE

A new way of looking at the performance evaluation of

models is to address two issues in the process of error

measure development: (i) information specific to hydrologic

conditions and model application (Watts 1997) and (ii) the

modeler’s preferences or perceptions attached to

the accuracy of the prediction (Loague & Freeze 1985).

The former issue can be addressed by incorporating

information about hydrologic conditions within the error

measure, whereas the latter can be handled using specific

tolerance levels for accuracy in defining the model

performance. If information is not vague and preferences

are clearly defined as crisp numbers, then numerical

weights can be used in the error measures to refine and

improve the performance evaluation process. If not, con-

cepts such as fuzzy set theory (Zadeh 1965) that help

quantify imprecision can be used.

ERROR MEASURES AND FUZZY SETS

Error measure calculations are based on the individual

observed and model-generated outputs relevant to a specific

hydrologic process. Forecasting models should therefore be

evaluated using model predictions of individual or a set of

outputs (e.g. streamflows) that define different hydrologic

conditions (drought, normal and flood). Also, the intended

use of the model for a specific application defines the

importance of these conditions. A set of these predicted

values comprises a region of interest, in which the model

performance needs to be assessed (e.g. a flood forecast

model should place more emphasis on the prediction

accuracy of high flows). However, this region of importance

or interest is often imprecise and is not clearly defined for a

particular application. For example, the range of low flow

values for developing water quality management measures

is not clearly defined. Hence, the evaluation of model

performance for a particular application is subjective,
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especially when the importance of the model-simulated

outputs for a specific application is not clearly defined.

Fuzzy set theory (Zadeh 1965; Zimmermann 1984) can be

used to handle the imprecision and vagueness associated

with the definition of these boundaries of importance.

Another important aspect that needs to be included in the

error measure is the modeler’s perception of the accuracy of

the model predictions. This perception is subjective and will

depend on the application forwhich themodel is intended. A

qualifier that attaches a significance or tolerance level to each

individual error value is needed. Fuzzymembership function

(Zadeh 1965) is perceived to be an appropriate tool that can

signify error values calculated at a specific flow range

according to the application under consideration. Error

values may be qualified by a membership function according

to the modeler’s perception of the relative importance of

different error values.

Membership functions

Membership functions in fuzzy set theory (Zadeh 1965;

Zimmermann 1984) are generally used to express degrees of

relevance attached to any element belonging to a set. These

functions can be used to model the connection between the

preferencesorperceptions of themodeler and the accuracyof

the prediction as well as the importance attached to specific

hydrologic conditions of the application under

consideration. Loague & Freeze (1985) strongly advocate

the importance of the modeler’s complete involvement in

analyzing the results of the model and his or her perceptions

attached to the performance of the model. Membership

functions can be defined to attach the level of importance or

penalty to a particular parameter (flow or relative error).

Figure 1 shows how membership functions can help address

the imprecise areas of hydrologic conditions (e.g. drought,

normal and flood). For example, in Figure 1(a) it is evident

that the modeler intends to emphasize the importance of low

flows for a particular application (drought assessment). The

region of interest (Figure 1(a)) is defined by the interval [bo,

br]. A higher value of membership (,1) is attached to this

region of interest (flows between 0 and 100 cfs). Similar

regions can be identified for flood and normal flow

conditions as [br, bR], [bo, bR], respectively. A variety of

membership functions with different shapes are possible if

these regions are considered imprecise. Normal condition

(Figure 1(c)) reflects all flow values between the two

extremes: drought and flood. The range for relative error,

[umin, umax], is problem-specific. Practical guidance for the

derivation of membership functions can be obtained from

widely used criteria (e.g. 7Q10 or 4Q3 criterion in water

quality management) for low flows. Any flow above the

low flow range specified by these criteria can be used

for defining the range for high flows. The debatable

demarcation between high and low flow ranges (Watts 1997)

Figure 1 | Membership functions for different hydrologic conditions.
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provides themodelerswith an incentive aswell as a challenge

to develop personal preferences and finally justifies the need

for techniques that can quantify these preferences.

Another membership function is used to quantify the

relative importance of relative errors occurring in different

flow conditions. A membership function for relative error in

the present context can be referred to as a penalty or loss

function because it associates a penalty value to a specific

value of relative error (Figure 2).

