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ABSTRACT

The efficient long term management of large-scale public funded assets is an area of growing

importance. Ageing infrastructure, growth and limited capital all result in the need for a more robust

and rigorous methodology to prioritise rehabilitation and renewal decisions and, as importantly, to

forecast future expenditure requirements. The overall objective of this research is to develop a

Bayesian-based decision support system that will facilitate the identification of efficient asset

management policies. The Bayesian approach enables us to formally incorporate, express and

update our uncertainty when determining such policies. This is particularly relevant for water utilities

that have incomplete or unreliable historical failure data sets and, as a consequence, rely heavily on

past engineering experience.

An object oriented discrete event simulation has been developed to analyse existing maintenance

policies, test the Bayesian methodology and to develop and identify improved maintenance policies.

This paper focuses on the areas of research relating to the long term management of water

distribution systems and, in particular, will present: (1) an overview of the Bayesian approach, (2)

development and initial results for an object oriented discrete event simulation and (3) proposed

future research and development.

Key words | Bayesian statistics, discrete event simulation, counting process, hierarchical model,

nonhomogenous Poisson process

INTRODUCTION

It is generally accepted that water supply infrastructures

throughout the world are deteriorating systems. This, cou-

pled with further expansion and renewal, places ever

increasing financial stress on the present levels of funding.

Water rates in Auckland, New Zealand, for example, are

predicted to increase 5–20% per year for the next 10–20

years just to keep pace with maintenance and renewal

programmes. The water industry is therefore facing the

problem of managing deteriorating networks in the most

efficient manner possible to maintain existing and future

levels of service.

It is obvious that, for a deteriorating water supply

system to meet predetermined levels of service, mainten-

ance actions need to occur. Maintenance is carried

out to prevent system failures, as well as to restore the

system function when a failure has occurred. The

prime objective of maintenance is thus to maintain or

improve the system reliability and operation regularity

(Hoyland & Rausand 1994). Maintenance typically

consists of rehabilitation, repair and renewal. Most

maintenance policies combine the making of renewal

decisions after one or more failures with planned pipe

replacements based on engineering judgement and a

knowledge of the system.

In order to enhance maintenance decisions it is there-

fore essential to improve the understanding of the deterio-

ration process and the evolution of failures of water mains

pipes and to develop appropriate predictive models that

can assist in the decision-making process. The resulting

pipe break models can serve both as a diagnostic tool and

an optimisation tool (e.g. for developing best replacement

strategies), but also, when coupled with an economic

assessment model, they become powerful tools for

decision making by water managers (O’Day 1982).
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COUNTING PROCESS MODEL

For a well-designed water supply system the bulk of the

pipes can be considered repairable, as the cost of

failure is small in comparison to replacement. When a

pipe failure occurs a small part of the pipe can be

repaired, or possibly replaced, to restore the pipe to its

functioning state without replacing the entire pipe.

The pipe may be repaired several times before being

replaced. Therefore, pipes that are considered repairable

cannot be modelled by the conventional fitting of

a statistical lifetime distribution, as successive failures

are firstly, not identically distributed, and secondly,

not independent. The succession of pipe failures can,

however, be modelled using a counting process (Lei &

Saegrov 1998).

A counting or point process is a stochastic model that

describes the occurrence of events in time. These occur-

rences, in this case failures, can be thought of as points

along a time axis. If the times between failures tend to get

shorter with age the item is said to be deteriorating.

Alternatively, if the times between failures are increasing

then the item is improving. Define N(t) to be a random

variable denoting the number of failures for a given pipe in

the time interval [0,t]. The expected number of failures

from time 0 through to time t is known as the mean

function, Λ(t), and can be written as

Λ(t) = E(N(t)) (1)

The intensity function, l(t), of a counting process at time t

is defined to be

l�t��
d

dt
L�t��

d

dt
E�N�t��� lim

Dt�0

E�N�t�Dt��N�t��
Dt

(2)

The intensity function may be regarded as the mean

number of failures, N(t), per unit time. In other words,

this describes the rate at which breaks are occurring, i.e.

the failure rate. The intensity function is therefore the

most important measure of a pipe’s reliability. Many

repairable systems, and we assume this includes pipes,

typically have a ‘bathtub’ shaped intensity function

(Figure 1).

