
Automating CFD for non-experts

Hervé P. Morvan

Hervé P. Morvan
School of Civil Engineering,
The University of Nottingham,
Nottingham
NG7 2RD, UK
Tel: +44 115 846 6374
Fax: +44 115 951 3898
E-mail: herve.morvan@nottingham.ac.uk

ABSTRACT

The focus of the paper is on demonstrating how it is possible to automate complex CFD simulations

using scripting language around and within the structure of the CFD command files. To illustrate this,

the concept of an atmospheric pollution case is used and, more specifically, that of a water

treatment plant. The code that is used is CFX-5 with PERL as a scripting ‘language’.

The simulation of the factory atmospheric environment and its fluctuating conditions are fully

automated. The simulation is based on a pre-defined generic CFD model, for which initial

conditions, boundary conditions and source terms of atmospheric pollutant release are written

automatically by the scripts using data recorded by measuring devices and stored on computers

every half an hour as the simulation runs. When the correct amount of time has elapsed, the

simulation pauses and the script updates the set-up using the newly recorded data. It then proceeds

further, restarting from the appropriate result files. At each pause, a HTML report is also produced,

which contains pictures of the area and summary tables. If a suitable criterion is defined in the

post-treatment algorithm, such as a critical concentration for example, an alarm bell can be started,

so that the technician knows the simulation has found a potential problem within the large domain

that is thus monitored.

The implications of this work are numerous. Firstly, non-CFD experts can run and use results from

a CFD simulation without having to implement the models, run the simulation or fully understand the

intricacy of the physics and mathematics that it contains. Going further, it is even possible to

parametrize the generic model set-up, e.g. the domain dimensions or the location of emission

sources, to make the case more flexible. Running the application remotely is also possible, using a

web browser to submit the necessary input to the CFD code. Secondly, a very wide area can be

monitored numerically, which would not be commercially viable with physical devices and field

monitoring campaigns. Thirdly, such a simulation can be used to learn the general behaviour of, and

the potential problems associated with, the region of interest and eventually set up a response plan

to any given situation known to cause discomfort or form a health hazard to the neighbourhood. This

feedback can be used to improve the operation of the plant and its safety, but also to enhance the

model set-up for future simulations.

Key words | atmospheric pollution, automation, CFD, real-time, simulation

INTRODUCTION

The on-going developments of computing facilities and

CFD mean that simulations are now possible on a variety

of platforms that are very efficient and affordable. Part

of the progress of CFD in recent years has been its ability to

become more accessible to non-specialists via the

creation of graphical user interfaces (GUIs) which make

the problem description faster and easier in the sense

that guidelines are provided and that mutually exclusive

options are automatically presented to guide the user.

Although improved, this new generation of tools still

17 © IWA Publishing 2005 Journal of Hydroinformatics | 07.1 | 2005

requires some CFD know-how to be used and a good

knowledge of the interface to be properly operated. To an

occasional end user interested in the interpretation of the

results, this might constitute a barrier if he/she does not

have this base knowledge or if it is not economically effec-

tive for him/her to take the time to learn and maintain this

knowledge. The idea of this paper is therefore to show how

the use of scripting languages could allow the modification

of a pre-defined model by a non-expert user from a HTML

window, for example, or even better, as will be detailed

hereafter, in fully automated fashion from the use of

recorded data files that feed the simulation automatically.

The CFD code that has been used is CFX-5 and it is

shown how it is possible to automate the simulation of a

series of atmospheric events working with a generic CFD

model whose boundaries and source terms change with

time as a function of live records. The scripting language

used is PERL (Practical Extraction and Report Language)

that most Unix users will know as a close relative of Sed or

Awk, and others will recognize as a tool close to the C

language. PERL’s main advantage is its flexibility and ease

of use, as well as the fact it is freeware (see www.PERL.

com or http://www.911media.org/workshops/PERLclass/).

The data from the measuring devices are recorded in plain

text and can take any format since it is fairly easy to

sample and reformat.