FUZZY MEAN SQUARED ERROR (FMSE)

The error measure developed in the present study uses

concepts from fuzzy set theory and therefore is referred to

as fuzzy mean squared error (FMSE). The error measure

combines information pertinent to problem-specific hydro-

logic conditions and the significance of the prediction

accuracy level into one single general error measure. Two

membership values that identify the preferences modeler

attached to a particular flow condition and the penalty

associated with the relative error are incorporated into the

error. The error measure is given by

FMSE ¼
1

n

Xn

i¼1

ðf̂i 2 fiÞ
2lRElflow ð3Þ

where lRE and lflow are the membership values assigned for

relative error and flow values (low, normal or high) or flow

conditions, respectively, and n is the number of obser-

vations. The membership values can be obtained for each

individual observation and are limited to the interval, [0,1].

Linear membership functions are used in this study because

they are simple to comprehend and develop. These

functions for different flow conditions are shown in

Figure 1. The functions suggest the importance attached to

different flow conditions by the modeler. For example, if a

model is evaluated for a specific application that is intended

for low flow situations, higher values of importance (close

to 1) are attached to low flows and lower values to others.

Similarly, a membership function for relative error (RE) can

be developed based on the maximum value of RE obtained

using the residuals from the models under consideration.

The proposed error measure, FMSE, helps achieve the

following objectives: (1) combining the effect of the MSE

and MRE in one measure; (2) increasing the relative effect

of the significant error residuals (using higher lRE values),

which also reflects the modeler’s perception of the

importance attached to a specific relative error; and (3)

measuring and comprehending the performance of hydro-

logic models in reference to the type of situations for which

these models are intended to be used.

APPLICATION TO A HYPOTHETICAL EXAMPLE

The FMSE measure is applied to a numerical example in

which two models (I and II) provide predictions for a

hypothetical streamflow time series. The actual values of the

flows are given in Table 1 and Table 2 along with the

predicted values from Models I and II, respectively. It is

evident from the tables that the performance of Model I is

better in the case of low flow situations (referred to as

drought in Tables 3 and 4) whereas the performance of

Model II is better in the case of high flows (referred to as

flood in Tables 3 and 4). This performance evaluation can

be based on visual inspection of the RE values, which is

possible because there are few values in the complete time

series. It should be noted that there is one set of lRE values;

lRE , 1 for the highest value of RE and lRE , 0 for the

lowest value of RE, whereas three sets of membership

values are considered to reflect the hydrologic conditions.

These sets are lF, lN and lD for flood, normal and drought

conditions, respectively (represented also in Figure 1). Each

of these three sets should be used in conjunction with lRE

to calculate FMSE for a specific flow condition. The

membership values for relative error, lRE, are calculated

using the absolute values of RE. The error measure values

(MSE and MRE) are given in Table 3. In the case of MSE

and MRE, the values are the same for all flow conditionsFigure 2 | Membership function for relative error.
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because they are calculated based on the entire range of

flows. It is evident from Table 3 that MSE points to one

model for better performance in comparison with the other

(Model II is better than Model I) whereas MRE points to

the other (Model I is better than Model 2). The existence of

these conflicting conclusions makes the selection process

much more difficult. Karunanithi et al. (1994), Watts (1997)

and Elshorbagy et al. (2000) point to similar results and

conclusions in their experiments with ANN and regression

models. However, the use of FMSE in this situation

provides an appropriate choice of models for low, normal

and high flow conditions.

It would be interesting to compare FMSE with PMSE

(developedbyElshorbagy et al. (2000)) in thepresent context.

The PMSE values calculated for Models I and II are 18,735

and 3524, respectively. Values of FMSE forModel I and II are

17,963 and 3223, respectively. These values are close to

PMSE values in the case of normal flow conditions. PMSE

and FMSE values suggest the same conclusion in the case of

normal flow conditions. Also, PMSE provides the same

conclusion as that of FMSE in the application where

predictive accuracy at high flows is important. In the case

of PMSE, all relative error (RE) values below a specific

threshold (e.g. 5%) receive the same rank, suggesting that the

modeler is indifferent to the value of RE as long as it is below

the pre-determined threshold level. It should be noted that,

unlike FMSE, the other three measures’ (MSE, MRE and

PMSE) values do not use information about flow conditions

Table 1 | Actual and predicted flows from Model I, residuals, relative errors, fuzzy membership and error measure values