When a pipe is newly installed the intensity can be

high and failures frequent. This can be described as a

settling-in period, possibly due to construction practices.

After early faults have settled down, the intensity will be

smaller and remain relatively constant for long periods of

its useful life. Then, as the pipe ages, the intensity will

begin to increase and the pipe starts deteriorating. This is

the period of most interest, as eventually the failure rate

will exceed a certain level and it will become cost-efficient

to replace the pipe.

This deterioration phase can be modelled by a Non-

homogeneous Poisson Process (NHPP). The NHPP allows

the intensity to vary with time. This implies that the times

between failures are neither independent nor identically

distributed. The NHPP also assumes minimal repair with

negligible repair times. Minimal repair assumes that a

repair will have no effect on the pipe failure rate and

restores the pipe to ‘as bad as old’ condition. The likeli-

hood of the pipe failing is the same immediately before

and after a failure. This is considered a reasonable

approximation, as a pipe repair is typically acting on only

a small percentage length of pipe compared to the overall

length of the pipe. Negligible repair time is considered

acceptable when comparing a pipe’s lifetime (measured in

years) with repair times (counted in hours) (or possibly

days).

There are several models that can be used to describe

the intensity of a NHPP. Common ones include the power

law model, l(t) = atb − 1, the exponential model l(t) = aebt

and derivations of these models based on the proportional

hazards model h(t) = h0(t)ebz (Cox 1972), replacing the

baseline hazard function with the baseline intensity func-

tion, l(t) = l0(t)ebz. Once the intensity function has been

Figure 1 | Bathtub shaped intensity function.
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estimated the number of failures in a given time period is

Poisson distributed:

P�N�t��n��
L�t�n

n!
e�L�T � (3)

The expected number of failures in a given time period

is of obvious use for rehabilitation and budgetary

considerations.

BAYESIAN APPROACH

The use of databases, and in particular geographic infor-

mation systems, for managing infrastructure has only

become common in New Zealand within the last 10–15

years. The often poor quality of earlier paper records

means it is very rare for water utilities to have an entire

history of failures. Recorded failure data is therefore, more

often than not, limited to recent periods of time. Addition-

ally, much of the data that has been recorded is of dubious

quality, and quite often in an incompatible form or format.

Research in European countries has identified that a

smaller amount of more accurate data can lead to better

results than more complete, but uncertain, data (Gat &

Eisenbeis 2000). The unreliable nature of the data creates

several problems in modelling the deterioration process of

pipes. The most obvious one is that, with a lack of failure

history, it becomes very difficult to estimate the failure

rates of pipes. This has been a major shortcoming in

previous research and has resulted in the dominance of

engineering judgement in the decision-making process.

Even when there is a reliable failure history, the varia-

bility of pipe failures is large. This means that, even though

two pipes may have exactly the same failure rate, the

number of observed failures can be quite different. A

natural estimator of the failure rate of a pipe can be

calculated by dividing the number of failures by the length

of the pipe and the observed time period. Basing mainten-

ance on the observed historical number of failures can

perhaps unnecessarily bias the decisions in favour of pipes

with higher observed breakage rates.

The problem therefore is how to estimate the failure

rate given limited reliable data and relying predominantly

on engineering knowledge. One methodology that is well

suited to this type of problem is Bayesian statistical mod-

elling. A Bayesian model can combine engineering knowl-

edge, in the form of our beliefs about the failure rate (prior

distribution), with the data at hand to provide a formal

estimate of the likely breakage rate distribution (posterior

distribution). Bayes’ equation can be written as

Posterior=
Prior×Likelihood

∑Prior×Likelihood
(4)

where the denominator of the right-hand side is a fixed

normalising factor which ensures that the posterior

probabilities sum to 1.