A fictitious water plant has been implemented in

CFX-5. This model will serve principally to describe the

geometry of the area and that of the plant and name

different regions in space, such as boundary conditions or

zones of emission, as well as carry the associated mesh and

the general description of the gas mixture. However no

prior definition of the flow dynamics and mass input will

be created. This method has already been implemented by

the author for a real water plant over an area of over

100 km2. Although the example used for the figures is

illustrative here, the concept has been applied and works

well in practice. It should be noted that there exist other

applications of interest to this forum that could be

modelled in the same fashion, computer technology

permitting: flood and water drainage system management

could be amenable to such technology indeed, but also

more general classes of chemical pollution, atmospheric

or contained, or in water.

CFD – A DEMANDING TOOL WITH PROMISE

Computational Fluid Dynamics (CFD) is a demanding

field for several reasons.

First of all, the Navier–Stokes equations still form one

of the most difficult numerical problems to solve. This

implies that a good understanding of the equations’ con-

stitution, and subsequent behaviour, may be required in

order to interpret the outcome of the simulations. It also

implies that a good understanding of numerical analysis is

needed. In recent years various groups have tried to raise

the attention of new users to these issues and have

attempted to promote the concept of verification – ‘solving

the equations right’ (Roache 1998).

From a physical standpoint, the above set of equations

is not much easier to solve properly. In fact, in order to be

able to solve most practical problems, models are used to

approximate the behaviour of the fluid, e.g. turbulence

effects. These require further physics knowledge which,

combined (multiphase models, reactive flow models or

radiation models), can make such problems inaccessible

to all but expert users. Validation – ‘solving the right

equations’ – then forms a second necessity.

The fact that numerical issues are often interrelated

with physical ones, e.g. the boundary condition in the

neighbourhood of a wall, does not make things any easier.

The progress of commercial CFD has made the above

issues more accessible to new users from the standpoint of

the interface, but not necessarily any easier from a funda-

mental perspective. Research has supplied the back-

ground technology to commercial vendors, with the

sponsorships of powerful sponsors in the energy, aero-

nautical, chemical and car industries. It is also supplying

guidelines to the implementation of CFD in industry. But

CFD still requires a background knowledge whose cost is

still high to industrialists for whom CFD only provides

either an occasional tool or a tool that is too sophisticated

to be used in its most general form in their daily business.

The author believes the role of CFD in the water

industry is set to expand, which is also true in several other

civil and environmental engineering sectors. CFD is a

powerful tool to model geometries at the 1:1 scale and for

designing new solutions interactively and rapidly. It is also

becoming an economical tool in terms of hardware, with

18 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

the advent of the PC and Linux, and software. What is

expensive to buy and maintain is the human CFD knowl-

edge. But is that necessary to all businesses? If CAE

(Computer Aided Engineering) and CFD do not constitute

an essential part of the business and the design of new

solutions is only occasional, the answer is no. Should

it prevent these industries from using CFD, e.g. for

operational purposes? The author believes the answer is

no once again and the water industry should, in fact,

become one of these CFD clients for whom the develop-

ments shown in this paper could be directly applicable.

The concept of hydroinformatics is a combination of

CAE and modern communication technology aimed at

making engineering models and information accessible,

and assisting in decision-making. Scripting, and embed-

ded scripting in particular, implies that it is now possible

for an expert user to prepare generic model set-ups that

are subsequently usable by a wider range of users who are

experts in the application field, but not in CFD for

example. Going further, it is even possible to generate

‘smart’ applications that can run automatically using

information directly obtained from recorded devices, such

as wind or water meters. These smart applications can run

rapidly and generate easy-to-distribute web-based reports.

This is what is presented below: CFD made accessible

via the implementation of PERL scripts that manage the

simulations and produce legible results automatically.

Expert users create the model, write the scripts and

supply a simple front-end to end users. The latter can then

fill in the data and submit jobs that can run remotely, for

example on sites dedicated to providing computer power

(CPU time) and access to the necessary software licenses.

All of this can form part of a service that does not neces-

sarily need to be part of the end user organization. It can

therefore be very cost-effective, especially for small firms.

CFX-5

The code CFX-5 has been tested for various environ-

mental applications and has been found to be suited for

this application. The concepts that are presented hereafter

should, however, be applicable to other CFD codes.