lflow FSE

Actual flow Predicted flow RE (%) SE lRE lF lD lN FSEF FSED FSEN

10 9 10 1 0.25 0.00 1.00 1.00 0.00 0.25 0.25

25 24 4 1 0.10 0.03 1.00 1.00 0.003 0.10 0.10

65 64 1.5 1 0.04 0.09 1.00 1.00 0.003 0.04 0.04

98 96 2 4 0.05 0.17 1.00 1.00 0.03 0.20 0.20

200 195 2.5 25 0.06 0.28 0.78 1.00 0.43 1.22 1.56

300 291 3 81 0.08 0.31 0.67 1.00 1.89 4.05 6.08

400 384 4 256 0.10 0.33 0.56 1.00 8.53 14.22 25.6

500 450 10 2500 0.25 0.44 0.44 1.00 277.78 277.78 625.00

600 510 15 8100 0.38 0.56 0.33 1.00 1687.50 1012.50 3037.5

620 496 20 15,376 0.5 0.67 0.31 1.00 5125.33 2391.82 7688.00

650 494 24 24,336 0.6 0.78 0.28 1.00 11356.80 4056.00 14601.60

750 950 26.7 40,000 0.67 1.00 0.17 1.00 26666.67 4444.44 26666.67

820 1050 28 52,900 0.70 1.00 0.09 1.00 37094.51 3297.29 37094.51

870 600 31 72,900 0.78 1.00 0.03 1.00 56560.35 1885.35 56560.35

900 550 38.9 122,500 0.97 1.00 0.00 1.00 119097.2 0.00 119097.22

RE: Relative Error; SE: Squared error; FSE: Fuzzy squared error
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because they are not designed to consider the importance of

these conditions for the application of themodel for a specific

situation. In conclusion, Table 3 suggests that, based on

FMSE, Model I is superior if drought (low flow) or normal

flow forecast is considered, while Model II is superior in the

case of flood forecast.

APPLICATION TO A CASE STUDY

Data used in the hypothetical numerical example may

suggest a deliberate attempt to project the superiority of one

model (i.e. Model I) over the other in some conditions (e.g.

low flow situations). Similar observations can be made for

Model II in the case of high flows. To eliminate this bias,

and to illustrate and re-iterate the applicability of fuzzy

error measure (FMSE), two models are developed for a case

study region. Daily streamflow data of the Little River and

Reed Creek, Virginia, USA for the period 1981–1990 are

used in this study. These two streams are cross-correlated,

which suggests that the flows in one stream can be

estimated using the other. The cross-correlation coefficient

between these two streamflow time series is found to be

equal to 0.76. A length of 3000 concurrent observations of

the two rivers is selected for the analysis. The Little River

and the Reed Creek are used as the reference and target

rivers, respectively. Seven patches, each of ten consecutive

observations, are considered missing from the target river.

Table 2 | Actual and predicted flows from Model II, residuals, relative errors, fuzzy membership and error values

lflow FSE

Actual flow Predicted flow RE (%) SE lRE lF lD lN FSEF FSED FSEN

10 6 40 16.00 1.00 0.00 1.00 1.00 0.00 16.00 16.00

25 19 24 36.00 0.60 0.03 1.00 1.00 0.72 21.60 21.60

65 56 13.8 81.00 0.35 0.09 1.00 1.00 2.49 28.04 28.04

98 78 20.4 400.00 0.51 0.17 1.00 1.00 34.01 204.08 204.08

200 140 30 3600.00 0.75 0.28 0.78 1.00 750.00 2100.00 2700.00

300 195 35 11025.00 0.88 0.31 0.67 1.00 3001.25 6431.25 9646.88

400 240 40 25600.00 1.00 0.33 0.56 1.00 8533.33 14222.22 25600.00

500 400 20 10000.00 0.50 0.44 0.44 1.00 2222.22 2222.22 5000.00

600 510 15 8100.00 0.38 0.56 0.33 1.00 1687.50 1012.50 3037.50

620 558 10 3844.00 0.25 0.67 0.31 1.00 640.67 298.98 961.00

650 604 7 2116.00 0.18 0.78 0.28 1.00 288.01 102.86 370.30

750 710 5.3 1600.00 0.13 1.00 0.17 1.00 213.33 35.56 213.33

820 780 4.9 1600.00 0.12 1.00 0.09 1.00 195.12 17.34 195.12

870 830 4.6 1600.00 0.11 1.00 0.03 1.00 183.91 6.13 183.91

900 860 4.4 1600.00 0.11 1.00 0.00 1.00 177.78 0.00 177.78

aRE: Relative Error; SE: Squared error and FSE: Fuzzy squared error
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The whole data set is divided into seven sections and one

patch of data is randomly selected from each section so that

the missing data may be representative of the entire data

range. The complete record of the Little River is used, as the

reference river, to estimate the missing data of the Reed

Creek (target river).