The above equation, relating to a failure rate, can

therefore be expressed as

Posterior∝Prior×Likelihood
P� l zdata��P�l�P�data zl� (5)

where ∝ means ‘equal to except for a constant of propor-

tionality’ and z is used to express a conditional prob-

ability. It is important to note that prior can be based on

existing failure data that might be available, or even a

combination of knowledge and data. As such, the

Bayesian approach can be seen as a formal statistical

updating methodology.

Another additional advantage of Bayesian inference is

that it also provides a conceptually straightforward stat-

istical procedure for providing management advice under

uncertainty, commonly referred to as risk management.

The posterior distribution explicitly accounts for the

uncertainty of model parameters and structure, indicating

the support given to each possibility using the best avail-

able information and data. When combined with cost

data, the posterior can be seen as a formal measurement of

risk (e.g. the expected consequences of each policy option

and indications of uncertainty).

CONSTANT FAILURE RATE MODEL

Let us consider one pipe with a constant failure rate, i.e.

l(t) = a for all t and assume we observe N breaks in the
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time interval T. As briefly mentioned above, the natural

and obvious estimate of the failure rate a is

â�
N

T
(6)

However, suppose we have prior information about a
(from previous pipe failure studies, engineering knowl-

edge or existing data, for example) and can express this as

a Gamma distribution:

a∼Gamma(a,b) (m = a/b, var = a/b2) (7)

where the symbol ‘∼’ is used to mean ‘distributed by’. The

shape and tightness of this distribution, the mean and

variance, will reflect our uncertainty about what we

believe to be the actual failure rate. From Bayes’ equation

(5) and the Poisson likelihood function (3),

p(azN)∝p(a)p(Nza)

∝baaa − 1e − bae − aT(aT)N

∝aa + N − 1e − a(b + T) (8)

or, in other words, the observed breakage information, N,

updates our belief about the failure rate a to give

a zN�Gamma�a�N,b�T�, Sm�
a�N

b�T
, var�

a�N

�b�T�2D (9)

We can see that, with a large quantity of data (i.e. many

breaks), the posterior mean tends towards N/T, the natu-

ral estimator of a. Likewise, if there is little failure data

available, the mean is dominated by the prior estimate of a
(a/b). If the pipe has not broken at all, for example, we still

have an estimate of a based on our engineering knowledge

of similar pipes. It can be seen therefore that the Bayesian

approach provides an excellent way of combining

engineering knowledge and available data in a robust and

formal statistical manner.

In the above example the posterior is of standard form

(i.e. a Gamma distribution). In Bayesian terminology this

is known as conjugacy. A conjugate prior is a prior that,

when combined with the likelihood function, results in the

posterior being of a standard recognisable form. However,

this is not always the case, and for most problems of higher

complexity, and hence useful application, the posterior is

not of standard form. To solve such equations one must

employ Monte Carlo Markov Chain (MCMC) techniques.

This is beyond the scope of this paper and the reader can

refer to the following references for further information

(Brooks 1998; Migon & Gamerman 1999; Green 2000).

Implementation of a more advanced model utilising

MCMC techniques is not pursued in this paper and is the

topic of a future proposed paper.

HIERARCHICAL BAYESIAN MODEL

The above example illustrated the Bayesian methodology

for one pipe. However, it would make sense to incorporate

information and knowledge of all the pipes in the network

in making estimates of the failure rate for any one pipe. To

achieve this, we use a hierarchical Bayesian model.

Hierarchical models aim to combine the information

from various sources of data while exploiting an assumed

similarity between parameters. In this model it is assumed

that the underlying failure rates li of each pipe i are drawn

from the same prior distribution, named the hyperprior.

This pooling of data greatly improves the precision of the

estimates of li and can be seen as a compromise between

the assumptions that all pipes are identical, and therefore

have the same failure rate, and that all pipes are different,

in which case all pipes are treated separately using only

data from pipe i to estimate li. In this model, a pipe failure

on one side of a network may provide knowledge about

the failure rate of a similar pipe on the opposite side

of the network. This may be particularly valuable for

decision-making if no failure data exists for some pipes.