CFX-5 is a fully unstructured code able to tackle

complex geometries. Its solver is particularly efficient and

relies on a fully coupled approach and an algebraic multi-

grid acceleration technique. Another attraction of this

code is that it encompasses a breadth of physical models

that are particularly useful to water and environmental

applications such as free surface and general Eulerian–

Eulerian multiphase models for example. These models

can be further developed using FORTRAN routines

available to expert users.

Within the context of the present paper, however, the

most interesting asset of the code is the fact that it is able

to interpret PERL directly. This implies that it is possible

to write conditional CFX commands using embedded

PERL. As a PERL interpreter1 is provided it is then

possible to use PERL to manage the files and the simula-

tion ‘externally’ using batches and to drive the CFX-5

simulation ‘internally’ from inside the definition file.2

APPLICATION

The main objective is to monitor the dispersion of heavy

gas, such as H2S for example, away from emission zones:

open water and mud treatment tanks of the water treat-

ment plant. The problem with such gas is that it is

extremely nauseous, even in relatively small concen-

trations, and that it is the duty of the operator to ensure

that such emission is properly timed so as to cause mini-

mum discomfort to the neighbourhood; something that is

crucial in an urban or semi-urban environment.

The interests of the operator are:

1. To manage its operation.

2. To improve its understanding of the region (which is

impossible using a monitoring campaign carried out

from a mobile laboratory on such a scale).

3. To create a response plan, ahead of time, to various

meteorological and venting situations with time.

1PERL is not compiled; it is therefore not a language per se but rather forms a
series of script commands. Such an interpreter can be downloaded free of charge
on the web.
2The definition file is the CFX-5 file containing the mesh and all the commands
necessary to run the simulation.

19 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

4. To possess a supporting tool used to answer queries

from the public and the local authorities.

5. To show its willingness to control and limit the

possible discomfort caused by the treatment process

by improving the management and understanding of

the operation.

The main constraints are that:

1. The application end users have little to no modelling

knowledge.

2. The tool therefore needs to be automated and open:

(a) It needs to read and sample recorded data for

the proper flow profile values at the inlets at

every time interval.

(b) It needs to detect the flow direction to create

boundary types (inlets, outlets, openings) as it

changes with time.

(c) It needs to read and sample measured emission

data to add pollutant sources where necessary at

every time interval.

(d) It needs to stop and be able to restart with

updated conditions from the correct time

period, at every time interval, in a reliable

fashion.

(e) It needs to be evolutive so that it can quickly

reflect changes in the operation (e.g. new

sources).

3. The whole simulation has to happen in ‘real time’

(the simulation actually runs with a slight delay due

to the fact that data need to be recorded before they

can be used).

On the other hand the simulation domain is fixed and well

defined. Therefore the geometry and the mesh can be

generated once by a CFD specialist at the start of the

project and eventually enhanced, if required, when feed-

back is available from end users. It may be advisable to ask

the CFD expert for a periodic review of the model to

ensure that all is well with the set-up, e.g. on a yearly basis.

The case presented here is just an example, of course:

such a concept could be applied to various other applica-

tions with CFD codes or others. The PERL scripts devel-

oped by the author could be easily adapted to other cases.

However, the constraints listed above are believed to be

representative of most applications that could be attracted

to such technology.

CREATION OF THE CFX-5 GENERIC MODEL

Topographical data for the area are provided in text

format in X, Y, Z columns. A simple script is written to

convert these data to Patran format, the underlying

language in the CFX current pre-processor, so that

the necessary points and lines constituting the bottom

topographical surface can be turned automatically into a

CFX-5 geometry in the CFX-Build, CFX CAD and mesh-

ing facility. An example of a script written for this purpose

is given in Appendix 1.

Once the surface is created and smoothed in CFX-

Build, it is fairly straightforward to construct the sides and

top of the box forming the simulation domain. Here the

top surface is called the ‘Sky’, and the box’s sides named

‘East’, ‘North’, ‘West’ and ‘South’. Various patches3 based

on geographical and physical properties are also created at

this stage on the bottom surface so as to be able to

implement a suitable roughness representation for water,

open fields, woods and forest, housing estates, town and

tall building areas or estates. Roughness values can be

found in the literature (Aynsley 1977) for each of these.