Two widely applied and understood data-driven tech-

niques – linear regression (LR) and artificial neural

networks (ANN) – are used in the analysis. A wealth of

literature on neural networks can be found elsewhere (e.g.

Freeman & Skapura 1991). The concurrent data of the

assumed missing segments are used as the unseen test data

to verify the models. The remaining part of the data record

is used to train and develop the ANN and LR models.

The architecture of the network is given by the configur-

ation, ANN (1-3-1), which suggests input and output

neurons along with one hidden layer that has three neurons.

The model based on simple linear regression is given by

QR ¼ 0:958þ 0:66 QL ð4Þ

where QR is the estimated streamflow of the Reed Creek

and QL is the measured streamflow of the Little River.

Results from the neural network and regression models

are summarized in Table 4. FMSE values, along with the

traditional error measures, suggest the relative superiority of

one model over the other in different hydrologic flow

conditions of interest. It is evident that, based on the MSE

criterion, the ANN model is better than the LR model,

whereas the MRE supports the opposite conclusion. FMSE

provides an appropriate measure to make a conclusion

about the performance of the model in different hydrologic

conditions: LR model for low and flows and ANNmodel for

high and normal flows.

GENERAL REMARKS

The error measure, FMSE, developed in this paper is a

conceptual improvement of the PMSE measure (Elshorbagy

et al. 2000) in a number of ways. In the case of FMSE, the

acceptable threshold level associated with relative error is

flexible and can be defined by the modeler as a membership

function. PMSE can be regarded as a special case of FMSE,

where the membership values for all relative errors are

assumed to be constant below a specific acceptable

threshold value. FMSE utilizes information that helps

evaluate the performance of competing models based on

the preferences of the modeler and the type of application

under consideration. PMSE provides a relative comparison

between the performances of the models by ranking a pool

of error values. Using FMSE, one can arrive at a conclusion

that is absolute because the membership functions used for

evaluation are constant for all the models.

Use of FMSE need not be limited to hydrologic time

series prediction models. For example, in the case of any

conceptual watershed model, the squared error measure

Table 3 | Error statistics for numerical example of hypothetical time series

Model I Model II

Hydrologic condition MSE MRE (%) FMSE MSE MRE (%) FMSE

Drought 2.26 £ 104 15 1159.12 4747.87 18 1781.25

Flood 2.26 £ 104 15 17191.80 4747.87 18 1195.40

Normal 2.26 £ 104 15 17963.60 4747.87 18 3223.70

Table 4 | Error statistics based on different hydrologic conditions using ANN and

regression models

Artificial Neural Network Regression

Hydrologic

vondition MSE MRE FMSE MSE MRE FMSE

Drought 26.41 0.30 3.63 29.41 0.24 2.69

Flood 26.41 0.30 9.74 29.41 0.24 12.07

Normal 26.41 0.30 9.88 29.41 0.24 12.23
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can be modified to consider a specific individual parameter

of interest to refine the performance evaluation process. In

such a case, an additional membership function should be

developed for the parameter of interest and corresponding

membership values can be part of the FMSE.

Membership functions used in this study are linear and

assumed to be known. However, any form of non-linear

function can be used to represent the modeler’s preferences.

Membership functions can also be developed based

on actual surveys for practical applications (Fontane et al.

1997) or by consulting experienced hydrologists. In general,

sigmoidal or “s”-shaped functions are more appropriate to

define smooth transitions in the degree of relevance or

importance (Zimmermann 1984). Practical procedures for

developing several varieties of membership functions are

given by Cox (1999). Membership functions in this study are

designed in such a way that a low value of FMSE (the

lowest and ideal value being equal to zero) suggests a better

performance of the model for a specific application.

CONCLUSIONS

A new error measure, named fuzzy mean squared error

(FMSE), is proposed and developed to evaluate the

performance of time series prediction models in water

resources. The preferences of the modeler or hydrologist

attached to the level of prediction accuracy and particular

hydrologic conditions are incorporated through member-

ship functions using concepts from fuzzy set theory.

Membership functions derived from a number of modeler

preferences can be easily aggregated to obtain a single

integrated membership function, and therefore one measure

can be finally obtained. The fuzzy error measure is

appropriate to situations where the model performance

is debatable considering the purpose for which the model is

intended and the different hydrologic conditions which the

model investigates. Concepts used to design FMSE can be

extended to refine calibration techniques that use a

weighted least squared error measure as an objective

function. The applicability of this measure to hypothetical

and real-life examples indicates the practical utility of this

measure and the conceptual revision of traditional error

measures.
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