Our specification of the hyperprior determines how

the individual failure information updates other similar

pipes in the network (Figure 2). If an informed (‘tight’)

hyperprior, with a small variance, is specified, then a priori

it is implied that the pipes are very similar. Any failure data

relating to one pipe directly updates the belief in the
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failure rate of another pipe. In extreme, this is effectively

combining all the pipes and failure data into one long

length of pipe. Conversely, applying an uninformed

(‘loose’) hyperprior, one with large variance, effectively

treats all pipes as different. Typically, one would specify a

semi-informed hyperprior, somewhere in between.

SIMULATION

An object-oriented discrete event simulation with an

embedded hydraulic solver has been developed to test

various maintenance policies and demonstrate the

Bayesian methodology. In particular, the simulation can

highlight the Bayesian updating, or learning, process. As

more failure data and any other relevant information

becomes available, the simulation can formally update

estimates of parameters of interest. The estimates, with

their corresponding statistical properties, can then be used

to update projected costs and hence help identify efficient

replacement strategies.

The main advantage of this simulation approach is

that it is transparent and easily understood by network

management staff, increasing their faith in, and ultimately

their use of, the new approach. Our simulation can also be

easily adapted to handle a wide range of criteria and then

be used to analyse any results that may be of interest.

Providing valuable insights into the decision-making pro-

cess and their effects is particularly important when the

costs are not all monetary and a lot of the decisions are

based on rules of thumb. The simulation can be used to

search for optimal parameters for a predefined policy, or

mixtures of policies.

RESULTS

Breaks were generated randomly for two pipes assuming a

constant failure rate l = 0.1 break/yr. The failures can be

seen as dots along a time axis in Figure 3. The simulation

was then run for 50 years with failure rate estimates being

updated at every break and at 5 yearly intervals. The prior

for l was set with mean 0.1 and standard deviation 0.1. It

is therefore implied that something is known about the

likely value of l.

Results displayed in Figure 3 show how the hierarchi-

cal Bayesian model provides better estimates of l,

especially in the first 25 years. As previously discussed, as

more data becomes available the model converges to the

natural estimate of l.

For this example the natural estimate is taken to be the

maximum likelihood factor of l under the assumption that

l has a Poisson distribution with a mean of lT, where T is

the observed time. The main effect of the model can be

seen to be to pull the estimates of l together. The amount

of this ‘shrinking effect’ is dictated by the amount of

variance we believe exists between the two pipes. The

estimates will therefore either be shrunk towards their

Figure 2 | Overview of a hierarchical Bayesian model.

Figure 3 | Bayesian hierarchical model simulation results.
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expected mean or expanded towards their natural esti-

mates, depending on our belief in the similarity of the

pipes. However, all information will increase the accuracy

of the estimates of l for both pipes. This is the main

advantage of the Bayesian approach in that information

from one pipe will increase the accuracy of failure

estimates for similar pipes.

CONCLUSIONS

The aim of this paper was to introduce and outline the

development of a Bayesian-based decision support system

for water distribution systems. In particular, to present a

formal statistical methodology that combines engineering

knowledge with recorded failure data that is used to

provide estimates of the failure rate of pipes that make up

a water network.

The Bayesian approach was shown to overcome data

problems that commonly affect traditional statistical infer-

ence techniques. These problems include missing data,

lack of data and truncation of data. Additionally, the

Bayesian approach explicitly accounts for parameter and

model uncertainty, providing water managers with formal

and clear measurements of risk.

The hierarchical nature of the model can be seen as a

compromise between the assumptions that all pipes are

identical and that all pipes are different. This approach

ensures that all data throughout the network is used in the

most efficient way possible. Failure, and therefore cost

estimates, can be calculated on an individual pipe level. It

should also be seen that this approach is well suited, and

potentially more beneficial, to other assets in which infor-

mation can be ‘pooled’. These asset types may include

network structures such as sewer networks, rail networks

and possibly electricity distribution networks.

More generally, it was shown that Bayesian statistical

methodology is well suited to engineering type problems

and its use should be actively encouraged.
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