The above computational box is then meshed and a

generic physical set-up is implemented in CFX-Pre, the

CFX-5 physics pre-processor. The idea behind the concept

that is presented here is that additional files called

BCs4.ccl, InputBCs.ccl and InputPollutant.ccl,

standing for boundary condition type, boundary condition

values and source term values respectively, will be created

by the automated script from the recorded data and

added to the CFX definition file.5 These new pieces of

information will overwrite pre-defined sections, where

appropriate, in the generic definition file. This is done

automatically whenever necessary. The file extension ccl

3Patches is the name used in CFD to refer to groups of computational nodes
contained on a surface forming a boundary of the simulation domain.
4BC stands for Boundary Condition; BCs is the plural form.
5A definition file is the file that contains all the necessary information (domain,
mesh, physics and numerical options) required to define the problem and run a
CFD solver.

20 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

stands for CFX Command Language, but in reality these

files are simply additional text files of keywords that are

concatenated to the generic definition file as appropriate.

The reader should note that the end user does not

need to understand the detail of the CFX Command Lan-

guage as the appropriate definition file is constructed by

the algorithm. This is just presented for clarity and for the

benefit of those who would like to create their models

using a similar approach.

ALGORITHM

Reading and sampling the measured data

The live data must be read and formatted so that they can

be used by CFX. These data are the wind direction and

intensity with altitude as well as the emission of products

from the plant (sources). In an ideal situation, the data

files are perfect and contain no errors, and measuring

devices are never out of order or being serviced. Of course,

this is not the case; therefore one must be able to detect

missing data and errors and have a protocol to report

and/or substitute them. It is decided that by default the

error message that is reported for a missing or erroneous

data is ERROR! It is followed by information regarding the

location of the data in the file and suggestions to alleviate

the problem when no automated solution is applicable. A

typical way to substitute a missing wind measurement

automatically is to look at the neighbouring measurement

values and the previous time series and use these to

extrapolate a new value; for a source, a mean value can be

computed using other source measurements.

To complicate data management for the sources fur-

ther, the grouping of some data is necessary to reflect

different zones of pollutant emission in the plant. In the

event where a source data point is missing, e.g. due to a

failing captor, it can then be substituted by a represen-

tative average of its neighbours within the zone. The other

source points located outside the zone are not used in the

computation of the substitute value. Groups of data there-

fore need to be sampled separately. Which data belongs to

which group is known from the start (and defined as such

in the algorithm) and the chart below aims to illustrate the

sampling of n values belonging to one group of data.

Creating the boundary types

Once the data file has been created it is also necessary to

detect the flow direction so as to be able to determine

which of the boundaries, West, North, East or South, will

be defined as an inlet and which will become a static

pressure or outlet boundary condition to reflect an outflow

condition. This is easily done by looking at the signs of the

numerical values within the frame of reference chosen

for the simulation, once the measured values have been

formatted in this frame of reference.

Since several wind values can be recorded at various

measuring poles it is possible to represent a piecewise

linear wind profile with altitude. This information is there-

fore used to create a 2D profile for the wind, based on a

pre-defined parametric profile that is implemented using

the measured values sampled as shown in Figure 1 for

example. Values from the various masts can then be

smoothed and implemented in the correct locations, West,

North, East or South, depending on the wind direction,

see Figure 2.

At this stage of the simulation, all the fluctuating

boundaries and source data have been accounted for and

formatted as CFX-5 data files. What is required is to run

the simulation in automated batch mode.

Management of the simulation and run in batch mode

The algorithm presented above is run at every time inter-

val, i.e. the time period corresponding to the elapsed time

Figure 1 | Data sampling for InputBCs.ccl and InputPollutant.ccl.

21 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

between two consecutive recordings of wind flow and

pollutant emission. For any given day j and time interval

h + 1, a directory is created as follows: Dayj/Timeh+1,

with 1≤j≤31 and 0≤h≤47 (assuming the time interval is

equal to 30 min, therefore requiring 48 time intervals).

During the run, when a simulation ends for period

Dayj/Timeh+1 it has to restart from Dayj/Timeh+2,

using the correct BCs.ccl, InputBCs.ccl and Input-

Pollutant.ccl files produced for time interval h + 2 and

the result file from the ending simulation that is located in

Dayj/Timeh+1, which turns into the initial condition file

at Dayj/Timeh+2. Similarly the scripts need to manage

the change between day j and day j + 1.

In any given period, the script writes and executes a

CFX-5 solver command from the right location that reads:

cfx5solve -def $dir/GenericDefinitionFile.def

-ccl

dir/Daymm/Time$m/inputPoluttant.ccl -ccl

dir/Daymm/Time$m/inputBCs.ccl -ccl

dir/Daymm/Time$m/BCs.ccl -ccl

dir/Daymm/Time$m/time.ccl -ccl

$dir/sourcepoint.ccl

where $dir indicates the working directory, $mm is the day

and $m the time interval, all of which are replaced by the

real path and values, as indicated above, as the runs

iterate. The files behind the -ccl commands overwrite the

information contained in the CFX-5 generic executable

definition file with the up-to-date information.

The attentive reader will notice two extra files called

time.ccl and sourcepoint.ccl at the end of the com-

mand line. They have been included for flexibility to set

the time interval as required, and to define the source

point types and locations respectively.

Again all the items from the second to the last line of

commands are generated automatically and the command

is subsequently executed. The simulation will only stop

when one presses the ‘Stop’ button in the CFX-5 GUI,

Figure 3, when one reaches the end of the pre-defined

total simulation time or when the data runs out!

This part of the script is shown in greater detail in

Appendix 2. This type of script can be operated from a

HTML window used for the definition of the parameter

values.

The application described so far is working well

in terms of the quality of the CFD, as the following

convergence windows shows, Figure 4.

Post-treatment

To complete the work presented so far, an automated

post-treatment is required, in a format that is easily usable

and portable.

Figure 2 | Boundary condition type and 2D wind profile.

Figure 3 | Transient simulation showing convergence to 10−4 at each time iteration

(reduction of four orders of magnitude for each time interval) for all

components.

22 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

Once a view plane and its associated picture type

(vectors, iso-contours) are retained by the end user, they

are created generically in the post-processor, here CFX-

Post, and assuming that the chosen post-treatment tool

can function in batch mode, it is then very simple to offer

the same automation to the user as that described until

now for the pre-processor and the solver. CFX-Post has

such a capability, and after review with the plant operator

it is then possible to prepare generic plan views at given

heights, with plots of vectors and iso-contours that are

systematically created at the end of each run.

Using PERL one can create JPG or PS pictures, for

example, which are placed in a HTML file with dates and

a summary of weather and emission conditions. Important

data can be formatted in tables and an alarm bell system

can be set up to warn the end user of a potential problem.

This way one does not need to use the post-processor to

obtain a concise summary of the latest situation.

The advantage of using a HTML automated report is

that the latter can then be distributed across all platforms

equipped with an internet browser such as Netscape or

Internet Explorer, making the results available to anyone

on the network. This has a very strong potential in terms of

the distribution of the information within a company and

its posting on a web site to inform the wider population of

a situation.

GENERALIZATION OF THE CONCEPT

The work that has been presented here in the context of a

water treatment plant could well have been applied to any

other type of plant. It would even be easier from a model-

ling standpoint to implement the concept in an indoor

situation, e.g. to monitor gas emission or (nuclear) radia-

tion. Moving away from the application context shown

above, but remaining in the water engineering industry, it

would also be possible to implement generic models for a

section of rivers or canals or sewage, with inlets and

outlets to an installation which could be defined with

parametric dimensions and physical conditions.

This paper shows that it is possible for an expert in

CFD to prepare nearly any generic model that can be

tailor-used by end users whose main knowledge lies in the

exploitation of the fluid mechanics results and the associ-

ated mechanical or chemical processes rather than the

science of CFD. PERL, as with many web and shareware

tools, is also very accessible and can easily be used in

conjunction with general web browsers. Since most

scientific codes can be operated in batch mode, such an

implementation is relatively easy and could be extended to

non-CFD codes.

This work also implies that the end user could use

remote resources (either hardware and/or software), e.g.

in a central office or from a service provider, accessed via

a web browser. In this business model we would have an

expert consultant preparing the model, a service provider

specialized in scientific computation and a third-party

client hiring à la carte computer and applications

facilities.

CONCLUSIONS

It has been shown that it is now possible to combine and

customize complex CFD models with scripting languages.

Tools such as PERL can serve to facilitate access to

scientific codes such as CFX and also to automate simula-

tions using remote data as direct inputs. It has also been

said that other CAE tools could be amenable to such

automation.

Figure 4 | Example of a simple HTML report.

23 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

A water treatment plant has served to illustrate the

concept and it has been used to demonstrate that the

possibility for such combined automated simulation is

extremely wide. A variety of other applications could be

implemented using the same technology in the water

business and beyond.

In the context of the present paper however, it implies

that CFD technology could become more readily usable by

a larger community within a given organization, for which

an expert would create the base model and the tailored

interfaces, and ensure regular maintenance. Going further

this also opens the possibility for a remote use of CFD

resources via the web.

ACKNOWLEDGEMENTS

The author is indebted to Mr Denis Lécuyer, formerly of

AEAT France and currently working for CETIM in

Nantes, France, who participated in the writing of some of

the original PERL scripts that led to those shown in the

appendices. I would also like to thank my colleagues at

Nottingham and the reviewers for their comments on this

paper.

REFERENCES

Aynsley, R. M., Melbourne, R. & Vickery, B. J. 1977 Architectural
Aerodynamics. Applied Science, London.

Roache, P. J. 1998 Verification and Validation in Computational
Science and Engineering. Hermosa Publishers, Albuquerque,
NM.

24 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

APPENDIX 1. AUTOMATION OF TOPOGRAPHICAL SURFACE CREATION FOR CFX-BUILD

###
#
#
#
#
#
#

#
#
#
#
#
#

PERL Script used to Format DTM Points in Patran Format for CFX-5 (Session files)

Author: Hervé Morvan, 2002

###

#–––#
#
#–––#
#
#–––#
#
#
#

#
#
#
#
#

THIS SCRIPT WILL CREATE A PARAMETRIC SURFACE FROM ANY REGULAR MATRIX OF XYZ DATA

PARAMETRES

THE ONLY FIELDS TO BE CHANGED ARE $a, $b, THE PATTERN OF THE SPLIT COMMAND IF IT IS
NOT A WHITE SPACE SEPARATOR AND THE XYZ POINT FILE NAME AND PATH
- HPM, 06/09/02

#PLEASE RETURN COMMENTS AND MODIFICATIONS TO THE AUTHOR AS REQUIRED

[. . .]

###
#
#

#
#

3.
- Writing the chained lines

###

$o=1;

#Matrix of Points p*q (here 10 rows×20 lines for example)
#Set values for p and q
$p=$a;
$pc=$p-1;
$pp=$p;
$ppc=$pc;
$q=$b;
$nb=($p-1)*$q;

open (WRITING,‘‘>>surface.ses’’);
print WRITING ‘‘INTEGER sgm_create_curve_cha_segment_id\n’’;
print WRITING ‘‘STRING sgm_create_curve_ch_created_ids[VIRTUAL]\n’’;

for ($n=($nb+1); $n<($nb+1+$q); $n++) {
open (WRITING, ‘‘>>surface.ses’’);

#Patran chain curves

print WRITING ‘‘sgm_create_curve_chain_v1(\‘‘$n\’’, \‘‘Curve $o:$pc\’’, FALSE,
sgm_create_curve_cha_segment_id, sgm_create_curve_ch_created_ids)\n’’;
close (WRITING);
$o=$pc+1;
$pc=$pc+$ppc;
}

25 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

###
#
#
#

#
#
#

4.
- Creating the topographical surface

N.B. Patran=>Nb lines<=100!
###

#Creation of session file ‘‘surface.ses’’
open (WRITING, ‘‘>>surface.ses’’);

print WRITING ‘‘STRING sgm_surface_ncurve_created_ids[VIRTUAL]\n’’;

$nbb=$nb+1;
$nbbq=$nbb+$q-1;

print WRITING ‘‘sgm_const_surface_ncurve_v1(\‘‘1\’’, 2, \‘‘Curve $nbb:$nbbq\’’,
sgm_surface_ncurve_created_ids)\n’’;

26 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

APPENDIX 2. PERL SCRIPT (PART)

###
#
#
#
#
#
#

#
#
#
#
#
#

PERL Script

Authors: Hervé Morvan and Denis Lécuyer (currently at CETIM, France)

###

require ‘‘ParametresPERL.txt’’;

###
#MAIN PROGRAMME
###

#EXECUTION OF ROUTINES

cclconcentration ($dir1,$myfile1);

cclmeteo ($dir1,$myfile2);

ccltemps($dir1,$totaltime1);

calcbatch($dir1,$initialday1,$endday1,$testinitres1,$initres1);

#––––––––––––––––––––––––––––––––––––Main Programme End––––––––––––––––––––––––––––––––––––#

[. . .]

###
###
#SUB-ROUTINE PERL to launch a series of runs in batch mode
###
###

sub calcbatch {

($dir,$initialday,$endday,$tEastinitres,$initres)=@_;

print ‘‘STARTING SIMULATION\n’’ ;

###
#1. LOOP ON DAYS
###

for ($mm=$initialday; $mm<=$endday; $mm++) {

print ‘‘CALCULATING DAY:$mm\n’’ ;

###
#2. LOOP ON ALL TIMES INTERVALS OF ONE DAY
###

for ($m=0; ($m<=47); $m++) {

print ‘‘CALCULATING DAY: J$mm TIME:$m\n’’ ;

27 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

#################
#2.1 CALCULATION
#################

$mmc=$mm;

$mc=$m-1;

if ($m==0) {

$mc=47;

$mmc=$mm-1;

}

#Working directory (directory from which the CFX run is started)

chdir (‘‘dir/daymm/time$m’’);

#Initialization :

#no initial file

if (($mm==$initialday)\($m==0)\($tEastinitres==0)) {

open(SOLVE,‘‘zcfx5solve -def $dir/calculSIAAP.def -ccl $dir/pointsource.ccl -ccl

dir/daymm/time$m/inputH2S.ccl -ccl dir/daymm/time$m/inputBCS.ccl -ccl

dir/daymm/time$m/BCS.ccl -ccl dir/daymm/time$m/temps.ccl’’);

close(SOLVE); # start the run going

}

#if initial file available

if (($mm==$initialday)\($m==0)\($tEastinitres!=0)) {

open(SOLVE,’’zcfx5olve -def $dir/calculSIAAP.def -ini $initres -ccl

$dir/pointsource.ccl -ccl dir/daymm/time$m/inputH2S.ccl -ccl dir/daymm/time$m/inputBCS.ccl

-ccl dir/daymm/time$m/BCS.ccl -ccl dir/daymm/time$m/temps.ccl’’);

close(SOLVE); # start the run going

}

#Calculation of the following time intervals

if (($mm!=$initialday)zz(($mm==$initialday)\($m!=0))) {

open(SOLVE,’’zcfx5solve -def $dir/calculSIAAP.def -ini dir/daymmc/time$mc/calculSIAAP_001.

res -ccl $dir/pointsource.ccl -ccl

dir/daymm/time$m/inputH2S.ccl -ccl dir/daymm/time$m/inputBCS.ccl -ccl

dir/daymm/time$m/BCS.ccl -ccl dir/daymm/time$m/temps.ccl’’);

close(SOLVE); # start the run going

}

}#end of loop on time intervals

}#end of loop on days

#end of routine routine calcbatch

28 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

Key:

CFX commands.

PERL commands.

Calcbatch subroutine, called in the body of the main programme.

29 Hervé P. Morvan | Automating CFD for non-experts Journal of Hydroinformatics | 07.1 | 2005

